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Abstract

The original purpose of component-based development was to provide tech-
niques to master complex software, through composition, reuse and parametri-
sation. However, such systems are rapidly moving towards a level in which
software becomes prevalently intertwined with (continuous) physical processes.
A possible way to accommodate the latter in component calculi relies on a suit-
able encoding of continuous behaviour as (yet another) computational effect.

This paper introduces such an encoding through a monad which, in the com-
positional development of hybrid systems, may play a role similar to the one
played by 1+, powerset, and distribution monads in the characterisation of par-
tial, nondeterministic and probabilistic components, respectively. This monad
and its Kleisli category provide a universe in which the effects of continuity over
(different forms of) composition can be suitably studied.

Keywords: Monads, components, hybrid systems, control theory

1. Introduction

1.1. Motivation and objectives.

Component-based software development is often explained through a visual
metaphor: a palette of computational units, and a blank canvas in which they
are dropped and interconnected by drawing wires abstracting different compo-
sition and synchronisation mechanisms. More and more, however, components
are not limited to traditional information processing units, but encapsulate some
form of interaction with physical processes. The resulting systems, referred to as
hybrid [1, 2], exhibit a complex dynamics in which computations, coordination,
and physical processes interact, become mutually constrained, and cooperate to
achieve specific goals.

One generic way of looking at components, proposed in [3], emphasises an
observational semantics, through a signature of observers and methods, that
makes them amenable to a coalgebraic characterisation as (generalisations of)
abstract Mealy machines. The resulting calculus is parametric on whatever
behavioural model underlies a component specification. This captures, for ex-
ample, partial, nondeterministic or probabilistic behaviour of a component’s
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dynamics by encoding such behavioural effects as strong monads [4] — a per-
vasive mathematical structure with surprising applications in different areas of
Computer Science (see e.g., [5, 6, 7, 8, 9]).

Indeed, each monad captures a specific type of behaviour, which is then
reflected in the corresponding component calculus. For example, maybe monad
(1+) introduces partial components; the powerset (P) monad nondeterministic
ones; and distribution monad (D) brings (discrete) probabilistic evolution into
the scene. Can continuous behaviour, prevalent in hybrid systems and control
theory, be encoded in a similar way, as (yet another) computational effect? Such
is the question addressed in this paper.

Monads first came in contact to Computer Science in the 80’s, when E. Moggi
proposed their use to structure the denotational semantics of programming lan-
guages [10, 5]. Later the concept was introduced in programming practice by P.
Wadler [6], leading to a rigorous style of combining purely functional programs
that mimic impure (side-)effects. The key idea is that monads encode in abstract
terms several kinds of computational effects, such as exceptions, state updat-
ing, nondeterminism or continuations. Such effects are represented by a type
constructor T (an endofunctor over a suitable category) so that computations
producing values of type O are regarded as terms of type TO. In this way values
and computations are explicitly distinguished and programs can be thought of
as arrows I → TO representing the computation of values of type O from values
of type I, while producing some effect described by T. Or, putting it in a differ-
ent way, output values are encapsulated (or embedded) in the effect specified by
T. A monad comes equipped with an identity and an associative multiplication
which, from a computational point of view, builds a (trivial) computation from
a value, and flattens nested effects, respectively. Furthermore, if T is strong
[6] additional machinery is available to distribute the computations’ effect over
context. The monad structure allows program composition by handling the un-
derlying computational effect through functor T and the flattening operation.
Actually, each monad gives rise to a so called Kleisli category in which one may
study the effects of the behavioural type (as specified by the monad) over dif-
ferent forms of composition; ultimately, this leads to rich component calculi (as
discussed in [3]).

The current paper introduces a (strong) monad H that subsumes the typ-
ical continuous behaviour of dynamical, and hybrid systems. Intuitively, the
type effect of H (i.e., the underlying endofunctor) represents the (continuous)
evolution over time of some value in O; the identity defines a trivial evolution
(i.e., with duration zero), and the flattening operation allows the control of an
evolution to be passed along different systems.

Moreover, the paper explores the corresponding Kleisli category as the math-
ematical space in which the underlying (continuous) behaviour can be isolated
and its effect over different forms of composition suitably studied. As we will
see in the sequel, such a category gives rise to several forms of composition
operators (e.g., sequential, parallel execution), wiring mechanisms, and syn-
chronisation techniques. Again this parallels the role that the categories of
partial functions, relations and stochastic matrices have as reasoning universes
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for component composition under the behavioural model provided, respectively,
by monads 1+, P and D [11, 12]. Similarly, this work paves the way to the
development of a coalgebraic calculus of hybrid components in the spirit of [3].

1.2. A tribute to José Nuno Oliveira.

The idea of regarding continuity as a computational effect, or more rigor-
ously, a physical one, entailing a suitable notion of composition and a reasoning
universe, in the form of a Kleisli category, owes much to the way José helped us
to approach computational phenomena.

Building on the role of monads in functional programming and program cal-
culi, as monadic inductive and coinductive schemes [13, 14], José introduced us
to monads both as a powerful structuring mechanism and a source of equally
powerful genericity. An obsession for patterns and a sharp intuition for generic,
conceptually reusable structures remain, after all, the hallmark of his illuminat-
ing, socratic teaching.

In the late 90’s, José supervised the PhD work of the second author on
the coalgebraic calculus of state-based components mentioned above [3]. This
emerged from the conjunction of two key ideas; first, that a ‘black-box’ char-
acterisation of software components favoured an observational, essentially coal-
gebraic, semantics; second, that the envisaged calculus had to be generic, in
the sense that it should not depend on a particular notion of component be-
haviour. Monads, actually strong monads, were quickly identified as a source of
such a genericity, the whole work boiling down to a calculus of monadic Mealy
machines. Software components were thus studied as coalgebras (in a suitable
category) typed as

S −→ T(S ×O)I

where S represents the (internal) state space, and I, O are respectively the input
and output spaces. T is a strong monad that captures the intended behavioural
effect.

Being generic entailed the need for an equally generic reasoning framework.
By then, the adoption of a pointfree, essentially equational, calculational proof
style, thus avoiding the somehow more standard coinductive proofs through the
explicit construction of bisimulations, was understood as the price to be paid
for genericity, as component laws were to be verified without fixing the working
monad completely. Generic proofs performed in this style are clear and easy to
follow, even if often long due to the systematic recording of almost all elementary
steps.

For José, however, the way proofs are written is not a technicality. Proofs,
as he taught us every day, are basically honest explanations, bearing evidence
in a fixed formal context, and therefore must be conveyed in a crisp, clear,
easily reproducible style, letting the underlying structure to emerge and helping
to build the correct intuitions. Years later, in the context of a joint research
project [15], José championed the use of calculational, pointfree reasoning as a
way of reinvigorating the role of proof in elementary mathematical education.
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The pointfree style adopted in many proofs of this paper is also intended as a
tribute to this view.

For José being generic does not mean to seek refuge in some sort of formal
ivory tower, of stylised constructions polished ahead of any meaningful intu-
ition. This explains why, being a devoted functional programmer, who resorts
to Haskell as a pocket calculator, José soon started to focus his attention on the
rich universes of specific monadic computations — their Kleisli categories. If
pure functions are computations for the identity monad, relations and matrices
play a similar role in such richer contexts. To be added, of course, and in a very
concrete way, to the relevant calculator. His systematic, calculational, ‘syntax-
driven’ work on relation algebra [16, 17], as a framework for nondeterministic
computations, and linear algebra [18, 19], for probabilistic ones, was responsible
for a fresh understanding of the Kleisli categories of two fundamental monads,
and lead to a number of new results and simpler, elegant renderings of old ones.
Having introduced a monad for continuity, this paper initiates the unravelling
of the corresponding Kleisli category, as the reasoning universe for continuous
processes, thus, and once again, pursuing a path José will certainly cheer.

1.3. Document structure

After a brief detour on preliminaries and notation in Section 2, the contin-
uous evolution monad (H) is introduced in Section 3. In Section 4, we explore
the corresponding Kleisli category: as we will see, its arrows define continuous
systems I → HO (technically, preliminary versions of dynamical, and hybrid
systems) and (Kleisli) composition makes possible for a component to execute
after another, starting its evolution when the preceding one finishes its own. In
Section 5, we take advantage of the so called Kleisli adjunction to define wiring
mechanisms and characterise (co)limits. The latter give rise to new forms of
component composition and corresponding laws. In order to add synchronisa-
tion techniques to our (monadic) framework, Section 6 provides extra structure
to the underlying functor of monad H. After this we suggest a feedback opera-
tor. In Section 7, we show that monadH is strong; this brings us closer to hybrid
systems as coalgebraic components (in the spirit of [3]) whose behavioural effect
is captured by H. Formally, coalgebras typed as

S −→ H(S ×O)I .

