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This paper explores the role of formal methods as part of the user-centred design of interactive
systems. An iterative process is described, developing prototypes incrementally, proving user-centred
requirements while at the same time evaluating the prototypes that are executable forms of the
developed models using ‘traditional’ techniques for user evaluation. A formal analysis complements
user evaluations. This approach enriches user-centred design that typically focuses understanding
on context and producing sketch designs. These sketches are often non-functional (e.g. paper)
prototypes. They provide a means of exploring candidate design possibilities using techniques such
as cooperative evaluation. This paper describes a further step in the process using formal analysis
techniques. The use of formal methods provides a systematic approach to checking plausibility and
consistency during early design stages, while at the same time enabling the generation of executable

prototypes. The technique is illustrated through an example based on a pill dispenser.

RESEARCH HIGHLIGHTS

• The paper describes a user centred design process that integrates the use of formal models, theorem
proving and prototypes based on the formal description and empirical analysis.

• The process is illustrated with a realistic case study based on a pill dispenser device suitable for use in
common areas in care homes or hospitals.
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1. INTRODUCTION

Traditional user-centred design approaches such as contextual
design [Beyer & Holtzblatt, 1998] and scenario-based design
[Carroll, 1995] focus on user tasks early and throughout the
design process. They measure usability empirically and test
and refine the design iteratively, based on results obtained
through user evaluation sessions. The evaluations build on the
use of scenarios and sketch designs. Scenarios capture typical
or exceptional situations and tasks. Sketch designs represent
possible design solutions that would improve the situation.

They are often non-functional, for example it could be a simple
PowerPoint presentation or a paper storyboard. Think-aloud
techniques such as cooperative evaluation [Monk et al., 1993]
are typically used to collect feedback necessary to assess the
design and judge whether a further iteration would be appropri-
ate. These usability methods are well understood and provide
important insights about the context inwhich a device is used,
as well as the needs of different users.

In safety critical contexts, however, where guarantees
about the interaction between users and systems are needed,
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prototyping is not enough to provide the required level of
assurance. Even if the prototype is detailed enough to capture
all relevant aspects of the system, simple manual inspection
does not provide the required level of analysis thoroughness.

This paper advocates a complementary process in which
each step of the user-centred design process uses the, by now,
traditional approach of presenting the current version of the
interface to users but, at the same time, also involves a formal
analysis of the model that is developed alongside the design.
Specific aspects of the approach will be illustrated using a con-
crete example based on an automated pill box for dispensing
medication to patients at specific times.

The initial sketch design of the pill box is introduced in
Section 3, after the design process and the tools used to support
the design process in this paper are introduced (in Section 2).
The sketch design includes an explanation of the sketch
prototype and how an executable formal model can be derived
from the sketch. A requirement relating to the functionalities
that should be available to different intended users (doctor,
carer and pharmacist) is also discussed.

An enhanced design is then presented that fills various
gaps observed of the initial design (Section 4). The formal
model associated with the enhanced design is mechanically
checked against plausibility properties (Section 5) using
lightweight formal methods based on simulation and testing.
The enhanced design is validated with end users by integrating
the same formal model in a realistic interactive prototype
that can be effectively presented to end users and domain
experts (Section 6). Formal verification of requirements of the
model is then described (Section 7). Use-related requirements
include the consistency of the actions offered by the enhanced
design (Section 7.1), the reversibility of scrolling behaviour
supported by designed scrolling actions (Section 7.2) and
mutual exclusion of different user pathways (Section 7.3). The
final sections present a discussion of comparable approaches
(Section 8) and concluding remarks (Section 9).

The formal aspects of two iterations of the user-centred
design process are demonstrated for the illustrated design. This
demonstrates a framework that may be used effectively for the
design of use aspects of safety critical interactive systems.

Contributions of the paper are the following: (i) a user-centred
design process that integrates the use of formal models and
empirical analysis and (ii) an application of the approach to a
realistic case study based on a pill dispenser device.

This paper is an extended version of Harrison et al. [2018].
The main extensions are as follows: an enriched description
of the approach for integrating the formal analysis in standard
user-centred design methods, an extended presentation of the
requirements of the pill box device and a detailed illustration
of the formal analysis carried out to verify use-related require-
ments of the pill box device.

A similar approach was presented in Harrison et al. [2019b],
where verification was used post hoc, to guarantee relevant

risks had been considered in the design. While the approach is
similar, the concern in this paper is different and complemen-
tary, as the approach is used to support the design process itself.

2. THE APPROACH

Usability engineering usually assumes that part of design devel-
opment involves a (possibly) iterative process in which designs
are subject to some form of evaluation. In some cases, these
design stages can involve non-functional prototypes, see for
example Beyer & Holtzblatt [1998]. This paper argues that
user-centred design can involve a formal stage. The design is
modelled and the model is executed but at the same time prop-
erties are developed from user-centred design requirements
developed with the participation of users. This may include
usability heuristics, for example Nielsen & Molich [1990], and
use-centred regulatory requirements, for example Masci et al.
[2013]. The envisaged design process is as follows:

Step 1: use-centred requirements. An initial set of use-
centred requirements is developed through, for exam-
ple, contextual enquiry. These requirements are typically
formulated using natural language. At each iteration of
the design process the requirements are validated or
supplemented by further requirements relevant to the
current state of the model.

Step 2: executable formal model. A formal model is devel-
oped that captures the functionalities indicated in the
requirements. The formal model is checked mechani-
cally using lightweight formal methods based on simula-
tion and testing. The aim of this step is to gain confidence
that the specification satisfies basic properties, e.g. cov-
erage of conditions.

Step 3: validation of requirements. A mockup prototype is
created that can be presented to end users and domain
experts. The visual appearance of the mockup captures
that of the final system. The behaviour of the mockup
is driven by the executable formal model developed in
Step 2. The mockup is evaluated with end users and
domain experts. The main aim of this step is to validate
requirements, i.e. make sure that developers are creating
the right system. Requirements, model and mockup are
modified as gaps and errors are found. This step iterates
as necessary.

