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As applicationsmove to the edge, efficiency in computing power and power/energy
consumption is required. Heterogeneous computing promises tomeet these
requirements through application-specific hardware accelerators. Runtime adaptivity
might be of paramount importance to realize the potential of hardware specialization,
but further study is required onworkload retargeting and offloading to reconfigurable
hardware. This article presents our framework for the exploration of both offloading
and hardware generation techniques. The framework is currently able to process
instruction sequences fromMicroBlaze, ARMv8, and riscv32imaf binaries, and to
represent themas Control andDataflowGraphs for transformation to
implementations of hardwaremodules.We illustrate the framework’s capabilities for
identifying binary sequences for hardware translationwith a set of 13 benchmarks.

The emergence of heterogeneous devices as
platforms for data-intensive algorithms can
be attributed to three major factors: 1) the

stagnation of compute performance on conven-
tional multicore central processing units (CPUs); 2),
emergence of field-programmable gate arrays
(FPGAs) with greater logic cell density, operating
frequency, integrated specialized cores, and better
development tools; and 3) the push toward edge
computing, backed by Internet-of-Things and artifi-
cial intelligence applications, which can benefit from
reconfigurable or heterogeneous computing through
FPGAs. However, the use of these devices is limited
by the development effort required to exploit hard-
ware specialization. We summarize the technology
trends underlying the emergence of heterogeneous
platforms and provide an overview of a framework
for exploring binary translation-based acceleration
techniques applicable to future self-adaptive sys-
tems that shift work to available reconfigurable
resources at runtime.

TRENDS IN DESKTOP PROCESSOR
TECHNOLOGY

Figure 1(a) illustrates six features of high-end process-
ors over the last five decades. The data points repre-
sent the average of the 30 highest end devices for
each year. Near 2005, the end of Dennard scaling lead
to a stagnation of single-core processor performance.
The exponential increase of transistor density and
core frequency cause unsustainable thermal dissipa-
tion, known as the Power Wall2.

Multicore processors were introduced to enable
further performance scaling, by exploiting data and
process parallelism. However, this era encountered its
own limit in Amdahl’s Law. That is, performance does
not scale with thread count.

Consider the recently released Apple M1 System-
on-a-Chip (SoC). Despite the state-of-the-art 5-nm pro-
cess, the CPU clock frequency remains stagnated at
3.2GHz. Instead, the claimed 3:5� performance
increase was enabled by reduction of communication
overheads, via single-chip integration of heteroge-
neous components, and tightly coupled hardware/soft-
ware codesign. In future, such alternative approaches
of increased specialized heterogeneity and integration
will be paramount to ensure performance scaling.

Finally, the latent instruction level parallelism (ILP)
in compiled code is still not fully explored, despite
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multiple-issue units, out-of-order execution, vectoriza-
tion, and branch prediction.3 Therefore, there are two
barriers to further improvement, one technological and
one architectural, that justify the exploration of novel
approaches to better explore parallelism, heterogene-
ity, and memory-centric computing. FPGAs are seen as
likely platforms for this future performance scaling.

TRENDS IN FPGA TECHNOLOGY
Figure 1(b) summarizes information analogous to
Figure 1(a) for FPGA technology for the last 30 years.
The characteristic of FPGAs that relate to

performance are the amount of flip-flops (FFs), lookup
tables (LUTs), and on-chip memory. Since FPGAs are
reconfigurable at the logic gate level, the maximum
operating frequency is design dependent. However,
designs typically operate at less than 1 GHz. The per-
formance gains come from workload-specific designs
that exploit parallelism and data streaming.

Although they appeared 20 years after CPUs,
FPGAs now use the latest process nodes and achieve
comparable transistor densities. AMD currently sup-
plies the CPU with the highest transistor count of 38.5
billion (at 7 or 12 nm), while the densest FPGA contains
43.3 billion transistors (at 14 nm). Like the transistor

FIGURE 1. Technology and characteristic trends for CPUs and FPGAs.