Finally, Section 8 discusses related work, provides possible research directions,
and presents concluding remarks.

In order to illustrate the developments of the ensuing sections, a number of
classical examples of continuous and hybrid systems will be explored under the
light of the framework reported in this paper.
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2. Preliminaries

2.1. Continuous systems

Technically, we qualify as continuous a system whose output, for any given
input, is a (continuous) evolution over time; i.e., an arrow typed as

I −→
∐

d∈[0,∞]

OTd

where I, O are, respectively, input and output spaces, OTd the space of contin-
uous functions Td → O (the evolutions), and Td stands for {r ∈ R≥0 | r ≤ d}.
Actually, this definition includes the family of continuous dynamical systems
that interpret the non-negative reals (i.e., R≥0, here denoted by letter T) as a
time domain (cf. [20, 21]). Formally, the latter are characterised as functions,

Φ : X × T→ X

λΦ : X → XT

such that for any t ∈ T, x ∈ X

Φ (x, 0) = x (1)

Φ (x, t1 + t2) = Φ(Φ(x, t1), t2) (2)

From a monadic perspective, continuous dynamical systems (in the form λΦ :
X → XT) may be seen as programs whose behavioural effect subsumes some
form of continuous evolution over time. Indeed, as we will see later in the
paper, such systems are part of a broader family of arrows that live in the Kleisli
category of monad H (TopH). In general, law 1 will be an important part in the
characterisation of Kleisli composition. We will also see that the traditional view
of hybrid systems – as a family of dynamical (or continuous) systems indexed by
a (discrete) state space – coincides with ours; and, moreover, that such systems
also live in Top

H
(due to the machinery that makes H strong).

2.2. Notation

The key role that continuity takes in this work, suggests the category Top of
topological spaces and continuous functions as a suitable working environment
for developing the envisaged results.

In the sequel, whenever the context is clear, a topological space will be
denoted by its underlying set. Topological spaces X × Y , X + Y correspond to
the canonical product and coproduct ofX,Y , respectively. Also, for anyX ⊆ Y ,
assume that X has the subspace topology induced by Y . Finally, whenever Y
is core-compact (cf. [22]), space XY has the exponential topology.

CategoryTop is (co)complete; this allows to take advantage of isomorphisms
α : (X × Y )× Z ∼= X × (Y × Z), and sw : X × Y ∼= Y ×X . Top also provides
a set of useful rules for showing continuity; Figure 1 sums up the ones used in
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f : X → Y, g : Y → Z

g · f : X → Z
( · )

f : X × Y → Z

λf : X → ZY
( λ )

f : X → Y1, g : X → Y2

〈f, g〉 : X → Y1 × Y2

(× )
f : X1 → Y, g : X2 → Y

[f, g] : X1 +X2 → Y
( + )

f : X → Y,A ⊆ X

fA : A→ Y
( ↓l )

f : X → Y, img f ⊆ B

fB : X → B
( ↓r )

with fA = f · ι (for ι : A →֒ X) with ι · fB = f (for ι : B →֒ Y )

Figure 1: Continuity rules in Top.

the paper. In rule (λ ), Y must be core-compact so that the evaluation function
ev : XY × Y → X is well defined (cf. [22]).

Universal arrows X → 1 to the final object in Top are denoted by !, and a
function constantly yielding a value x by x. Given two functions f, g : X → Y ,
and a predicate p, we introduce a conditional expression f ⊳ p ⊲ g : X → Y ,
defined by,

(f ⊳ p ⊲ g) x =̂

{
f x if p x

g x otherwise

Whenever found relevant, and no ambiguities arise, we will denote expression
(f ⊳ p ⊲ g) x by (f x ⊳ p x ⊲ g x). The continuous functions minimum
f : T× [0,∞]→ T and truncated subtraction ⊖ : T× [0,∞]→ T play a key role
in some proofs. They are defined by the following equations

f =̂ π1 ⊳ (≤) ⊲ π2

⊖ =̂ (−) ⊳ (>) ⊲ 0

where ≤, > are the usual ordering relations over the reals with infinity.
As usual, functions π1 : X × Y → X , π2 : X × Y → Y correspond to the

projections associated with any binary product, and i1 : X → X + Y , i2 :
Y → X+Y the coprojections associated with any binary coproduct. Moreover,
symbol ⋆ is used to denote the element of a singleton set, and |C| to represent
the class of objects of a category C. Finally, to avoid a burdened notation, we
will often drop the subscript in a component of a natural transformation.

3. The continuous evolution monad

As mentioned above, we regard continuous systems as arrows of type

I −→
∐

d∈[0,∞]

OTd .
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In order to define them in Top, we need to equip the target object with a
suitable topology. A first choice would be the coproduct topology (as suggested
by the expression above), but this is not suitable, since in many cases such
a topology forbids the system to change the duration of its evolutions along
different inputs.

Let us thus explore an alternative topology; the strategy will be similar to
the one used in the definition of a Moore path category where, given a topo-
logical space X , arrows are paths (i.e., evolutions) [0, d]→ X and composition
corresponds to the concatenation of those paths (cf. [23]). Actually, the flat-
tening operation of monad H, discussed below, can be seen as a more general
version of path concatenation.

Consider, with no loss of generality, that all evolutions have domain T. Such
is possible when one notices that Td (for some d ∈ [0,∞]) is a retract of T
through the truncation function (the retraction)

fd : T −→ Td

fd =̂ id ⊳ (≤d) ⊲ d and considers just those functions f ∈ OT that become
constant after time instant d, i.e.f · fd = f . This gives a family of bijections
{f ∈ OT | f · fd = f} ∼= OTd indexed by durations d ∈ [0,∞]. Continuous
systems thus become arrows typed as,

I −→ { (f, d) ∈ OT × [0,∞] | f ·fd = f}

where the target object comes equipped with the canonical topology. This leads
to the following definition for the underlying functor of monad H.

Definition 1. H : Top→ Top is a mapping such that for any objects X,Y ∈
|Top| and any continuous function g : X → Y ,

HX =̂ { (f, d) ∈ XT × D | f ·fd = f }
Hg =̂ gT × id

where D = [0,∞] is the one-point compactification of R≥0 (cf. [24]), and gT f =
g · f .

Theorem 1. H is a functor.

Proof. We need to show that for any continuous functions g : X → Y, h : Y → Z,
Hg : HX → HY is continuous, and H(h · g) = Hh ·Hg
Since Hg = gT×id, and g is continuous, then Hg must be as well. Distributivity
of composition follows from property

ι ·Hg =
(
( × D) · ( )T g

)
· ι

where ι is the inclusion map HX →֒ (XT × D), ( × D) is the (D) product
functor, and ( )T the (T) exponential functor.

Let us explore some examples of continuous systems characterised as arrows
I → HO.
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Example 1. Signal generators are classical examples of continuous systems
that can generate sinusoidal waves as output. They can be regarded as arrows
s : R→ HR such that s r =̂ (r + (sin ), ∞).

Note that, in contrast to the coproduct topology (in the target object), the
topology chosen for H allows durations to change, and thus captures a wider
range of behaviours. For example,

Example 2. Consider a thermostat c : R → HR that, given the current tem-
perature, linearly raises it to, say, 20 ◦C. Such a behaviour can be expressed as
c r =̂ ((r + ), 20⊖ r) where ⊖ : R× R→ R is the truncated subtraction, i.e.,
⊖ = (−) ⊳ (>) ⊲ 0.

The execution time of system c is thus inversely proportional to the current
temperature (which is given as input).

One may also consider another component that takes action after c, and
whose functionality is, for instance, to maintain the current temperature. The
result is a composed system that can raise temperatures to a desired level and
then maintain them – we will explore this specific case in the next section. Of
course, analogous behaviour can also be found in e.g., cruise control systems,
water level regulators, and production lines. For example, imagine a component
of a cruise control system that gives control of the car’s velocity to another
component whenever an obstacle is detected, or the emergency mode becomes
active. As we will see in the sequel, Kleisli composition (for monad H) caters
for this sort of action.

The following definition will help in the development of monad H.

Definition 2. For any given topological space X ∈ |Top|, define continuous
function θX : HX → X such that

θX (f, d) =̂ f 0.

Actually, we can canonically extend θX : HX → X to a natural transformation
θ : H → Id, since it is straightforward to show that the following diagram
commutes for any continuous function f : X → Y .