Step 4: verification of requirements. Requirements are
proved of the model using exhaustive formal methods
approaches, e.g. model checking or theorem proving.
The formal model is modified when verification attempts
point out corner cases where requirements are not
satisfied. Requirements may also be modified as gaps
and errors are found through the formal analysis. End
users are brought back into the loop when iterating the
design process (see also description of Step 5)
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Step 5: iterating the system design. Requirements and
mockup are iterated starting again at Step 1. Step 2 brings
end users and domain experts back into the development
loop. Requirements and mockup are re-validated in Step
3, to make sure the changes introduced by developers
are accepted by end users and domain experts. Changes
introduced in Step 3 lead to a new formal verification
phase (Step 4). The iteration continues until a satisfactory
design has been produced.

The approach requires, besides support for developing
mockups, a formal verification tool (theorem prover or model
checker) that is able to support both the verification and the
animation of the models. The technologies adopted in this
work are introduced in the next sub-section.

2.1. Primer on PVS and PVSio-web

PVS [Owre et al., 1992] is an interactive theorem proving
system based on sequent calculus. PVS specifications are called
theories. Properties to be proved of the specification are called
theorems. Theories and theorems are specified in a higher-order
logic language.

The basic elements of the PVS syntax are as follows
(additional elements will be introduced and explained later
in Section 4, when introducing the pill box example):

• Function types: they are type expressions of the form
[domain -> range], where range can be another
function type. The commands defined in this paper are
typically of the form [state -> state]; hence,
their type defines a function that transforms the current
state of the device into a new updated state following the
execution of an action (for example, pwd_screen(st:
state): state, see Listing 1.7). Anonymous func-
tions are expressed using the LAMBDA keyword. They can
be conveniently used to initialize and update data struc-
tures. For example, LAMBDA (x: fields_type):
FALSE, where field_type is an enumeration, is
a function of type [fields_type -> boolean]
that can be used to create a hashmap table where
all elements are initialized to the boolean constant
FALSE.

• Subtypes: these types use a predicate to restrict the domain
of another type. They are defined using the syntax S:
TYPE = { x: T | P(x) }, where T is a type, P is
the subtyping predicate and S is a subtype of T. The
same subtype can be expressed using a more compact
form (P), where the predicate name is within round
parentheses. Subtypes are used in the paper to describe
commands that are only available under particular con-
ditions. For example, in the definition of the command
password_screen (see Listing 1.1), the function is
only permitted if a predicate per_password_screen,
which is called the permission function, is true. Hence,

the signature of password_screen has the following
form: password_screen(st: (per_password_
screen)): state. The predicate per_password_
screen is only true if the state of the device is in certain
modes.

• Enumerated types are declared by listing the enu-
merated constants between a pair of curly brack-
ets. An example is path_mode_type: TYPE =
{ scripts_path, meds_path, no_path },
where path_mode_type is the name of the enumerated
type and scripts_path, meds_path and no_path
are the enumerated constants.

• Record types are declared by listing the name of the record
attributes between a pair of square brackets and the hash
symbol. An example record type declaration is as follows:

where patient_type is the name of the record type;
p_name, p_fields, script_index and scripts
are record attributes. p_index and s_index are types
defining the set of patient and script names, respectively.
fields_set defines the set of fields describing the
patient and list_script_type the list of prescrip-
tions for the patient.

• Record literals are specified as a list of assignments
between a pair of round brackets and the hash symbol.
An example literal is as follows:

where nil_patient is the name of the literal. This
literal specifies initial values for the patient fields. The
expression nil_patient‘p_name can be used to
access a record field. An equivalent functional notation
p_name(nil_patient) can also be used for the same
purpose.

As mentioned earlier in this section, the PVS theorem prover
uses sequent calculus. Theorems to be proved of a specification
are presented in the form

{-1} A1
{-2} A2
{-3}..
| ———-
{1} S1
{2} S2
{3}..
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58 M. D. Harrison et al.

where A1,..., An are formulae called antecedents and S1,...,
Sn are formulae called consequents. Intuitively, antecedents
can be thought of as the hypotheses of the theorem, and the
consequents comprise the theorem to be proved. Inference
rules are used to perform the proof. A proof is considered
complete when the application of the inference rules leads to
a consequent that is true, or an antecedent that is false, or when
an antecedent occurs also as a consequent. A first example in
the paper of a proof of this kind is presented and discussed in
Section 3.3.
PVSio-web [Masci et al., 2015b] is a web-based environment
that enables the creation of interactive prototypes based on exe-
cutable PVS specifications. The toolkit supports the creation
of both storyboard-based prototypes using mockup pictures
of different screens of the system under development [Watson
et al., 2018] and high-fidelity prototypes that can closely resem-
ble the visual appearance and behaviour of a final product. The
interactive prototypes, so constructed, can be evaluated with
end users.

PVSio-web prototypes use a split architecture to create a sep-
aration of concerns between the specification of the behaviour
of the prototype and its visual appearance.

• The back-end of a PVSio-web prototype defines the
behaviour of the prototype. The PVSio evaluation envi-
ronment [Muñoz, 2003] is used to compute the evo-
lution of the prototype, including how the prototype
reacts to user actions and other system events. PVSio
executes specifications written in the logic language of
the PVS verification system by automatically translating
the model into Lisp code. PVS specifications can either
be created manually or automatically generated from
Emuchart diagrams. Emuchart is a graphical state tran-
sition language that is a simplified version of Statecharts
[Harel, 1987].

• The front-end is executed in a Web browser, rendering
the visual appearance of the prototype. A picture of the
real system is used as a basis for its visual appearance.
JavaScript code is used to create interactive areas over
the picture to enable user interactions with the proto-
type and are translated into evaluation commands for
the back-end. A set of widgets provided by PVSio-web
facilitates the definition of common interactive elements
such as buttons and touchscreen elements. The front-
end is refreshed every time the state of the underly-
ing PVS specification changes. State attributes of the
PVS specification that are intended to be visible in the
user interface are rendered as displays in the prototype,
thereby reproducing the attribute’s look and feel.