16 IEEE Micro July/August 2021

FPGA COMPUTING

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on May 05,2023 at 09:22:47 UTC from IEEE Xplore.  Restrictions apply. 



density of CPUs, the number of logic elements in
FPGAs increases exponentially with the process node.
The higher end device of the first family of FPGAs
(Xilinx XC2000) contained 100 4-input LUTs, while the
latest FPGAs contain up to 4 million 6-input LUTs.

ALTHOUGH THEY APPEARED 20 YEARS
AFTER CPUs, FPGAs NOWUSE THE
LATEST PROCESSNODES ANDACHIEVE
COMPARABLE TRANSISTORDENSITIES.

The most significant change in FPGAs occurs near
2012, with an architectural change analogous to the
multicore era of CPUs. Namely, the emergence of the
SoC FPGA weakened the distinction between general
purpose SoCs and FPGAs. No FPGA device after 2012
lacks an integrated processor system and multiple
heterogeneous function-specific cores, such as Ether-
net, cryptography, real-time processor, and mobile-
grade graphics processing unit.

Consequently, the reconfigurable fabric portion of
the chip becomes the platform for application or func-
tion specific circuits for the software applications exe-
cuting on the processor system. Therefore, the study
of techniques for the generation of these circuits is
important and timely. We specifically focus on techni-
ques based on binary translation, to support runtime
offloading of workload to hardware.

COMPILATION FOR FPGAs: From
Code to Circuits

As noted by Trimberger,4 the use of FPGAs is intimi-
dating due to the complexity of the design process
and associated toolflow, even though the capabilities
of the hardware meet the needs of computationally
intensive applications.

High level synthesis (HLS) tools have contributed
significantly to FPGA adoption, but still require signifi-
cant knowledge of hardware design and code rewrit-
ing to fully optimize solutions. The design effort is
reasonable for well-defined functions whose underly-
ing computations can exploit a data stream model so
that efficient deep pipelines can be generated.

However, other work has shown that significant
improvements can be achieved if binary instructions are
instead redirected to user-defined circuits.1 We focus on
this paradigm to promote future self-adaptive systems
capable of offloading computation to reconfigurable
resources. For example, runtime configuration of user-
defined instruction units5 or loop scheduling in coarse-

grained reconfigurable arrays (CGRAs). Although these
designs promise to outperform GPUs, current high level
synthesis (HLS) tools cannot infer CGRAs, and dense
mapping of operations to these architectures is still an
unresolved issue.6,7 Large instruction traces extracted at
runtime can provide a means of speedup that exploits
these architectures more efficiently while removing
these concerns from software design. The resulting
speedup is not expected to compete with compiler-
driven or manual circuit design, but it would be ubiqui-
tous and provide a speedup for embedded edge applica-
tions. Moreover, studies have shown that CPUs spend
most of the energy on memory accesses, instruction
fetching and decoding, and out-of-order mechanisms.7

Significant power savings are thus possible since compu-
tationally specific circuits do not require these features.

Our previous experiments based on the proposed
approach were focused on contiguous repeating
sequences of instructions as segments offloaded from
a CPU execution (MicroBlaze) to an accelerator con-
sisting of a row of functional units and with modulo
scheduling.8 CPU and accelerator shared the data
memory, and register values were transferred using
special CPU ports accessed via get/put instructions.
This binary translation scenario achieved speedups
from 1:5� to 18:9� and a geometric mean speedup of
6:6� for 13 floating-point kernels.9 We now present the
ongoing work on a framework which iterates on our
binary translation techniques, to expand their applica-
tion to other instruction set architectures (ISAs) and
accelerator architectures, and to explore new techni-
ques with focus on memory-centric optimizations.

The remainder of this article explains the processing
stack of our framework for study of binary translation
techniques, which is geared toward multiple ISAs and
backend target architectures. We present examples of
profiling exploration, workload extraction, and hardware
generation as they are currently performed, and outline
aspects of ongoing and future development steps. We
hope to provide an insight into techniques for the trans-
lation of instruction traces to accelerators.