HX
Hf

//

θX

��

HY

θY

��

X
f

// Y

Moreover, it becomes possible to express the first law of continuous dynamical
systems (recall the previous section) in a concise, diagramatic manner: simply
by saying that system c : I → HI obeys the first law ((1) above) iff the diagram
below commutes.

I
c //

id
  ❆

❆❆
❆❆

❆❆
❆ HI

θI

��

I
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Actually, we can generalise the diagram to

I ′
c //� p

ι
!!❇

❇❇
❇❇

❇❇
❇ HI

θI

��

I

where ι : I ′ →֒ I is the inclusion map I ′ ⊆ I. We qualify as pre-dynamical any
system that follows this generalised condition. Note that both examples above
(1 and 2) concern pre-dynamical systems.

We shall now discuss how to equip H with the structure of a monad. As
already mentioned, in programming semantics a monad captures a behavioural
effect and provides mechanisms to wrap a value into such an effect and to
flatten two effects into a single one. Technically, they are referred to as the
monad identity η : Id → H, and its multiplication µ : HH → H, respectively.
Let us start by defining the unit operation η : Id→ H, which will denote trivial
evolutions.

Definition 3. Given a space X ∈ |Top|, function ηX : X → HX is defined by

ηX x =̂ (x, 0).

Intuitively, arrow ηX : X → HX defines a system whose outputs are always
trivial evolutions, i.e., with duration zero. For this reason we will refer to ηX
as copyX , and often omit the subscript.

Lemma 1. The mapping η : Id→ H is a natural transformation, i.e., for any
topological space X, ηX : X → HX is a continuous function, and, moreover,
the diagram below commutes

X
h //

ηX

��

Y

ηY

��

HX
Hh

// HY

for any continuous function h : X → Y .

Proof. To see that ηX is continuous, observe first that ηX = 〈λπ1, 0〉. Then,
π1 : X × T→ X

λπ1 : X → XT

( λ )

〈λπ1, 0〉 : X → XT × D

(× )

〈λπ1, 0〉 : X → HX
( ↓r )

It remains to show the naturality of η : Id→ H. Consider the diagram
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x
✤ h //

❴

ηX

��

h x❴

ηY

��

(x, 0) ✤
hT×id

// (h x, 0)

where h : X → Y is an arbitrary continuous function. Property h · x = h x
entails its commutativity.

It is also simple to see that, for any topological space X ∈ |Top|, the following
diagram commutes

X
ηX

//

id
!!❉

❉❉
❉❉

❉❉
❉ HX

θX

��

X

(i.e., that ηX is pre-dynamical). Actually, this is one of two laws that charac-
terise θX as an Eilenberg-Moore H-algebra [25], a notion we will visit later in
the paper.

The next step is to define multiplication µ : HH → H. We start with an
(auxiliary) definition of evolution (or path) concatenation.

Definition 4. Given any elements (f, d), (g, e) ∈ HX, define

(f, d) ++ (g, e) =̂ (f ++d g, d+ e)

where f ++d g =̂ f ⊳ (≤d) ⊲ g ( − d).

Let us omit the subscript in ++ d. Note that f ++ g is continuous whenever the
endpoint of f and the startpoint of g coincide. We will show that this condition
is always met for the case of multiplication.

Definition 5. Given any topological space X ∈ |Top|, define

µX (f, d) =̂

{
(θ · f, d) ++ (f d) if d 6=∞
(θ · f, ∞) otherwise

Intuitively, multiplication will serve to concatenate the resulting evolutions of
two components.

Lemma 2. The family of mappings µ defines a natural tranformation.

Proof. In appendix.

Lemma 3. For every topological space X ∈ |Top|, the diagram below commutes

HHX
µX

//

HθX
��

HX

θX

��

HX
θX

// X

10



Proof. Consider a pair (f, d) ∈ HHX , where d is finite. Then,

θ · µ (f, d)

= { Definition of µ }
θ ((θ · f, d) ++ (f d))

= { Definition of ++ on point 0 }
θ ((θ · f, d))

= { Definition of H }
θ ·Hθ (f, d)

Proof for the case in which d is infinite is achieved via an analogous reasoning
process.

This property, together with the fact that θX ·ηX = id (discussed above), entail
that θX : HX → X is an Eilenberg-Moore H-algebra. In words, an algebra of
functor H that is compatible with the monadic structure defined above. This
notion will be rather useful in the sequel.

Theorem 2. 〈H, η, µ〉 forms a monad.

Proof. In appendix.

4. . . . and its Kleisli category (TopH)

If a monad abstracts a computational effect, its Kleisli category, represents
the universe of computations encapsulated in such an effect. Hence, in the
case of monad H, the associated Kleisli category of H (Top

H
) provides an

interesting setting to study the requirements placed by continuity over different
forms of composition. Actually, the envisaged calculus of continuous, and hybrid
components is essentially its calculus.

This section studies the Kleisli composition of TopH, and illustrates its
application to the specification of continuous systems – the hybrid ones will be
discussed later in the paper. We start with the definition of TopH.

Definition 6. Category TopH is defined as follows:

• |TopH| = |Top|,

• for any objects I, O ∈ |TopH|, TopH(I, O) = Top(I,HO), and for any
object I ∈ |Top

H
|, ηI is its identity.

• Given two arrows c1 : I → HK, c2 : K → HO their composition, denoted
by c2 • c1, is given by µ ·Hc2 · c1. Diagrammatically,

11



I
c1 //

c2 • c1

88

HK
Hc2 // HHO

µ

��

K
c2

// HO

Whenever found suitable, we will denote an arrow c : I → HO as c : I −→7 O,
and π1 · c as fc : I → OT.

Recall that arrows c : I −→7 O are here interpreted as continuous components,
which means that the Kleisli composition of H can be seen as a component
operator. Let us explore its behaviour: consider two systems

c1 : I −→7 K, c2 : K −→7 O.

For a given input x ∈ I, compute the execution time of c2 • c1,

π2 · (c2 • c1) (x)

= { Kleisli composition }
π2 · µ ·Hc2 · c1 (x)

= { Definition of H, let d = π2 · c1 (x) }
π2 · µ(c2 · (fc1 x), d)

= { Definition of µ }
d+ π2(c2 · (fc1 x) d)

= { Composition }
d+ π2(c2 (fc1 x d))

This means that the execution time of c2 • c1 is the sum of the execution times
of c1 (for input x) and c2 (which receives value fc1 x d as input). On the other
hand,

π1 · (c2 • c1) (x)

= { Kleisli composition }
π1 · µ ·Hc2 · c1 (x)

= { Definition of H, let d = π2 · c1 (x) }
π1 · µ (c2 · (fc1 x), d)

= { Definition of µ }
θ · c2 · (fc1 x) ++ (fc2 (fc1 x d))

= { Definition of ++ }
θ · c2 (fc1 x ) ⊳ (≤d) ⊲ fc2 (fc1 x d) ( − d)

12



Hence, if c2 is pre-dynamical,

f(c2 • c1) x = (fc1 x ) ⊳ (≤d) ⊲ fc2 (fc1 x d) ( − d)

The last expression tells that for the duration of c1 x, c2 • c1 x evolves first
according to c1, and then, on its termination, according to c2 which receives as
input the endpoint of fc1 x. Clearly, this is the expected behaviour according
to the definition of operation µ, which ‘concatenates’ evolutions. Intuitively,
c2 • c1 may also be described as mentioned in Section 1: component c1 acts and
then, at instant d, gives control of its evolution to c2.

If, however, c2 is not pre-dynamical, then up to completion of interval [0, d],
c2 ‘alters’ the evolution of c1; then it proceeds according to its own evolution.
These notions are illustrated in the following examples.

Example 3. Given two signal generators c1, c2 : R −→7 R defined as

c1 r =̂ (r + (sin ), 3π), c2 r =̂ (r + sin (3× ), 3π)

the evolution c1 • (c2 • c1) 0 is represented by the plot below.

0 5 10 15 20 25

−2

0

2

x

y

c1 • (c2 • c1) 0

This type of signal is commonly seen in frequency modulation: the varying
frequency is used to encode information for electromagnetic transmission. Note
that c1 gives control for some time to c2, and then ‘takes it back’.