3. THE DESIGN PROBLEM

The design problem that is used in the paper had been explored
originally at the Polytechnic Institute of Cávado and Ave in

(a) Password screen

(b) Patient list screen

(c) Patient details screen

FIGURE 1. Example sketch images produced for the initial prototype.

Portugal. A prototype had already been developed by that
organization. A system was required that could be provided
in care-home common rooms or hospital wards. Its purpose
would be to enable the alerting and dispensing of medica-
tions at appropriate times and with appropriate prescriptions.
It was proposed that patients be alerted when a dose was due
according to their particular prescriptions. Only the designated
patient, or their doctor or nurse carer, was to be permitted to
access the required dose. The solution that had been originally
sketched, see Fig. 1, assumes a stand-alone device that provides
the required facility to patients. The sketch, used as a starting
point for the analysis, was developed from the prototype that
already existed. Facilities in the proposed design illustrated the
following: (i) a database of medications and doses, available
to be used as prescriptions, that could be viewed and in some
cases updated by authorized personnel and (ii) the updating of
patient details and associated prescriptions. This latter facility
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Balancing the Formal and the Informal 59

required both an appropriate authorized person and the patient.
The patient’s thumb print was to be used for user authentication.

The device, as envisaged, alerts the patient when medicine
is due and the patient responds and obtains their dose using
a thumb print to ensure they are receiving the medication
intended for them or through gated access by the designated
carer (though this aspect of the administration process is not
the focus of the paper). The device maintains a database of
patients who have been subscribed to the system as well as a list
of their prescriptions. The pill dispenser supports ‘columns’ of
pills from which the patient can obtain their required dose.

3.1. Pathways

The sketch design indicates three user pathways: (i) mak-
ing available to the patient the appropriate medication at the
appropriate time, (ii) setting up and editing the patient details
along with a list of medication prescriptions and (iii) updating
the medications database. The rest of this paper focuses only
on prototypes and specifications based on pathways (ii) and
(iii) because the main design challenges covered in these two
pathways also relate to the first pathway (see next sub-section
for a discussion of the design challenges). A design challenge,
that is not discussed here, relates to issues associated with
timing. Our previous work on infusion pumps [Harrison et al.,
2017] demonstrates how to address the timing dimension.

3.2. Design challenges and preliminary requirements

The pathways provide insights into the initial set of require-
ments. The following main design challenges can be identi-
fied:

• Patient functions. The system should include functions
that allow a patient to obtain a medication through
thumbprint identification.

• Carer functions. The system should allow designated
carers to create patient logins, enter patient details and
enter prescription details.

• Pharmacy functions. Functions should also be provided
to update medications and prescription details.

Preliminary requirements are identified based on these
design challenges. The initial focus is on the security and
usability of the design. The pathways must satisfy requirements
that relate to mutually exclusive access. The person that is
authorized to update the medications database should not
have access to patient details. The person that is authorized
to update and view patient details should not be able to update
the medical database. Clearly, the design should not allow a
circumstance where the user is able to access or update data that
should not be available to them. The design should also satisfy
use-centred requirements. In particular, actions available to
the user should have consistent behaviour. These requirements

will be made more precise as the specification is developed in
subsequent sections of the paper.

3.3. The initial formal model

A video of the early prototype of the pill box device was pro-
vided to the authors. This formed the basis for a storyboard that
was suitable for initial evaluation with stakeholders (see Fig. 1).
Sketches representing each display state were created based on
the material provided by the video. Appropriate images were
used to illustrate entry, or modification, of patient details as
well as displays that indicate the requirement for password
entry by the nurse or carer responsible for setting up patient
details. For example, images relating to patient details illustrate
the following aspects:

• when patient information can be entered;
• the authentication sequence based on the patient’s thumb

print;
• how to access the list of patients in the database;
• how to change the details stored for each patient;
• how a prescription can be added or removed.

Similarly, storyboard images, related to the medications
database, indicate that the database is protected by password,
and access is only enabled for doctors or pharmacists who are
able to enter details of medicines. This pathway includes screen
displays that allow entry or editing of medicines. The medicine
pathway includes display screens that allow medicines to be
listed or displayed and modified. The storyboard describes the
paths that are possible with non-functional representations of
these displays. It gives no information about the other actions
within each state.

The storyboard images were used to create a first interactive
prototype in PVSio-web. Figure 2 indicates a phase of the
creation of the prototype. Green areas on the left-hand side of
the sketch design represent interactive buttons that can be used
to navigate to a different screen. The full list of screens used to
develop the sketch design is shown at the bottom-left corner of
the figure.

PVSio-web creates a state machine diagram from the inter-
active storyboard. The state machine is represented using an
Emuchart. The diagram is then translated into an executable
PVS specification. Each node in the Emuchart represents a
display screen, and each labelled edge represents a transition
between screens. A fragment of the Emuchart can be seen in
Fig. 3.

Listing 1.1 shows the PVS specification that was generated
automatically from the Emuchart diagram. Nodes are translated
into an enumerated type Mode. Labelled edges are translated
into PVS functions. The state of the diagram is repre-
sented using a record type state that includes an attribute
current_mode of type Mode, indicating the current
screen. The initial state of the specification is thus specified
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(Lines 8 and 9) as a record literal with current_mode set to
initial_screen.
The transition function password_screen (Lines 18–29)
is linked to the Emuchart edges that enter node password_
screen. The function uses a subtyping predicate, per_
password_screen, to restrict the domain of the func-
tion. The predicate reflects the structure of the Emuchart,
as edges entering node password_screen originate
only from three nodes, database_password_screen,
pill_dispensed_screen and initial_screen (see
Fig. 3). Two auxiliary functions, leave and enter_into,
are used to update attribute current_mode.

This storyboard provides sufficient information to serve two
purposes.

The first purpose is to allow a user to navigate the state
transition model associated with the interactive storyboard. It
shows sketch images at each state of the model (see Fig. 2 for
example). In practice, this can be used as a preliminary stage
of user evaluation with relevant stakeholders.