BINARY TRANSLATION
FRAMEWORK: STACK

The binary translation framework (BTF), summarized
in Figure 2, is implemented primarily in Java, and avail-
able as open source.a

aNuno Paulino, Jo~ao Bispo, “Hardware-Related Libraries and
Applications,” 2020, GitHub repository, https://github.com/
specs-feup/specs-hw
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The framework is a iteration on a previous approach
for loop accelerator generation for the MicroBlaze pro-
cessor, based on trace loop detection and runtime off-
loading.8 The main purpose of the BTF is to detect
binary segments (i.e., sequences of instructions termi-
nated by one or more control instructions) from an
incoming instruction stream, perform optimizations,
and translate them to hardware descriptions for the
synthesis, validation, and integration.

Most of the processing steps are independent of
the ISA of the incoming instruction stream. To support
additional ISAs, extensions can be provided to the
core of the framework as lists of instruction encod-
ings, operands, and pseudocode implementations.
These implementations describe instruction behavior
as a function of named instruction fields. As later
framework stages operate on intermediate represen-
tations (IRs) that are ISA independent, there is the
potential to quickly explore hardware generation for
new ISAs.

To generate HDL descriptions, some well-known
approaches start from source code, rely on existing IRs
(e.g., LLVM) and develop back-ends for the hardware
generation.10 Instead, we interpret native instructions
from the target ISAs directly for multiple reasons. Since
our intent is to explore binary offloading techniques for
future self-adaptive capabilities, native machine code
is the information we expect to have during runtime
on-chip translation. Past approaches have validated
this method, within certain constraints.1 We also wish
to target large instruction windows from traces, which
requires execution of native code. For complementary
exploration, wemay also use the framework as a future
front-end to emergent IRs geared for the description of
hardware and parallelism.11

The following sections describe the function and
current implementations of the most developed
stages. These are the instruction stream extraction,
segment detection, control and dataflow graph
(CDFG) generation, and hardware generation stages.
For preliminary results, we used a set of 13 floating-
point kernels from the Livermore Loops set,9 compiled
for three ISAs: MicroBlaze, ARMv8, and riscv32imaf.
The optimization level used was -O2 for all ISAs, and
the availability of hardware floating-point units is
assumed.

INSTRUCTION STREAM PARSING
The framework supports static streams obtained from
the analysis of a compiled executable and linkable for-
mat (ELF) file or traces obtained from execution. To
obtain instruction streams from program execution,
the framework runs QEMU under a GNU Debugger
(GDB) session. The BTF launches GDB and retrieves
every executed address and instruction tuple.

The implemented instruction interpreters, which
are required for binary sequence detection, are inde-
pendent from the source of the instruction stream.
However, for consistency, the GNU toolchains and the
architecture-specific QEMU emulators are used to
obtain static and trace-based streams for all sup-
ported ISAs. Currently, these include significant sub-
sets of the 32bit MicroBlaze from Xilinx, the 32-b
ARMv8, and the riscv32ima subset of the RISC-V
specification.

Each instruction is characterized by its encoding,
its constituent fields, and a type classification. For
example, the following information is required for
RISC-V instructions:

FIGURE 2. Overview of the binary translation stack.
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The first field is the instruction encoding, and the
second refers to the instruction format. Any bits which
compose the opcode are set according to each instruc-
tion, while other fields such as operands are ignored dur-
ing parsing. The last argument is a list of generic
instruction types used during later processing steps.

The various instruction formats used in the ISA
must also be specified. For example, for the ARMv8
ISA, the formats for operations on two register values
and for conditional branches are specified by the fol-
lowing string-based formats:

The first argument indicates the name of the
instruction format. The second argument specifies all
the fields, along with their bit widths. Bit fields such as
operands are named for further decoding in later
stages. Literal binary fields allow for distinction
between overall instruction format.

Each instruction requires the description of its
implementation in an ISA-independent language. The
encoding and interpretation of operand fields only
allows for determining which fields are being used by
the instruction as inputs or outputs. The pseudocode
specifies the arithmetic, logical, and control behavior
of the instruction. For example, the description of
some MicroBlaze instruction is the following:

Instruction behaviors can be specified using bit-
fields as operands, along with all arithmetic and logical
operators, and also if-else clauses. Fields not encoded
in the instruction format can be addressed with the
$prefix, such as the carry bit or the program counter.
A limited set of built-ins (e.g., getCarry) aids in the

specification. The descriptions allow for compact and
extensible representation of instruction behavior, and
are used to generate abstract syntax trees (ASTs) in
later transformation and hardware description lan-
guage (HDL) generation steps.