In order to amplify signals, one can use component a : R −→7 R, where
a r =̂ (r × 2, 0) (note that since system a is not pre-dynamical it can alter
evolutions of other components). Given input 0, system c1 • (c2 • (a • c1)),
returns the following evolution.
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0 5 10 15 20 25

−2

0

2

x

y

c1 • (c2 • (a • c1)) 0

Example 4. Suppose the temperature of a room is to be regulated according to
the following discipline: starting at 10 ◦C, seek to reach and maintain 20 ◦C, but
in no case surpass 20.5 ◦C. To realise such a system, three elementary compo-
nents have to work together: c1 to raise the temperature to 20 ◦C, component c2
to maintain a given temperature, and component c3 to ensure the temperature
never goes over 20.5 ◦C. Formally,

c1 x = ( (x+ ), 20⊖ x )

c2 x = ( x+ (sin ), ∞ )

c3 x = ( x ⊳ (x ≤ 20.5) ⊲ 20.5 , 0 )

In a first try one may compose c2, c1 into c2 • c1. This results in a component
able to read the current temperature, raise it to 20 ◦C, and then keep it stable,
as exemplified by the plot below.

0 5 10 15 20 25 30
10

15

20

25

x

y

c2 • c1 10

If, however, temperatures over 20.5 ◦C occur, composition c3 • (c2 • c1) puts
the system back into the right track as illustrated in the following plot.
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Clearly, c3 can be regarded as a supervisor system that, for the sake of effi-
ciency, only acts when temperatures exceed the threshold, using just enough
power to keep the temperate below the limit. Actually, note that c3 is able to
play a supervisory role precisely because it is non pre-dynamical. Of course in
this specific case, we assume that c3 has an idealised behaviour, which, despite
pedagogical, is quite unrealistic.
The examples above hint at an interesting property of evolutions with infinite
duration.

Theorem 3. Consider two arrows c1 : I −→7 O, c2 : O −→7 O. If system c2 is
pre-dynamical and img (π2 · c1 · ι) ⊆ {∞} for some embedding ι : I ′ →֒ I, then

(c2 • c1) · ι = c1 · ι

Proof.

(c2 • c1) · ι

= { Kleisli composition, img (π2 · c1 · ι) ⊆ {∞} }
µ (c2 · (fc1 · ι),∞)

= { Definition of µ }
(θ · c2 · (fc1 · ι),∞)

= { System c2 is pre-dynamical }
(fc1 · ι,∞)

= { Notation }
c1 · ι

Corollary 1. If c2 is pre-dynamical and img (π2 · c1) ⊆ {∞}, then c2 • c1 = c1.
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This means that if evolutions of the first component always exhibit an infinite
duration, the second one, if pre-dynamical, will never have the chance to execute.

In general, H-Kleisli composition provides the basic composition mechanism for
continuous components; the structure of TopH yields its basic laws. To be more
concrete, take copy as the trivial system that outputs its input with duration
zero (i.e., the unit of monad H). Then, given systems c1, c2, c3

copy • c1 = c1 (3)

c1 • copy = c1 (4)

(c3 • c2) • c1 = c3 • (c2 • c1) (5)

5. Wiring mechanisms and (additional) composition operators

In a category, (co)limits are a main tool to ‘build new arrows from old ones’,
which in the case of TopH translates to new forms of component composition.
Actually, coproducts are easy to obtain through the canonical adjunction be-
tween Top and TopH,

Top

L
**

⊥ TopH

R

ii

which entails that TopH inherits colimits of Top through L. For notational
simplicity, given a continuous function f : X → Y , we will denote system
Lf = η · f : X −→7 Y by f̂ .

InTopH, the coproduct (also known as a choice operator) is inherited as follows:
given two components

I1

c1
�
❅❅

❅❅

��
❅❅

❅❅

I2

c2

❃⑦⑦
⑦⑦

��⑦⑦
⑦⑦

O

define component [c1, c2] : I1 + I2 −→7 O which makes the following diagram to
commute.

I1
î1✤ //

c1
✏
PPP

PPP
PP

''PP
PPP

PPP

I1 + I2

[c1,c2]❴

��

I2
î2 ✤oo

c2

✳♥♥♥
♥♥♥

♥♥

ww♥♥♥
♥♥♥

♥♥

O

Intuitively, [c1, c2] behaves as c1 whenever input I1 is chosen, and as c2 otherwise.
Such a mechanism is useful to aggregate systems with the same codomain; the
result being a singular system with different modes of operation (corresponding
to the respective subcomponents), chosen according to the input received. As
usual, a functorial sum operator is easily defined.
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Definition 7. Consider components c1 : I1 −→7 O1, c2 : I2 −→7 O2. Then define
component c1 ⊞ c2 : I1 + I2 −→7 O1 +O2 as

c1 ⊞ c2 =̂ [î1 • c1, î2 • c2]

The definition of operator choice as the coproduct universal arrow in TopH,
yields a number of useful laws for free.

c3 • [c1, c2] = [c3 • c1, c3 • c2] (6)

(c1 ⊞ c2) • î1 = î1 • c1 (7)

(c1 ⊞ c2) • î2 = î2 • c2 (8)

copyX ⊞ copyY = copyX+Y (9)

(d1 ⊞ d2) • (c1 ⊞ c2) = (d1 • c1)⊞ (d2 • c2) (10)

[d1, d2] • (c1 ⊞ c2) = [d1 • c1, d2 • c2] (11)

Moreover,

Lemma 4. For any continuous functions f : X1 → Y1, g : X2 → Y2, the
following equation holds

f̂ ⊞ ĝ = f̂ + g (12)

Proof.

f̂ ⊞ ĝ

= { Definition of ⊞ }

[î1 • f̂ , î2 • ĝ]

= { L is a functor }

[î1 · f, î2 · g]

= { Definition of L }
[copy · i1 · f, copy · i2 · g]

= { Universal property of coproduct }
copy · [i1 · f, i2 · g]

= { Definition of +, definition of L }

f̂ + g

The left adjoint is also useful to lift functions to the universe of TopH. This pro-
vides a number of interesting operations and wiring mechanisms. For example,
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recall the diagonal function △: X → X ×X which duplicates the input value;
the corresponding lifted version △̂ : X −→7 X ×X duplicates evolutions. Take
now the scalar multiplication ∗s : R→ R; operation ∗̂s : R −→7 R can be used to
amplify signals, a ubiquitous procedure both in signal and control theory. An-
other example is π̂1 : X × Y −→7 X (resp. π̂2 : X × Y −→7 X ) which eliminates
the right (resp. left) side of ‘paired’ evolutions. Finally, ŝw : X × Y −→7 Y ×X
swaps the order of evolutions, a functionality graphically represented by wire
swapping.

Since L is a functor, the following laws also come for free

îd = copy (13)

ĝ • f̂ = ĝ · f (14)

Finding limits in a Kleisli category through left adjoint L is often more diffi-
cult. However, under specific conditions, L also preserves limits. The following
theorem makes such conditions precise.

Theorem 4. Consider the Kleisli adjunction L ⊣ R of a given monad 〈T, η, µ〉.
Functor L preserves whatever limits T does.

Proof. Observe the diagram

⊣ ⊣
CT

K //

R

��

CT

U
ww

C
L

XX
F

77

T

ZZ

where CT is the Eilenberg-Moore category for monad T [25], and K the corre-
sponding (fully faithful) functor such that T = UKL. Then, consider a limit
lim←D in C and assume that T preserves it. This means that T(lim←D) is the
limit of TD, and equivalently, UKL(lim←D) is the limit of UKLD. Since both
U and K reflect limits, L(lim←D) must be the limit of LD.

Note that the theorem above was stated in general terms and is thus applicable
to any monad. Even though easily proved, its consequences are quite useful.
For example, in the case of H it provides pullbacks in Top

H
, as

Theorem 5. Functor H preserves pullbacks.

Proof. In the appendix.

More concretely, theorems 4 and 5 assert that any cospan A
f→ C

g← B in Top
gives rise to a pullback in TopH, diagrammatically described as
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A×C B
π̂2 ✤ //

π̂1
❴

��

❴
✤ B

ĝ❴

��

A
f̂

✤ // C

One interesting cospan, worthy of special attention, is A
!→ 1

!← B, which
induces the pullback

A×1 B
π̂2✤ //

π̂1
❴

��

❴
✤ B

!̂❴

��

A
!̂

✤ // 1

Indeed, such a construction brings parallelism up front, and moreover, makes
possible to combine evolutions. More concretely, the diagram states that when-
ever two systems are compatible – in the sense that for any input they produce
evolutions with equal duration – a new component that encapsulates their par-
allel composition can be defined. Formally, two systems c1 : I −→7 A, c2 : I −→7 B
are called compatible when the diagram

I
c2✤ //

c1 ❴

��

B

!̂❴

��

A
!̂

✤ // 1

commutes (note that this is not trivially true, because 1 is not a final object in
Top

H
). Then, let E denote set { ((f, d), (g, e)) ∈ HA×HB | d = e }. When the

two systems are compatible, a new component 〈〈c1, c2〉〉 : I −→7 (A×1 B) comes
forward through the mediating arrow (of the pullback), as follows

〈〈c1, c2〉〉 =̂ γ · 〈c1, c2〉

where I
〈c1,c2〉

−−−−−→ E
γ

−−−−−→ H(A ×1 B), γ ((f, d), (g, d)) =̂ (〈f, g〉, d).
Note that img 〈c1, c2〉 ⊆ E precisely because of the assumption of compatibility
between components (cf. proof of Theorem 5). In order to keep notation simple,
we will omit the 1 in the subscript of (A×1 B).