The second purpose is to provide a basis for demonstrating
that the initial requirements, developed through the initial elic-
itation process, are satisfied. An important initial requirement
is that the patient database and the medical database can only
be updated by relevant authorized personnel who have entered
their passwords (see Section 3.2). Those authorized to access

the medical database are not authorized to access the patient
database.

In the case of this initial requirement, more formal analy-
sis enables a more exhaustive exploration of all the possible
paths. To specify this requirement as a property, it was neces-
sary to adjust the initial specification generated automatically
from the Emuchart. Additional attributes were added manually
to the PVS specification necessary to keep track of which
pathway is taken and which password is used to access the
system.

The state of the device is augmented with two attributes:
path_mode_set, indicating which credentials were used to
access the system, and path_mode, which associates each
screen to a pathway. If these two attributes differ, then the
user is attempting an unauthorized entry. These changes in the
structure of the state require some adjustments in functions
init and enter_into generated automatically from the
Emuchart, see Listing 1.2. The transition (enter_into) is
updated by including two assignments to the added attributes
to state (see Lines 23–30).

An example requirement that can now be checked is as
follows: it should not be possible to reach the screen new_med
(which allows updating of the medical database) unless the user
has gone through the db_pwd screen. The screen new_med
is associated with meds_path, and therefore the attribute

FIGURE 2. Creation of the sketch design in PVSio-web.
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Balancing the Formal and the Informal 61

FIGURE 3. The initial sketch: Emucharts diagram.

LISTING 1.1. Fragment of the PVS specification generated from the
Emuchart.

path_mode_set should be meds_path if the user has,
as required, gone through the medical database password
(db_pwd) screen. The formalization of this requirement can
be found in the theorem given in Listing 1.3. The theorem

LISTING 1.2. Re-defining enter_into.

uses a structural induction. It checks, for all accessible states,
that path_mode and path_mode_set are as they should
be, that is defined by path_function (see Line 3) and
remain the same through state transitions (see Line 6). Note that
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path_function is defined to associate the expected path
mode with each state of the model. This function is described
in detail in relation to the second iteration of the model (see
Listing 1.25).

LISTING 1.3. Pathway theorem relating to the sketch design.

A state is accessible if it can be reached from a previous state by
a transition function. The transition function is described by the
predicate state_transitions, part of which is illustrated
in Listing 1.4.

LISTING 1.4. The state transitions predicate.

The theorem fails with many counter-examples. One of the
counter-examples indicates that it is possible to move from
db_menu and then to db_patient_list (which can only
be viewed by a carer). The counter example generated by
PVS, when attempting proof, can be seen in Listing 1.5. The
proof fails. This can be seen by combining elements of the
antecedent [-3] in Lines 4–8. path_mode_set(post) is
meds_path, but the current path mode is scripts_path.
The consequent in Line 13 therefore cannot be proved.

LISTING 1.5. Counter-example to Listing 1.3 theorem.

Further details in the design and its specification are required
to prove a suitable path requirement as well as other use-centred
requirements. These details will be discussed in Section 4.

4. THE SECOND ITERATION

The second iteration aims to fill gaps in the initial prototype
(e.g. data entry functions and other details that were shown
only in the images of the storyboard and not captured in the
Emuchart diagram). The first iteration of the model simply indi-
cates which transitions can take place between which screens. It
does not provide detail about the content of the values entered,
simply that the information is entered. The model created in
the second iteration describes, in more detail, all these aspects.
It provides a more functional representation that can be used
in analysing requirements and evaluating the usability of a
prototype.

Changes, as a result of evaluation of the previous iteration
of the design, through the sketch prototype with end users,
and through analysis of the pathway requirements, led to the
new specification. Clearly, this may not be a refinement of the
design in the strict formal sense [Morgan, 1994]. Changes
in response to evaluation may in fact include changes in
functionality.

The changes involved restructuring the model (see the repos-
itory1 for a full specification of the restructured model). The
new specification describes the circumstances under which an
action can be taken (for example, through the entry of relevant
data fields) and also the effect of the action. The result of
executing an action depends on the display mode. The device
state therefore describes the structure of the screen, including
the actions that are visible and available, as well as which
fields must be entered before an action can be completed.
Actions cause transitions between modes and can also include
updates to the state, for example updates to the patient database.
Transitions may also be caused by selecting fields and entering
values. These latter transitions do not change mode. They add
to the set of fields that have been entered and also add the values
entered to temporary records of patients, their prescriptions or
medicines (depending on mode).

The remainder of this section describes illustrative fragments
of the new specification in more detail.

4.1. Modes, keys, fields and databases

The type associated with display modes and path modes are
based on those identified in the first iteration. Fields used to
handle data entry (Lines 16–18 of Listing 1.6) and a field indi-
cating the availability of actions (Line 19) have been added to
the device state. The definition of these fields required the cre-
ation of two new data types: available_actions_type
and fields_set (Lines 10–11). They are arrays of booleans
that store information about the availability of actions and fields
in a given device state.

The new version of the model includes functions that rep-
resent transitions between display states in the same way as

1 http://hcispecs.di.uminho.pt/m/8
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the first iteration. For example, password_screen (the
initial specification is in Listing 1.1) is now represented as a
function pwd_screen (see Listing 1.7) which changes mode
to the display that requests a password to enter the scripts
path. The function changes attributes mode, path_mode and
path_mode_set appropriately. The function changes the
availability of actions (Lines 6–9) as well as the visibility of
fields (Lines 10–11) and indicates that no actions are selected
and no fields selected or entered. A function clear_screen
(Line 2) provides the basic blank state of the screen (with no
actions or fields, and fields are not selected or entered) which
is enriched by changes to the state attributes defined in the
WITH clause (Lines 3–12).

LISTING 1.6. Types used in the second iteration model.