BINARY SEGMENT DETECTION
Segment detection is the process of identifying
repetitive sequences of instructions using either
static or trace streams. The current detectors differ
only in the criteria that determine whether a given
candidate window is valid, and share most other
processing steps. Some types of segments are only
applicable to trace streams, such as recurring loop
paths. Together with a list of contexts, each repeat-
ing pattern forms a binary segment. A context is the
set of values of the instruction fields at each
address at which the sequence occurs. The BTF was
designed to detect and translate several types of
binary segments, which can be distinguished mainly
by the type of control flow permitted.1

1) Frequent sequences are lists of an arbitrary
number of instructions, which may not contain
any kind of branch instructions.

2) Basic blocks are lists of an arbitrary number of
instructions ending in a single backward branch
to the first instruction in the sequence.

3) Megablocks are a type of sequence we have
explored in previous work.8 They are single-path
loop traces spanning multiple backwards or for-
wards branches, ending in a backwards branch
to the first instruction in the sequence.

4) Other types of segments can be implemented in
future work, e.g., extending Megablocks to repre-
sent multiple loop paths, or capturing nested
loops by rerolling the innermost loops in traces.

Segments are detected by capturing candidate
windows of a fixed size, and creating a hash from the
instruction information in the window. When a valid
candidate window matches an existing hashed
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window, its occurrence count is incremented. After
the instruction stream has ended, sequences that
occur only once are discarded.

The identification of similar sequences does not
use strict equality, as this criterion would consider the
two following sequences to be different:

Instead, we abstract away the operands, so that only
the relative position of operands determines the equality
condition of two segments at different addresses. With
this criterion, the two sequences as considered equiva-
lent, and the respective CDFGs will also be isomorphic.

Currently, the framework can detect two types of
sequences, namely frequent sequences and basic
blocks, either via static or trace analysis. To detect
sequences of different sizes, multiple detectors config-
ured with different parameters can be executed in sepa-
rate threads over the same incoming instruction stream.

Consider the detection of static frequent sequen-
ces for the set of 13 kernels, for all three ISAs. These
sequences are those that occur more than once within
the statically analyzed assembly code. Since each appli-
cation executes identical startup code, detection was
performed within the address range of the kernel func-
tions. Twenty static frequent sequence detectors ran in
parallel, for window sizes ranging from 2 to 20. Figure 3
shows detection results for window sizes from two to
six. Each bar represents the total number of such
sequences for each window size, per ISAs.

The longest sequences found are of size 11, except
for ARMv8, where no sequences of size greater than 6
were found, as the greater heterogeneity of this ISA
makes repeated sequences less likely. The number of
load instructions represents between 30% and 50% of
all instructions for all window sizes, and the number of
store instructions ranges from 10% and 50%. The num-
ber of memory instructions relative to other types quan-
tifies how memory bounded the processing is, a
characteristic that is important for the development of
specialized architectures.

GRAPH GENERATION
To investigate any speedup potential, CDFGs are
generated that expose instruction parallelism and

iteration pipelining. To generate a graph, operands
from the processor’s register file are replaced with
connections to the output of previous instructions.
The framework analyzes each instruction sequence in
turn and, for each instruction, pulls the last generator
of the required operand values and performs this
replacement.

For example, consider the detection of hot basic
blocks for the same benchmark set, for MicroBlaze
and ARMv8. Detectors for window sizes from 4 to 50
were run for each benchmark.

Figure 4(a) shows the total number of basic blocks
(#BBs) found, and the averages for metrics related to
the respective CDFGs. critical path length (CPL) is the
CDFG depth; instructions per clock (IPC) represents
acceleration potential, and is computed as the num-
ber of instructions over the initiation interval (II). The II
of a loop dictates the sequential stages that must exe-
cute to begin a new iteration. For nearly all detected
basic blocks, the II is three.