We call 〈〈c1, c2〉〉 the strict parallel composition of c1 and c2. Let us illustrate
its behaviour through a number of examples.

Example 5. Consider two signal generators,

c1 x = ( x+ (sin ), 20 ), c2 x = ( x+ sin (3× ), 20 )

For input 0, system 〈〈c1, c2〉〉 exhibits the following behaviour
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Consider now component +̂ : R × R → R which adds incoming signals. Then,
for input 0, the composed system +̂ • 〈〈c1, c2〉〉 yields the following signal.
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+̂ • 〈〈c1, c2〉〉 0

Since strict parallelism comes from a pullback, the following operator arises in
a canonical way.

Definition 8. Consider two continuous systems c1 : I1 −→7 O1, c2 : I2 −→7 O2

such that c1 • π̂1 and c2 • π̂2 are compatible. Then, define c1 ⊠ c2 : I1 × I2 −→7
O1 ×O2 as

c1 ⊠ c2 =̂ 〈〈c1 • π̂1, c2 • π̂2〉〉

Moreover, the following laws come for free, further contributing to an emerging
calculus of continuous and hybrid components: in each equation below, assume
that both its sides are well defined (i.e. that the compatibility conditions are
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respected). Then, we have,

〈〈c1, c2〉〉 • d = 〈〈c1 • d, c2 • d〉〉 (15)

π̂1 • (c1 ⊠ c2) = c1 • π̂1 (16)

π̂2 • (c1 ⊠ c2) = c2 • π̂2 (17)

〈〈c1, c2〉〉 = (c1 ⊠ c2) • △̂ (18)

copyX ⊠ copyY = copyX×Y (19)

(d1 ⊠ d2) • (c1 ⊠ c2) = (d1 • c1)⊠ (d2 • c2) (20)

(d1 ⊠ d2) • 〈〈c1, c2〉〉 = 〈〈d1 • c1, d2 • c2〉〉 (21)

Strict parallelism yields a result dual to Lemma 4.

Lemma 5. For any continuous functions f : X1 → Y1, g : X2 → Y2, the
following equation holds

f̂ ⊠ ĝ = f̂ × g (22)

Proof.

f̂ ⊠ ĝ

= { Definition of ⊠ }

〈〈f̂ • π̂1, ĝ • π̂2〉〉
= { L is a functor }

〈〈f̂ · π1, ĝ · π2〉〉
= { Definition of L, ×1 (in TopH) }

γ · 〈η · f · π1, η · g · π2〉
= { Universal property of product (in Top) }

γ · (η × η) · 〈f · π1, g · π2〉
= { γ · (ηY1

× ηY2
) = ηY1×Y2

, definition of × (in Top) }
η · (f × g)

= { Definition of L }

f̂ × g

In some cases, however, putting two components in strict parallel may be too
restrictive or not enough to meet the system’s design requirements. The next
section introduces a more relaxed version of parallelism where synchronisation
comes into play. Mathematically, our construction explores the monoidal nature
of functor H.
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6. Synchronised product and feedback

Synchronised parallelism is a form of composition in which components no longer
need to be compatible in order to be put in parallel. Instead, each of them can
change the duration of the corresponding evolutions according to the behaviour
of the other. The price to be paid is that the previous pullback (or any limit
in general) is no longer a suitable formalisation. Actually, adding a monoidal
structure [26] to functor H, as we will see in the sequel, seems to be a better
alternative.

Definition 9. We say that functor H is monoidal (with respect to ×) if it
comes equipped with a morphism m : 1 → H1, and a natural transformation
δ : H×H→ H that make the following diagrams to commute for any topological
spaces X,Y ∈ |Top|.

(HX ×HY )×HZ
α //

δ×id

��

HX × (HY ×HZ)

id×δ

��

H(X × Y )×HZ

δ

��

HX ×H(Y × Z)

δ

��

H((X × Y )× Z)
Hα

// H(X × (Y × Z))

HX × 1
id×m

//

π1

��

HX ×H1

δ

��

HX H(X × 1)
Hπ1

oo

1×HX
m×id

//

π2

��

H1 ×HX

δ

��

HX H(1 ×X)
Hπ2

oo

Hence, functor H can be made monoidal once a suitable morphism m : 1→ H1
and a natural transformation δ : H ×H→ H are defined.

Definition 10. Let us define such mappings as

m =̂ copy

δX,Y ((f, d), (g, e)) =̂ (〈f, g〉, dg e)

where continuous function g : D× D→ D is defined as g =̂ π1 ⊳ (≥) ⊲ π2.

As a side note, observe that a possible definition of δ resorts to the minimum
function f (instead of g) but then the diagrams above would not commute.
Indeed, for such an alternative to work, m would need to be changed into a
variant of function copy whose evolutions are always infinite.

Lemma 6. δ is a natural transformation.
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Proof. We know that function δ : HX ×HY → H(X × Y ) is defined as,

HX ×HY −→ XT × Y T × D× D
∼=−→ (X × Y )T × D× D

id×g−→ H(X × Y ).

Since g : D × D → D is continuous, δ : HX × HY → H(X × Y ) must be
continuous as well. To show that the naturality property holds, we reason

H(a× b) · δ ((f, d), (g, e))

= { Definition of H and δ }
((a× b) · 〈f, g〉, dg e)

= { Universal property of product }
(〈a · f, b · g〉, dg e)

= { Definition of δ }
δ ((a · f, d), (b · g, e))

= { Definition of H }
δ · (Ha×Hb) ((f, d), (g, e))

We can now state the expected result.

Theorem 6. When equipped with natural transformation δ and morphism m,
H is a monoidal functor.

Proof. In appendix.

The monoidal structure 〈H, δ,m〉 defines a specific operator for synchronised
parallelism, which behaves as follows: given two components with the same
domain c1 : I → HA, c2 : I → HB, define δ · 〈c1, c2〉 : I → HA × HB →
H(A×B), to be denoted in sequel by Lc1, c2M.

System Lc1, c2M runs c1 and c2 in parallel; however, if one finishes earlier than
the other, it is forced to stall its evolution so that both components end at the
same time. In other words, the duration of the shorter evolution is increased by
keeping it constant until the longer evolution terminates.

Again, this form of parallelism is a lax version of strict parallelism, the cost
being that many laws that hold before are now lost. Nevertheless, the monoidal
structure of H still makes straightforward to show the following properties.

f̂ × g • Lc1, c2M = Lf̂ • c1, ĝ • c2M (23)

α̂ • LLc1, c2M, c3M = Lc1, Lc2, c3MM (24)

π̂1 • Lc, copyM = c (25)

π̂2 • Lcopy, cM = c (26)

Moreover, we are able to canonically define a new operator, following a path
similar to the one used to define ⊞ and ⊠.
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Definition 11. Given systems c1 : I1 −→7 O1, c2 : I2 −→7 O2, component c1 s c2 :
I1 × I2 −→7 O1 ×O2 is defined by

c1 s c2 =̂ Lc1 • π̂1 , c2 • π̂2 M

The following laws arise from routine calculations

ŝw • (c2 s c1) = (c1 s c2) · sw (27)

α̂ • ((c1 s c2) s c3) = (c1 s (c2 s c3)) · α (28)

copyX s copyY = copyX×Y (29)

f̂ s ĝ = f̂ × g (30)

Note that strict and synchronised parallel composition behave identically but
with one exception: in any given execution, the latter increases the execution
time of a system that finishes earlier than the other. Hence, for compatible
components both operators behave exactly in the same way, and, therefore, the
former inherits all laws derived in this section for the latter.

Next, we introduce iteration for continuous systems. This facilitates com-
ponent specification and, moreover, can be used to express (or detect) Zeno
behaviour [2].