From the password screen, the user is first required to
select the password field (which is visible, see Lines 10–12
in Listing 1.7) and then enter the password before selecting an
appropriate action. Two new functions are required to specify
this functionality: enter, which defines how to enter the
password, and select, which defines how to select fields
and actions in the screen.

LISTING 1.7. The second iteration password screen.

The function enter is illustrated in Listing 1.8. In the
simple case of password entry, the function checks that the
password field is selected (Line 2) and assigns the field as

entered (Lines 16–18) and clears the selection of the field
(Line 19).

LISTING 1.8. Entering a field.

In the cases identified by the permission functions (Lines 5,
9 and 13), further checks are carried out when specific fields
are being entered. For example, entering details associated
with daily or weekly prescriptions will vary according to the
period. There is insufficient space to describe this part of the
specification in detail. The full specification in the repository
provides more information.

The select function is polymorphic and can be applied
both to fields (Listing 1.9) and actions (Listing 1.10). When
applied to a field, if the field is visible (Line 2 in Listing 1.9),
then the function flags the given field as selected. This is
not made explicit in the model but there is an underlying
assumption that there is a process of selection that maps to
the select function (for example moving the cursor to the
action icon or displayed field and using a mouse and clicking
to select). Otherwise, the state remains unchanged.

LISTING 1.9. The select functions.

When applied to an action, the select function checks that
the action is available and then invokes an auxiliary function
act that updates the device state (Line 2 in Listing 1.10). If
the action is not available, the state remains unchanged.

LISTING 1.10. The select functions.
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A fragment of the definition of act is shown in Listing 1.11.
The fragment illustrates the actions associated with key1 and
create.

LISTING 1.11. Auxiliary function act.

The key1 action simply makes a transition to the initial
screen (see Listing 1.12).

LISTING 1.12. The act key1 function.

The create action causes, for example, transition to dis-
play modes that allow the entry of new patient details or new
medicine details. The function is extensive and Listing 1.13
illustrates only part of it.

LISTING 1.13. The act create function.

A function new_patient_details_screen trans-
forms the state to produce a screen that enables the entry of
the details of the new patient. The specification of the function
is in Listing 1.14. It identifies the current mode of operation
of the device (Line 4), as well as the actions that are visible
(Lines 6–9), the fields that are visible (Lines 19–22) and the
fields that are selected (none in this case, see Line 23). To keep
this initial model simple and avoid the definition of functions
for the input of strings, the patient name is taken to be identified
automatically by the device (Line 2) and already filled in when
the user enters this mode (Line 24). The attribute path_mode
describes the path that should have been entered, based on
user authentication that had occurred at some stage in the past.
Attribute path_mode_set is not changed and specifies the
path that has actually been established. As will be shown in
Section 7.3, these attributes are used to support the verification
of the path exclusion requirement.

Each time a field is entered, temporary data structures, neces-
sary for data entry, are initialized: patient record (Lines 10–14),

LISTING 1.14. The specification of the new patient details
screen.

prescriptions associated with the patient (Line 15) and the list of
medicines (Line 16). Only when the user confirms the entered
data, the temporary structures are used to update the relevant
databases.

Databases are represented as a list of records. For example,
the data type used for the patient database is in Listing 1.15.

LISTING 1.15. Patient database types.

The patient name (attribute p_name) is used as key in the
database. Information in the patient record include a set of
patient fields indicating date of birth, carer and so on (Line
3), as well as a list of prescriptions associated with the patient
(Lines 4–5). These details can be found in the repository.

4.2. Evaluating the new specification

When the new specification is ready, three steps are taken
again to evaluate the design (Steps 2, 3 and 4 illustrated in
Section 2). Step 2 involves checking plausibility properties of
the specification using lightweight formal methods. Step 3
produces a prototype that can be presented to end users and
domain experts for usability evaluation. Step 4 consolidates
the design by proving theorems necessary to show that the
specification satisfies the requirements established as part of
the design process. These steps are illustrated in the remainder
of this paper.
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It is worth emphasizing that the specification produced in
the first iteration simply puts flesh on the storyboard prototype
described in Section 3.3. The version under analysis in this
second iteration provides more detail about the actions, modes
and fields used for the entry of relevant parameters. As already
highlighted, this process of fleshing out interaction detail and
adding functionality is not conventional formal refinement
because at each step the design is in flux, open to changes as a
result of evaluation and discussion with potential users.

5. ANIMATING FOR PLAUSIBILITY

Plausibility of the specification can be assessed by using
PVSio. This allows animation of grounded versions of the
specified functions. In consequence, a form of direct interaction
with the model is possible to exercise the available actions and
observe their effect on the state of the system. It becomes
possible to explore some situations in which actions do not
have the expected behaviour. Using PVSio does not allow the
exhaustive analysis possible through model checking. Model
checking provides a valuable alternative approach to analysis
of this kind, see for example Bolton et al. [2013] and Harrison
et al. [2015]. The goal at this stage is to establish a first
impression about the model and to reveal any obvious
problems, before more exhaustive analysis is carried out.

The first step in evaluating the specification in PVSio is
to introduce auxiliary functions to enable the display of the
specification’s data structures as intelligible string represen-
tations. This is necessary for user-defined data types, as the
current distribution of PVS supports automatic conversion into
strings only for basic data types (integer, reals, enumeration,
etc.). As an example, Listing 1.18 shows the state of the pill
dispenser after a sequence of actions have been carried out. The
auxiliary function necessary for displaying the data structures
relative to the patient can be seen in Listing 1.16 (the full
specification can be found in our repository2 ). Hence, the effect
of functionpatient_type2string is to transform a literal
of type patient_type into a string. The fields of the struc-
ture type are identified by appropriately named strings (e.g.
string p_name identifies the value of the corresponding type
attribute, where pt‘p_name is converted into a string using a
similar conversion function). The function uses a built-in opera-
tor + provided by the PVS language to concatenate strings. The
keywordCONVERSION at the bottom of the function definition
instructs PVS to use patient_type2string whenever a
translation to string is necessary for patient_type.

The auxiliary function for converting the state of the model
into a string is shown in Listing 1.17.