FIGURE 3. Detected static frequent sequences for the sup-

ported ISAs.
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Figure 4(b) shows the CDFG for the segment in
the inner prod benchmark for the ARMv8. Instruc-
tions without data dependencies are placed at the
same level, while values exchanged with the pro-
cessor’s register file are shown at the top and bot-
tom. The b.ne instruction is the backward branch
of the loop. Assuming a model where the branch
conditions of an iteration must be evaluated before
a new iteration is initiated, this CDFG has a II of 3,
and an IPC of 2.

As an additional set of preliminary results, we
compiled the seven BLAS kernels of the PolyBench
Benchmark Suite12 for the MicroBlaze and performed
trace basic block detection via the BTF, producing 13
CDFGs. From the number of clock cycles required for
their software execution, and the respective latent
ILP and II, an estimated geometric mean speedup of

9:3� was reported by BTF, which is in line with
the results obtained with our accelerator-enhanced
architectures.8

HARDWARE GENERATION
To generate hardware descriptions, we perform trans-
formations over the target CDFGs, which includes
analyzing the AST of each node. These ASTs are built
by parsing the description of each instruction and
applying to each operand the concrete values
extracted from the interpretation of the instruction.
Currently, we can translate such trees to Verilog ASTs
and output the corresponding code. We currently do
not address integration, but we target system archi-
tectures where either the accelerators and host pro-
cessor fully share data memory/caches or the
accelerators are integrated into processor pipeline, so
as to avoid costly data transfers which might negate
any benefits.

The following example illustrates the generated
HDL for a sequence implemented as a single-cycle
hardware module.

Currently, different accelerator architecture tar-
gets remain to be explored. Factors to consider in this
exploration include the following.

Memory Accesses: The scheduling of memory
accesses is greatly dependent on the overall system
architecture. Automated design of a specialized mem-
ory architecture is one of the exploration objectives of
the BTF. Retrieving information regarding the memory
accesses performed by the segments will aid the auto-
mated generation a specialized memory architectures
on a per-case basis.

Implementation of Branches: Sequences with
branches require additional hardware to ensure
proper execution of the segment, e.g., evaluating exe-
cution paths or conditional memory accesses. In

FIGURE 4. Detection of trace basic blocks (for MicroBlaze

and ARMv8).
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addition, segments with multiple branch instructions
(i.e., exit points) can be implemented by discarding
partial executions of a segment or by implementing
the control required to support arbitrary exit points.

Multiple Configurations: Accelerating multiple seg-
ments can be addressed by either generating multiple
single-function accelerators, or by generating a single
reconfigurable accelerator.8 The former option intro-
duces architecture design concerns regarding the
interfaces between the accelerators, the memory
ports, and the host processor. The latter choice intro-
duces additional complexity in generating the acceler-
ator hardware.

Specialized Hardware Generation Versus Tem-
plates: The exploration of target accelerator archi-
tectures includes studying the benefits of
generating a specialized description for one seg-
ment or a set of segments, potentially of different
types versus scheduling operations onto an existing
configurable template. The former approach pro-
motes specialization, while the latter may simplify
the translation process. Memory access behavior
also influences the choice of target architecture,
e.g., full-custom pipelines for predictable data
streaming or coarse-grained arrays equipped with
distributed memories for workloads with localized
and parallelizable data accesses.

CONCLUSION
This article presented a high-level view of our model
for a binary translation framework (BTF). We devel-
oped the processing stages of the framework with the
intention of using it as a compilation and research
tool for exploring automated hardware generation
approaches starting from object code (static and
dynamic).

Currently, the BTF can process instruction streams
from the 32-b MicroBlaze, ARMv8, and riscv32imaf
ISAs. We have demonstrated the detection and
extraction of repeating instruction patterns of several
types and respective metrics on their characteristics.
The latent acceleration potential for the analyzed ISAs
is demonstrated. We are currently capable of generat-
ing ASTs from the instructions within these patterns,
which are used to generate HDL code.

Future development includes detection of more
complex segment types, optimizations such as
removal of load/store operations based on memory
accesses analysis, generation of test benches for the
output HDL, and progression towards integration,
deployment, and testing.
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