Definition 12. Given a component c : X −→7 X, component cn : X −→7 X is
defined by the (Kleisli) composition of c with itself n times. Formally,

c0 =̂ copy, cn =̂ cn−1 • c

It is straightforward to check that the following equations hold.

copyn = copy (31)

c1 = c (32)

(cn)m = cn×m (33)

cn • cm = cn+m (34)

(c⊞ d)n = cn ⊞ dn (35)

(c⊠ d)n = cn ⊠ dn (36)

Infinite iteration leads to the familiar notion of feedback.

Definition 13. Let (X, d) be a complete metric space, and c : X −→7 X a pre-
dynamical system; denote the series (π2 · c

i(x))i∈N by (si)i∈N, and the sequence
(π1 · c

i(x))i∈N by (fi)i∈N.
Then, assume that for any x ∈ X whenever the series (si)i∈N converges

the sequence (fi)i∈N is Cauchy. More concretely, its elements get progressively
closer to each other with respect to the metric,

d∗(g, h) =̂ sup
t∈T

d(g(t), h(t)).
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The interested reader will find in [27] more details about this metric.

Finally, define infinite iteration (X
c

−→7 X
c

−→7 X
c

−→7 . . . ) as νc : X −→7 X
where

π2 · νc (x) =̂

{
∞ if the series (si)i∈N diverges

limi→∞ si otherwise

(π1 · νc (x)) t =̂

{
fk t if t < (π2 · νc (x))(
limi→∞ fi

)
t otherwise

for k the smallest value such that t ≤ sk.

Intuitively, to compute the value at a certain instant (t) in the evolution (π1 ·

νc (x)), we need to compose c with itself the necessary number of times for the
composite ‘to reach that instant’; only then it is possible to extract the value.
To be concrete, if each iteration of c has two seconds of duration, to calculate
the value at five seconds in the evolution (π1 ·νc (x)), we consider the composite
c3 and compute the expression (π1 · c

3 (x)) 5.
Observe that, since c is pre-dynamical, the calculated value is not changed

by additional iterations, i.e.

(π1 · c
k (x)) t = (π1 · (c • ck) (x)) t.

Actually, in the definition above one may forget the assumption of c being pre-
dynamical as long as it is ensured that the sequence (fi)i∈N is always Cauchy.

The following section gives concrete examples of parallel operators and (in-
finite) iteration at work. The role of feedback in handling Zeno behaviour is
illustrated as well.

7. From continuous to hybrid systems

Having characterised a calculus of continuous components based on the struc-
ture of the Kleisli category of monad H, the next step is to broaden the picture
in order to handle systems that exhibit continuous and discrete behaviour inter-
twined. Such is the purpose of this section. A number of examples will illustrate
the approach proposed here as well as some of the operators introduced in the
previous sections.

Our aim is to equip continuous systems with an (internal) state space that
behaves in a discrete manner. Therefore, arrows become typed as

S × I −→ S ×HO.

Intuitively, given a state (s ∈ S) and an input (i ∈ I), the component transits
(internally) into another state and presents continuous evolutions that can be
directly observed. This gets us closer to the notion of hybrid system, as a
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family of continuous systems indexed by a state space. On the other hand, this
approach is aligned with the notion of components as coalgebras (as described
in [3]). Actually, our aim is to characterise hybrid systems as coalgebras with a
discrete (internal) behaviour, and (external) continuous evolutions.

The cornerstone of this move from continuous to hybrid components is the
notion of tensorial strength for monadH: a natural transformation τ : Id×H→
H(Id×Id) that commutes with the monad operations and with specific monoidal
structure of the base category (see the formal definition in [4]). Indeed, tensorial
strength allows us to transport such systems to TopH, via composition:

c : S × I → S ×HO

τ · c : S × I → H(S ×O)

Definition 14. Given topological spaces X,Y ∈ |Top| a (right) tensorial strength
of monad H is the function τX,Y : X ×HY → H(X × Y ) defined by

τX,Y (x, (f, d)) =̂ (〈x, f〉, d).

Interestingly, function τ corresponds to the uniform characterisation of tensorial
strength for monads over Set (cf. [28]). This entails that all diagrams that
need to commute do commute, and therefore we just need to show that τ is
continuous. For this, observe that τ can alternatively be defined as 〈λτa, τb〉 :
X ×HY → H(X × Y ) where,

τa ((x, (f, d)), t) =̂ (x, f t)

τb (x, (f, d)) =̂ d

Since τa, τb are continuous, so is τ .

Corollary 2. Natural transformation τ : Id × H → H(Id × Id) defines a
tensorial strength for monad H.

Note that one can also define a natural transformation τl : H×Id→ H(Id×Id)
(known as left tensorial strength for H), via the equation τl =̂ (Hsw) · τ · sw.
Moreover, a monad is commutative, if the equation below holds.

τ • τl = τl • τ

This is not, however, the case for monad H, as the following counter-example
reports.

Example 6. Recall the two signal generators, introduced in Example 5.

c1 x = ( x+ (sin ), 20 ), c2 x = ( x+ sin (3× ), 20 )

The application of left and right tensorial strength to the composed function
〈c1, c2〉 : R→ HR×HR yields the behaviours depicted below.
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Clearly, τ • τl 6= τl • τ ; but note that the plots illustrate an interesting aspect:
specification τ • τl · 〈c1, c2〉 reads ‘first let the component in the left to act, then
the one in the right’; and conversely for τl • τ · 〈c1, c2〉. Moreover, note that
each component ‘waits’ for the other by stalling the corresponding evolution.
This introduces yet another synchronisation mechanism.

Equipped with tensorial strength τ , we may now explore two classical examples
of hybrid systems from a component-based perspective. We start with the
bouncing ball system.

Example 7. Consider a bouncing ball dropped at some positive height and with
no initial velocity. Due to the gravitational effect, it will fall into the ground but
then bounce back up, losing, of course, part of its kinetic energy in the process.

From this description, one may regard the bouncing ball as a hybrid component
whose (continuous) observable behaviour is the evolution of its spacial position,
whereas the internal memory records velocity, updated at each bounce. To
define such a component we resort to Newton’s equations of motion.

posa (v, p, t) = p+ vt− 1
2at

2, vela (v, t) = v − at
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from which we can derive the function that, given a positive height and a current
velocity, returns the time needed to reach the ground; formally,

zposa (v, p) =

√
2ap+v2+v

a

Let us then define the discrete behaviour of the bouncing ball bd : V × P → V

bd (v, p) =̂ velg(v, zposg(v, p))×−0.5

where 0.5 is the dampening coefficient. For the continuous part bc : V ×P → HP

bc =̂ 〈posg, zposg〉

where g = 9.8 (Earth’s gravity). The resulting system is a ball bouncing on
planet Earth, denoted by b and formally defined as b =̂ τ · 〈bd, bc〉. Assume that
the initial state of b is 0. Then, through the iteration operator, and assuming
five as the initial position one gets, for instance, the following behaviour.
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b3 5

Analogously, we can define a ball bouncing in the Moon (here denoted by let-
ter c), and compare the behaviour of both bouncing balls by putting them in
parallel, with the same initial state 0.
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(b3 s c3) (5, 5)
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Note that (b3 s c3) 6= (b s c)3. An interesting question to pose is about the
durations that components νb and νc output. Indeed, the intuition is that du-
rations are always infinite (since feedback involves infinite sums), however, due
to the Zeno effect, the durations that concern this example are actually finite:
they correspond to the time at which the ball stops moving. Such durations are
given precisely by the computation of π2 · (νb) and π2 · (νc) with respect to a
given input.

Example 8. Alternating pumping systems are often used to regulate the water
level of reservoirs. Consider one that fills two tanks alternatively in cycles of
ten seconds, which means that some sort of internal memory is required (to
remember which was the last tank served).