An example evaluation of the specification, using PVSio,
is now illustrated. As part of the check that the specification
is plausible, a sequence of actions is constructed manually

2 http://hcispecs.di.uminho.pt/m/8

LISTING 1.16. Grounding patient_type.

LISTING 1.17. Displaying the state using PVSio.

that generates patient and medication databases (this sequence
will be abbreviated as init11) and can be found in the
file main.pvs held in the repository. Simulating this sequence,
using PVSio (using the print_state function) shows the
elements of the state produced.

The fragment of the state produced by using the function
(Listing 1.18) focuses on the visible (that is displayed) parts
of the state produced by executing the sequence represented
by init11. The current mode (db_med_list, Line 2)
shows the medication database list. It displays the first five
medication items as indicated by the attribute med_id_line
(‘1’ identifies the name of first visible item and ‘5’ the
fifth). patient_id_line indicates the display of up
to five patients (a value 0 indicates no display on the
corresponding line). script_line shows prescriptions for
the current patient. Here FALSE indicates that a prescription
line is not displayed. The path mode that has been set by
entering the relevant password is identified by the attribute
path_mode_set is meds_path (Line 4), which is what it
ought to be as indicated by the attribute path_mode (Line 3).
Three actions are shown as available (key1, key2 and
create); no data entry fields are visible. Up and down actions
are also available in this mode but at this stage of the design
it is not yet clear how these actions will be represented in the
interface.

Interacting with Computers, Vol. 33 No. 1, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/iw

c/article/33/1/55/6232199 by U
M

inho user on 10 February 2024

http://hcispecs.di.uminho.pt/m/8


66 M. D. Harrison et al.

LISTING 1.18. Displaying the effect of the sequence init11.

PVSio provides a valuable means of testing the specification,
evaluating whether it behaves as required. One feature that can
be explored of this specification (which will be further analysed
in Section 7.2) is reversibility. The property is considered in
the context of the sequence of actions mentioned earlier that
builds a database of both patients and medications (init11).
This sequence constructs a database that contains more than
five medications. The sequence can be used to test whether
scrolling down the visible medication list (as specified by
med_id_line) in display mode (db_med_list) followed
by scrolling it up produces the same display as before the
scrolling actions were taken. This can be demonstrated by
considering editdown0, which adds a scroll down action.
editdown0: state = LET st = init11, st =
scroll_down_med_list(st) IN st

LISTING 1.19. Displaying the effect of the sequence defined by
editdown0.

The resulting action of scrolling down is followed by
scrolling up (see Listing 1.20):
editdownup0: state = LET st = editdown0,

st = scroll_up_med_list(st) IN st
PVSio therefore makes it possible to check that the

behaviour of the model coincides with the expected behaviour
for this one case. It does not provide, however, a representation
that is easily communicable to domain experts, who are
unlikely to have a background in formal modelling. For this, a
prototype representing the system would be more useful, while

LISTING 1.20. Displaying the effect of the sequence defined by
editdownup0.

at the same time providing the means to do usability evaluation
of the prototype. This is illustrated in the next section.

6. CREATING A REALISTIC PROTOTYPE FROM
THE SPECIFICATION

An interactive prototype is constructed that is driven by the
formal specification described in the previous section. The
visual appearance of the prototype is based on a concept design
image created, for example, using a photo-editing tool. PVSio-
web is then used to create hotspot areas over the picture and to
link them to the PVS model. Hotspots over buttons represent
input widgets of the prototype, and they are linked to transition
functions defined in the PVS model. Hotspot areas over display
elements are used to render the value of state variables so that
the visual appearance of the prototype closely resembles that
of the real system in the corresponding states.

Figure 4 shows a screenshot of the developed prototype. It
uses 17 widgets to model different elements in the various
screens of the pillbox. Listing 1.21 shows a snippet of
JavaScript code created manually to produce the home button
of the prototype. The code uses a library of widgets provided
by PVSio-web, which are designed to simplify the task
of linking model behaviours with graphical user interface
elements. TouchscreenButton is the widget constructor.
The new operator is used to create a new object of type
TouchscreenButton. The created widget is stored in a
variable key1. The first argument of the constructor is a string
defining the widget identifier. The PVSio-web toolkit uses this
string as a basis for deriving the name of the transition function
in the PVS model to be linked to the widget. The full name
of the transition function is constructed by concatenating the
user action that activates the widget with the widget identifier.
For example, when the user clicks on the button, the transition
function that will be evaluated is click_act(key1, st).

The second argument of the constructor is a structure defin-
ing the coordinates and size of the widget. This is necessary
to create an interactive overlay area of the correct size for the
image used as a basis for the visual appearance of the prototype
and to position the interactive area in the correct place, which
is the left side of the screen.

The third argument provides information about the callback
function to be invoked for refreshing the visual appearance of
the prototype when the evaluation of the transition function
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FIGURE 4. Pillbox prototype based on design image.

LISTING 1.21. Creation of a touchscreen button using
PVSio-web.

associated with the button generates a new system state, as well
as information about the visual appearance of the touchscreen
button (label, colour, font).

The visual aspect of all widgets is refreshed each time the
PVS specification is evaluated in PVSio. The evaluation of the
specification occurs either when the user interacts with an input
widget (e.g. presses a button) or periodically (if the device has
internal timers that are ticking).

This enhanced version of the prototype benefits from
improved look and feel. The results of the evaluation with end
users is then used to iterate the design process. This prototype
provides a functional representation of the modelled design
that may be submitted to user evaluation.

7. PROVING PROPERTIES OF THE MODEL

The enhanced version of the model now includes specification
of actions and their effects insofar as they are relevant to the use
of the device. A complementary analysis of the second iteration
can be achieved by assessing the model against use-centred
requirements [Harrison et al., 2019a]. By this means, a more
exhaustive analysis of the emerging design can be achieved
than would be possible with the functional prototype typically
used in user-centred design. It also supports software engineer-
ing of the system using a spiral model and the mapping of a

requirements specification including use-centred requirements
[Sommerville, 2010].

When discussing the first sketch prototype (Section 3.3), the
principle that the pathways should be mutually exclusive was
explored. In the case of the sketch model, there were many
cases where the property failed. This requirement was partly
a security requirement but it could also be considered to be a
use-related requirement, concerned as it is with the integrity
of use paths. It will be returned to in Section 7.3. Before
considering this requirement, two use-centred requirements,
consistency and reversibility, will be considered. A preliminary
consideration of reversibility was described using the PVSio
based simulation in Section 5.

7.1. Consistency

An important aid to the use of an interactive system is that
a named action should have consistent behaviour irrespective
of the mode in which the action is invoked. Examples in
the context of this design are the ‘ok’ and ‘quit’ actions. A
suggested requirement is that the ‘ok’ action always leaves the
mode which immediately precedes it and updates state, while
‘quit’ leaves the mode and never updates. These requirements
are examples of action consistency defined in Harrison et al.
[2019a] as follows:

The action consistency property is formulated as a property
of either a single action or of a group of actions (they will be
referred to as Act), which may exhibit similar behaviours. A
relation ϕ : C×C expresses the intended notion of consistency
connecting a filtered state, before an action occurs (captured
by pre_filter :∼ S × MS → C), with a filtered state after the
action (captured by post_filter :∼ S × MS → C). MS refers to
possible modes that limit the validity of the filter. In the case
which is being considered, C is a subtype of the state type.
Both pre_filter and post_filter can be expressed as follows:
filter: state -> [# meds_db: med_db_type,
patients_db: patient_db_type #] and the guard
is true, in other words there is no guard. The relation ϕ is
equality and a single action is considered quit.

The consistency property can be formulated in a PVS theo-
rem as follows:
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This formulation uses a definition of st1 as the state after
the quit action has been applied. It also removes the explicit
definition of filter and guard. Attempts to prove the
theorem, using the PVS theorem proving assistant, over the
enhanced specification produces the following result when
applying the general proof command
grind:

Rule? (grind)
Trying repeated skolemization,
instantiation, and if-lifting,
this simplifies to:
attempt_quit_consistency_thm.2.1 :
{-1} st!1‘action(quit)
{-2} creation_success?(mode(st!1))
|- - - - - - -

{1} st!1‘patients_db =
p_insert(st!1‘p_current, temp_patient

(st!1), patients_db(st!1))
Rule?

The command grind fails to find a proof and offers a
consequent ({1}) to be proved in which a new patient record has
been inserted in the patient database. It is clear that, in general,
this new state is not equivalent to the state before quit was
applied. The condition that grind offers that it cannot prove
involves the following antecedents:

• {-1} the action that is selected in the new state is quit.
• {-2} the mode of the new state iscreation_success.

This formulation indicates that the mode of the state signifies
successful creation of a new patient record. This occurs in the
design at the end of a sequence in which a patient is recording
a thumb print for future use in accessing their medicine.
This design decision breaks consistency in the user interface.
The action consistency theorem can be proved when the
guard of the consistency property is changed to (mode(st)
/= creation_success) (see Listing 1.22). Therefore,
this indicates that the quit action satisfies the consistency
requirement in all other device states. A decision for the analyst
therefore is whether this isolated inconsistency is acceptable.
This issue is one that would then be a matter for further
consideration—should the design change or would a user have
no issue with this inconsistency? There may be good reasons
for keeping the design as is.

LISTING 1.22. The modified consistency theorem.

There are many properties of this version of the design that
relate to its consistency. It is relatively common that actions
are inconsistent in some detail. A general requirement of the
emerging design may be that all actions designed to change
mode that may change one of the databases should be consistent
so that the user is not confused as to the effect of the action.
Hence, any use of the ok action will change the relevant
database, while any use of the quit action will leave the
relevant database unchanged.

7.2. Reversibility

An initial consideration of reversibility can be seen in the dis-
cussion of plausibility (in Section 5) using PVSio. Reversibil-
ity is typical in applications that require number entry, for
example. A general reversibility property is identified in the
reversibility template formulated in Harrison et al. [2019a]. The
template specifies that for a group of actions Act ⊂ S → S, the
fact that action a ∈ Act is reversed by action b ∈ Act, subject
to constraints specified by guard : S → B and a filter : S → C
(where these constraints relate to the mode in which the actions
are used) is expressed as follows:

In the case of the emerging design, reversibility is a requirement
of any action that scrolls up and down the list of medications
and patients. There are typically more medications and patients
than would fit to a display. For this reason, the proposed design
requires four actions: scroll_up_patient_list and
scroll_up_med_list and their inverses scroll_down
_patient_list and scroll_down_med_list. In
modes where lists of medications, patients and prescriptions
associated with patients are visible (that is when the actions are
permitted), it should be a natural process to move up and down
the list. The reversibility template can be used to analyse these
scroll characteristics. In the case of the patient list, a guard is
required namely mode(st) = patient_list and in the
case of the medications list mode(st) = db_med_list.
In this case, filter describes the whole state, which is the
whole state of the pill dispenser should be unchanged. These
two consistency properties are combined as a single function
confirm_ud_scroll_fn (see Listing 1.24).

Proving the theorem associated with this property requires a
structural induction similar to that used in thepathway_mode
_thm (Listing 1.3) that was proved for the first iteration of the
model. A new transition relation is required in the case of the
enhanced model that involves a richer set of transitions, see
extract of the full definition in Listing 1.23.
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LISTING 1.23. An extract from the state transition function.

This formulation of the theorem requires that the initial
state of the device and all states that can be reached from this
state have the required property. The initial state of the model
satisfies the predicate: (init?(pre)).

LISTING 1.24. Reversibility of scroll actions.

The theorem, as formulated, is proved true of the design, as
can be seen by rerunning the theorem in pillboxchecks.pvs in
the repository as previously cited.

7.3. Pathway exclusivity

The last requirement considered in this paper revisits path
exclusivity. This requirement was visited in the first iteration
of the model (Listing 1.3). In the case of the sketch model,
there were many cases where the property fails to be true. The
informal version of the requirement, that is repeated below,
requires more detail than is provided in the sketch model.