Thus, the discrete part wd : S × L→ S is defined as

wd =̂ flip · π1

where S = {⊤,⊥} is the discrete state space and flip the function that switches
between the elements. Let us assume that the initial state is ⊤. Then, we define
the continuous behaviour wc : S × L→ HL

wc(s, (l1, l2)) =̂ (fs(l1, l2), 10)

where f⊤(l1, l2) =̂ ((l1+ ), l2) and f⊥(l1, l2) =̂ (l1, (l2+ )). As expected, the
pumping system is given by equation w = τ · 〈wd, wc〉, which, for input (0, 0),
yields the following plot.
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On a different note, it is natural to consider that the pump takes some time
to switch from one tank to the other: for illustration purposes let us assume
that time to be ten seconds. To simulate such a delay we can define a variant
of copy, denoted by copy10, that always outputs evolutions with duration ten.
Then, again for input (0, 0), system (copy10 • w)3 outputs
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It is also important to analyse situations in which water flows out. Thus, con-
sider a hybrid system z : 1 × 1 → H(1 × L) (with trivial state space 1) whose
continuous part

zc(⋆, ⋆) =̂ (〈/2, /2〉, 10)

dictates the rate of water flowing out in each tank, here represented by a clock
that runs at half the normal speed. Then, we specify the result of w and
z acting together in the same set of variables. For this, we define function
h : (S × L)× (1 × L)→ (S × L)× (1 × 1) where

h ((s, l1, l2), (⋆, x, y)) =̂ ((s, l1 ⊖ x, l2 ⊖ y), (⋆, ⋆))

Intuitively, function h subtracts water in accordance with the rate specified by
component z. For input (0, 0), system ĥ • (w ⊠ z) yields the plot below.
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8. Conclusions and future work

It is well known that software systems are becoming prevalently intertwined
with (continuous) physical processes. Such an architecture, however, renders
their rigorous design (and analysis) a difficult challenge that calls for a wide,
uniform framework combining the continuous and discrete sides of Mathematics.
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As a first step towards a component-based framework for hybrid systems, in
the spirit of [3], this paper showed how continuous evolutions can be encoded
in the form of a strong (topological) monad. As discussed in Section 1, to
capture specific behavioural models through monads has been a successful path
in Computer Science: such was the case of nondeterministic behaviour, and the
(discrete) probabilistic one; but occurrences in the continuous domain also exist.
A prime example is the Giry monad [29], which captures stochastic processes
and has been object of study in a number of papers (e.g., [8, 30, 31, 32]). Along
similar lines, monad H provides a categorial universe for continuous, and hybrid
systems, where the effects of continuity over different forms of composition can
be isolated and suitably studied.

This universe, i.e.the Kleisli category TopH, offers different forms of system
composition, wiring mechanisms, and synchronisation techniques. For example,
Kleisli composition lets the control of an evolution to be transferred from one
system to the other, but also allows evolutions to be dynamically modified
(as observed in the case of signal amplification). Such behavioural patterns,
as discussed in Section 3, are often found in systems like thermostats, cruise
control systems, and signal generators. But more generally, in control loop
systems – traditionally comprised of a network of digital controllers that manage
a physical process over time through a feedback loop architecture. In this case,
the controllers, possessing different functionalities, periodically pass control of
the physical process among themselves.

The underlying categorial framework hinted at several composition operators
(through corresponding universal constructions), and facilitated the elicitation
of several compositional laws. Throughout the paper, the results achieved were
illustrated with classic examples of hybrid systems, namely a thermostat, a
bouncing ball, and a water tank system.

8.1. Related work

Hybrid automata [33] are the de facto formalism for the specification of hy-
brid systems. Roughly speaking, they are a variant of classic automata that
allows variables to continuously evolve while in a state. This defines the contin-
uous behaviour of an hybrid system, which is then paired with discrete actions
given by the usual state transitions. Parallel composition of hybrid automata
proceeds similarly to the classic case, where common labels act as synchronising
events. Interestingly, in [34] Bornot and Sifakis introduced additional synchro-
nisation mechanisms that make one system wait for the evolution of the other
to end, or, on the contrary, force it to finish earlier. This seems to be intimately
related to whatever monoidal structure is given to functor H.

During the last years there were also developments concerning the addition
of new dimensions to hybrid automata: for example, [35] shows how to take
reaction times into consideration in a compositional setting. In our case, we
took advantage of dawdler components, like copy10, to introduce such delays.

The ‘rationale’ underlying hybrid automata is powerful, and highly intuitive,
but in some cases lacks expressive power: for example, those systems in which
evolutions can be dynamically changed by some of the components are very
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hard to specify. Moreover, aside from parallel composition, the authors have no
knowledge of deep developments that concern new compositional operators for
hybrid automata.

The industrial tool Simulink1, on the other hand, offers a highly expres-
sive component-based language, and is thus closely related to the framework
proposed in this paper. Indeed, Simulink supports a rich palette of compo-
sitional operators, and computational units. It possesses behavioural patterns
that involve dynamical alteration of evolutions, delays, and synchronisation.
Moreover, the transfer of the control of some evolution is not hard to define.
All this renders Simulink a very interesting tool. The cost is the lack of a clear
semantics, which impairs formal analysis and the elicitation of compositional
laws – actually, some recent efforts have been made towards the formal verifi-
cation of Simulink models in alternative tools (cf. [36, 37]). In addition, the
components available are rather limited in what concerns the characterisation
of their internal memory and respective transition dynamics.

It would be interesting to study the embedding of (a subset of) Simulink’s
language into TopH. In principle, TopH could act as a tool complement, pro-
viding a basis for the formal analysis of (critical fragments) of hybrid systems.
We stress, however, that we do not aim at emulating Simulink, but rather at
a suitable coalgebraic framework for hybrid components, where we consider the
discrete transitions to be internal behaviour, and the continuous evolutions the
observable part. From this point of view, Simulink is very distant from such a
line of work.

There is also a close relation between the work here reported and P. Höfner’s
algebra of hybrid systems [38]: the latter’s main operator is used to concatenate
evolutions. Moreover, the algebra possesses secondary operators, like parallelism
and synchronisation, that are equally available in Top

H
. Our approach, how-

ever, and differently from P. Höfner’s calculus, is structured around a monad
that encodes the notion of continuous evolution; this brings up a number of
canonical constructions and smooths the integration with other behavioural ef-
fects, such as nondeterminism or probabilistic behaviour.

Finally, a few categorial models for hybrid systems have been proposed along
the last two decades. For example, document [39] introduces an institution –
in essence, a categorial rendering of a logic – for hybrid systems, and provides
basic forms of composition such as free aggregation (i.e., parallelism without
interaction) and interconnection where some attributes and events are shared
between two systems. Around the same time, Jacobs [40] suggested an object
oriented coalgebraic framework where hybrid systems are regarded as coalgebras
equipped with a monoid action: coalgebras define the discrete transitions, and
monoid actions the continuous evolutions. Some years later Haghverdi et. al
[41] explored the connection between a formalisation of hybrid systems (close
to hybrid automata) and open maps. The objective was to provide appropriate
notions of bisimulation both for dynamical, and hybrid systems. Composition

1 http://www.mathworks.com/products/simulink
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mechanisms, however, were not studied in this context.

8.2. Future work.

Our next step is the development of a calculus of hybrid components (as in [3])
based on monad H and its Kleisli category. The calculus from [3], in its coalge-
braic spirit, is bisimulation-based, with bisimulation given as the usual span of
simulations [28]. The framework that this paper sets, however, offers a promis-
ing basis to explore alternative notions of (bi)simulation for continuous and
hybrid systems. This has points of contact with the work of Haghverdi et. al in
[41]; but note that we use coalgebraic machinery, and follow a component-based
perspective, which makes possible to study the relation between (bi)simulation
and (the different) compositional operators.

A second line of research concerns the development of a taxonomy of con-
tinuous, and hybrid systems living in TopH. Indeed, as Stauner showed at the
beginning of the century in his PhD thesis [42], topologies are useful to elicit a
number of important properties. For example, the notion of robustness (preva-
lent in control theory) becomes simple to formulate: intuitively, a system is
robust if small changes in the input lead to very similar evolutions. In TopH,
since each system has a topological semantic base, one can express how robust
it is by varying the topology in its source object. At one limit, if the topology
is discrete, the system is seen as chaotic. At the other end, i.e., if the topology
is indiscrete, the system must always output the same evolution.

Actually, the compositional nature that underlies TopH allows us to rea-
son about the robustness of the system at hands through the analysis of (the
robustness of) its simpler constituents. One disadvantage of this approach is
that composition in TopH is strict, in the sense that components with different
topologies in the connecting points cannot be composed. For example, it is hard
to put a chaotic component after a robust one. Part of our current research tries
to relax this condition while maintaining stability, whenever possible.
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[22] M. Escardó, R. Heckmann, Topologies on spaces of continuous functions,
in: Topology Proceedings, Vol. 26, 2001, pp. 545–564.

[23] R. Brown, Moore hyperrectangles on a space form a strict cubical omega-
category (2009). arXiv:0909.2212.