(i) The doctor/carer should be able to see medication details
but not update the meds database.

(ii) The designated pharmacist should not be able to see
patient details.

The approach to proof is similar to that attempted in the
case of the first version of the model. These two paths are
checked in two theorems. The first requires that only modes
that are designated meds_path mode are entered when the
path_mode_set attribute is also meds_path. It uses
path_function (redefined to deal with the change of mode
names, see Listing 1.25) to assert that the path mode for the
state before the action is appropriate.

This theorem is found in Listing 1.26.
Proving this theorem also assumes an induction process.

When a device is in a state that should be part of the meds

LISTING 1.25. Path function.

LISTING 1.26. Pharmacist’s pathway theorem.

path (path_function(pre‘mode) = meds_path)
then the medications password should have been previously
entered (path_mode_set(pre) = meds_path). Any
transition will either lead to continue in the meds path or to
leave the meds pathway completely.

The second theorem allows the designated doctor/carer to
view patient and medicine details but does not allow them to
update the meds database. The theorem in this case is defined
in Listing 1.27. The theorem requires that the meds database is
untouched in the scripts path.

LISTING 1.27. Designated doctor/carer pathway theorem.

This version of the theorem fails and it is necessary to
introduce additional constraint in the select function (see
Listing 1.9) so that selection of a field is prevented when it
would conflict with the pathway requirement, see Listing 1.28.
In the case of the doctor/carer pathway, it is necessary to modify
the select field function to prevent field selection when in the
db_med_details mode.
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LISTING 1.28. Select field function.

This means that the user can see the medicine details but
cannot update the device. Both theorems, representing the two
pathway requirements, are true of the specification.

8. RELATED WORK

While there is relatively little literature concerned with devel-
opment techniques that combine informal representations of
design with formal models, there are many activities that com-
bine different formal descriptions of visual, functional and task
elements. In Furniss et al. [2014] and Masci et al. [2015a],
formal methods have been integrated with contextual enquiry
with the aim of supporting the work of a field investigator (as
opposed to supporting the development of a device). Written
notes provided by the field investigator described workflows
carried out by clinicians in a hospital. This included how infor-
mation resources are communicated and transformed through-
out the socio-technical system. The notes were manually trans-
lated to a PVS model by a formal methods expert, and formal
analysis was used to identify gaps and weaknesses that could
warrant further investigation.

In Masci et al. [2012], formal methods were used to support
incident investigation methods. Key aspects of an incident
report were modelled in PVS with the aim of analysing
claims and hypotheses described in the report. In Masci et al.
[2017], formal methods were used to extend a standard hazard
analysis process and promote rigorous specification of safety
requirements.

Bowen & Reeves [2017] explore the relation between dis-
play and functional models. Their work also focuses on spec-
ifications of sketch designs and aims to enable analysis of
these designs. It is not clear, however, that executable versions
of their models have been developed. Haesen et al. [2011]
integrate models and informal design knowledge. Their focus is
also the role of formal task models and abstract user interfaces
in user-centred design. They use personas, scenarios and related
task models in their models. Graphical models of storyboards
are produced along with constraints on these models. Bolton
et al. [2014], Mori et al. [2002] and Fields [2001] combine task
and functional models. Martinie et al. [2011] combine visual,
functional and task elements.

9. CONCLUSION

The process of user-centred design described in the paper is
iterative. The initial non-functional design is based on the initial
interviews with, or observations of, participants in the work
environment. In this case, it would be envisaged that patients,
carers, pharmacists and doctors would be involved in this initial
process. The initial non-functional design would be evaluated
both by the participants and then by considering the preliminary
requirements (for example, in this case, that the pathways are
mutually exclusive).

Subsequent iterations of the specification will generate a
functional prototype that can be subjected to further user eval-
uation. The requirements that have been developed through the
previous stages of the process will be proved of these iterations
and as features are added or issues are discovered in the use of
the design further requirements will be added.

The final result will be a design that has been tested with
users and provably satisfies usability requirements. It will be
a design that is based on a specification that will additionally
support safety and security analysis.

Two iterations of the design are described in this paper.
The model of the first iteration, the sketch design, was pro-
duced automatically from an initial sketch. A single property,
the pathway property, was proved of that model. The second
iteration involved a specification consisting of 83 functions,
analysed using 26 PVS theorems, which were proved within
on average 3 seconds. The PVS system was installed on an
Apple Macbook Pro with a 2.9 GHz Intel Dual Core i5.
The conversion functions required to animate the specification
involved 189 lines. Similar much larger specifications have
been used to model a variety of full-scale interactive systems,
for example Harrison et al. [2019a,b]. In the case of Harrison
et al. [2019b], a model of the controller for a neonatal dialysis
machine was developed. Safety properties were checked in
meetings involving the developers and a formal analyst. In
many cases where a property failed, the model or the property
could be adjusted, and appropriate rationale developed, within
the meeting.

A future dimension of this work, currently under develop-
ment, is to simplify and automate some of these processes.
Tools for presenting and instantiating property templates are
being developed. Heuristics are being developed to automate
the proof of PVS theorems. The process of using PVSio-web
is being simplified to construct prototypes from models. The
aim is to make these techniques accessible to a wider group of
developers.

An important challenge in developing the approach described
in this paper was not to reduce the value of user-centred
design. A criticism often levelled at formal techniques is that
they can have the effect of limiting the scope of the analysis,
ignoring important broader issues. It is hoped that analysis, as
an adjunct to the techniques and approaches of user-centred
design, responds to these criticisms. A further concern is that
the effort and knowledge involved in producing the models
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and performing the analysis are not cost effective. It is true that
these are techniques that are not typically found in the toolkit
of a development team, particularly the small teams that often
design and implement medical devices such as the one used
here for illustration purposes. However, the safety of medical
devices, in particular, is crucial and a thorough analysis of
usability issues is a key contribution ensuring safety.
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