[24] J. Goubault-Larrecq, Non-Hausdorff Topology and Domain Theory—
Selected Topics in Point-Set Topology, Vol. 22 of New Mathematical Mono-
graphs, Cambridge University Press, 2013.
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Appendix

Proof of Lemma 2. The proof is divided in two parts: the first establishes
continuity of the mappings, the second concerns naturality. Consider the map-
ping µX : HHX → HX ; we are going to show its continuity. First we observe
that µX can be alternatively defined as 〈λa, b〉 where

a =̂ HHX × T
i×id
−−−−−→ (XT×T × D)× T

conc

−−−−−→ X

i =̂ HHX
πT

1
×id

−−−−−→ (XT)T × D

∼=
−−−−−→ XT×T × D

for conc ((f, d), t) =̂ f (t f d, t ⊖ d). The definitions clearly show that a is
continuous. For function b we have

b =̂ HHX
πT

2
×id

−−−−−→ D
T × D

c

−−−−−→ D

where c (f, d) =̂ (f d) + d ⊳ (d 6= ∞) ⊲ ∞. Since the canonical restriction
(+) · 〈ev, π2〉 : DT × T → D of c is continuous we just need to show that the
latter is continuous at infinity. Actually, this comes for free once proved that
given any neighbourhood N ⊇ (x,∞] in D of ∞ we can find a neighbourhood
V in D

T × D of (f,∞) such that c (V ) ⊆ N .
Consider neighbourhood D

T × (x,∞]. It is clear that c (DT × (x,∞]) ⊆
(x,∞] ⊆ N .

Next we show that µ is natural, i.e., that for any continuous function h : X → Y
the diagram below commutes.

HHX
HHh //

µX

��

HHY

µY

��

HX
Hh

// HY
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First we assume that (f, d) ∈ HHX has finite duration,

µ ·HHh (f, d)

= { Definition of H, µ }
(θ ·Hh · f, d) ++ (Hh · f d)

= { θ is natural }
(h · θ · f, d) ++ (Hh · f d)

= { Definition of H, composition }
Hh (θ · f, d) ++Hh (f d)

= { ( ++ ) is natural }
Hh ((θ · f, d) ++ (f d))

= { Definition of H, µ }
Hh · µ (f, d)

The proof for the case in which (f, d) ∈ HHX has infinite duration is analogous
to the above.

Proof of Theorem 2. We have to show that the following diagrams commute.

H
ηH //

1H
  
❇❇

❇❇
❇❇

❇❇
H2

µ

��

H
Hη
oo

1H~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

H

H3 µH //

Hµ

��

H2

µ

��

H
2

µ
// H

Note that the proof below becomes much more simpler if the evolutions involved
have infinite duration.

Let us start with the left triangle.

µ · η (f, d)

= { Definition of η }
µ ((f, d), 0)

= { Definition of µ }
(θ · (f, d), 0) ++ ((f, d) 0)

= { Definition of constant }
(θ · (f, d), 0) ++ (f, d)

= { Definition of ++ , definition of constant }
(f, d)
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For the right triangle we have,

µ ·Hη (f, d)

= { Definition of H }
µ (η · f, d)

= { Definition of µ }
(θ · η · f, d) ++ (η · f d)

= { Definition of η }
(θ · η · f, d) ++ (f d, 0)

= { Definition of ++ }
(θ · η · f, d)

= { Eilenberg-Moore }
(f, d)

It remains to show that the square commutes. Before giving the formal proof,
we present the corresponding intuition from a geometric perspective.

Let us then start by observing that an element in HHX , may be intuitively
seen as a square, where each column is a function in HX . Then, note that
multiplication (µ : HHX → HX) keeps just the first row and last column of
the square, as illustrated below.

y

z

As expected, the intuitive picture of an element in H3X is a cube,

x

z

y

such that a projection on the x-axis yields an element of HHX (geometrically,
a square as described above).

Let us now observe that, resorting to multiplication, we can reduce the cube
into a square. Actually, we can do this in two different ways: via µ : H3X →
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HHX , or Hµ : H3X → HHX . In the former case, only the front and right
surfaces are kept (picture below in the left). In contrast, function Hµ applies
µ to each projection on the x-axis, and thus only the bottom and back surfaces
are kept (picture below in the right).

x

z

y

x

z

y

Finally, applying µ : HHX → HX to the resulting squares yields the same
result,

x

z

y
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More formally, we reason

µ ·Hµ (f, d)

= { Definition of H }
µ (µ · f, d)

= { Definition of µ }
(θ · µ · f, d) ++ (µ · f d)

= { Eilenberg-Moore }
(θ ·Hθ · f, d) ++ (µ · f d)

= { Let f d = (f ′, d′), definition of ++ }
(
(θ ·Hθ · f, d ) ++ (θ · f ′, d′)

)
++ (f ′ d′)

= { θ is natural }
(
(θ · θ · f, d ) ++ (θ · f ′, d′)

)
++ (f ′ d′)

= { Notation (f d), definition of ++ , definition of H }
(
Hθ ((θ · f, d ) ++ (f d))

)
++ (f ′ d′)

= { Definition of µ }
(
Hθ · µ (f, d)

)
++ (f ′ d′)

= { Definition of µ }
(Hθ · µ (f, d) ) ++ ( π1 · µ (f, d) π2 · µ (f, d) )

= { Definition of H }
(θ · π1 · µ (f, d), π2 · µ (f, d)) ++ (π1 · µ (f, d) π2 · µ (f, d))

= { Definition of µ }
µ (µ (f, d))

= { Composition }
µ · µ (f, d)

Proof of Theorem 5. Consider the following pullback in Top

A×C B
π2 //

π1

��

❴
✤ B

g

��

A
f

// C

where f and g are arbitrary continuous functions. We need to show that
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H(A ×C B)
Hπ2 //

Hπ1

��

❴
✤ HB

Hg

��

HA
Hf

// HC

also forms a pullback in Top.
For this, observe that functor H comes from the composition of functors

( )T, and ( × D), both of which preserve pullbacks. Indeed, they give rise to
the commuting diagram

X
γ·〈c1,c2〉

&&

c1

**

c2

##

(A×C B)T × D
π2

T×id
//

π1
T×id

��

BT × D

fT×id
��

AT × D
gT×id

// CT × D

where γ ((e1, d), (e2, d)) = (〈e1, e2〉, d). Let us denote γ · 〈c1, c2〉 by 〈〈c1, c2〉〉.
Since functor H forces specific conditions on evolutions (recall that (e, d) ∈

HX implies e ·fd = e) some work remains to be done. In fact, we need to show
that img〈〈c1, c2〉〉 ⊆ H(A×CB) whenever img c1 ⊆ HA, img c2 ⊆ HB, and c1, c2
make the outer square to commute. In other words, we need to show that, under
these conditions, 〈〈c1, c2〉〉 factors through ι : H(A ×C B) →֒ (A ×C B)T × D;
diagrammatically,

X
〈〈c1,c2〉〉

//

&&

(A×C B)T × D

H(A ×C B)
� ?

ι

OO

Consider an element x ∈ X , and denote 〈〈c1, c2〉〉 x by (〈e1, e2〉, d). Since by
assumption e1 ·fd = e1, e2 ·fd = e2, it is clear that 〈e1, e2〉 ·fd = 〈e1, e2〉 and
therefore (〈e1, e2〉, d) ∈ H(A×C B).

Proof of Theorem 6. We need to show that the following diagrams commute.

(HX ×HY )×HZ
α //

δ×id

��

HX × (HY ×HZ)

id×δ

��

H(X × Y )×HZ

δ

��

HX ×H(Y × Z)

δ

��

H((X × Y )× Z)
Hα

// H(X × (Y × Z))
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HX × 1
id×m

//

π1

��

HX ×H1

δ

��

HX H(X × 1)
Hπ1

oo

1×HX
m×id

//

π2

��

H1 ×HX

δ

��

HX H(1 ×X)
Hπ2

oo

We start with the upper square.

Hα · δ · (δ × id)
(
((e1, d1), (e2, d2)), (e3, d3)

)

= { Definition of δ and H }
( α · 〈〈e1, e2〉, e3〉, ((d1 g d2)g d3) )

= { Definition of product, g is associative }
( 〈e1, 〈e2, e3〉〉, (d1 g (d2 g d3)) )

= { Definition of δ }
δ ( (e1, d1), (〈e2, e3〉, d2 g d3) )

= { Definition of id× δ }

δ · (id× δ)
(
(e1, d1), ((e2, d2), (e3, d3))

)

= { Definition of α }

δ × (id× δ) · α
(
((e1, d1), (e2, d2)), (e3, d3)

)

Then, for the diagram above in the left we reason, and proceed similarly with
the one in the right.

Hπ1 · δ · (id×m) ((f, d), ⋆)

= { Definition of m, δ, and H }
(π1 · 〈f, ⋆〉, dg 0)

= { Cancellation ×, 0 is the identity element (for g) }
(f, d)

= { Definition of π1 }
π1 ((f, d), ⋆)
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