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Abstract
This paper addresses a permutation flowshop scheduling problem, with the objec-
tive of minimizing total weighted squared tardiness. The focus is on providing effi-
cient procedures that can quickly solve medium or even large instances. Within 
this context, we first present multiple dispatching heuristics. These include general 
rules suited to various due date-related environments, heuristics developed for the 
problem with a linear objective function, and procedures that are suitably adapted 
to take the squared objective into account. Then, we describe several improvement 
procedures, which use one or more of three techniques. These procedures are used 
to improve the solution obtained by the best dispatching rule. Computational results 
show that the quadratic rules greatly outperform the linear counterparts, and that 
one of the quadratic rules is the overall best performing dispatching heuristic. The 
computational tests also show that all procedures significantly improve upon the ini-
tial solution. The non-dominated procedures, when considering both solution quality 
and runtime, are identified. The best dispatching rule, and two of the non-dominated 
improvement procedures, are quite efficient, and can be applied to even very large-
sized problems. The remaining non-dominated improvement method can provide 
somewhat higher quality solutions, but it may need excessive time for extremely 
large instances.
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1 Introduction

In this paper, we consider a permutation flowshop scheduling problem. In a 
flowshop production environment, jobs are processed on a set of machines, and 
all jobs follow the same route through the machines. A permutation flowshop 
is considered, meaning that the processing order of the jobs is the same for all 
machines.

Each job has a weight, which reflects the importance of the job, or of the associ-
ated customer. The date by which the job should be completed is called the due date. 
A job is considered tardy if completed after its due date, and its tardiness is simply 
the amount of time by which it is completed late. The objective is to find a sequence 
of the jobs that minimizes the sum of the weighted squared tardiness values.

The flowshop production environment is quite common in practice, and has been 
often studied. The permutation assumption is usually made, since it not only reduces 
the computational effort, but is also realistic, since in practice it is often difficult, or 
even impossible, to change the order of the jobs between machines. When dealing 
with customer due dates, the tardiness measure is also widely used, since delays can 
lead to contractual penalties and/or loss of customers or goodwill.

In this paper, we consider a squared tardiness objective function. A large num-
ber of studies, however, have considered a linear tardiness performance measure. 
Additionally, the minimization of the maximum tardiness among all jobs is also a 
common tardiness-related objective. All of these tardiness measures are relevant, 
and none is inherently superior to the others. The choice of which one to use in 
a practical setting depends on how tardiness affects customers, as well as on the 
preferences or priorities of the decision maker.

When maximum tardiness is used, the focus is on the largest amount of tardi-
ness that may result for a customer. However, any costs incurred by other tardy 
jobs are not considered. If linear tardiness is chosen, all jobs are taken into 
account. However, the distribution of the tardiness among jobs is not considered, 
so having two jobs that are both four time units tardy is equivalent to having one 
job seven time units tardy and another job one time unit tardy. With squared tar-
diness, large values of tardiness are more harshly penalized. Therefore, schedules 
in which one or only a few jobs contribute the majority of the cost are avoided, as 
described in more detail in Sun et al. (1999).

Also, while in linear tardiness the incremental penalty of a job remains con-
stant as tardiness increases, in squared tardiness the incremental penalty increases 
with tardiness, as pointed out by Hoitomt et  al. (1990) and Thomalla (2001). 
This is in agreement with the loss function proposed by Taguchi (1986), in which 
the dissatisfaction of a customer grows quadratically with tardiness. Therefore, 
an objective based on squared tardiness is appropriate for real settings. Indeed, 
scheduling methodologies developed by Hoitomt et al. (1990) and Luh and Hoi-
tomt (1993) considered a squared tardiness objective, and were actually put in 
practice at a Pratt and Whitney plant.

In this paper, we focus on efficient procedures, capable of quickly solving 
even medium or large instances. In this context, several dispatching heuristics 
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are first presented. Dispatching rules are widely used in practice, and most 
real scheduling systems are either based on them, or at least use them to some 
degree. They are also quite fast, and are often the only approach capable of pro-
viding solutions for large instances in reasonable time. Furthermore, dispatching 
rules are frequently used by other procedures; for instance, they are often used 
in metaheuristics, to generate an initial solution.

We include three types of dispatching rules. First, we consider general dis-
patching rules, that is, rules that have been used for multiple problems with 
due dates, in various production settings. Second, we also consider rules that 
were developed for the linear tardiness problem. Finally, we additionally include 
quadratic rules, that essentially modify the linear rules in order to take into 
account the squared tardiness objective.

Most of the dispatching rules were previously used in single machine or par-
allel machines settings. Thus, they are suitably adapted in order to be applied to 
a flowshop environment. Also, some procedures require a user-defined parame-
ter. Experiments were performed to determine an adequate value for that param-
eter, under the permutation flowshop setting.

Then, we present several improvement procedures, which are applied to the 
best of the dispatching rules. These improvement methods use one or more of 
three techniques, namely: multiple sequence dispatching, the well-known NEH 
procedure (Nawaz et al. 1983), and local search with an insertions neighborhood. 
To the best of our knowledge, multiple sequence dispatching was previously 
used only in the context of the EDD (earliest due date) rule. In this paper, we 
describe its application to a different, and more complex, dispatching heuristic.

The various improvement procedures are analyzed, in order to determine the 
ones which are non-dominated, when taking into account both solution quality 
and computation time. Therefore, the computational results in this paper provide 
a guide to decision makers on the method of choice (dispatching rule and/or dif-
ferent improvement procedures), given the time available to generate a solution.

The remainder of the paper is organized as follows. In Sect.  2, the problem 
is formally described, and the relevant literature is reviewed. The dispatching 
rules are presented in Sect. 3. First, some notation is introduced. Then, the gen-
eral, linear and quadratic rules are presented. A lower bound on the makespan, 
required by some of the heuristics, is also described.

The improvement procedures are addressed in Sect. 4. The multiple sequence 
version of the best dispatching rules is presented first. Then, the NEH and inser-
tions local search procedures are described. Additional methods, which combine 
two or more of the multiple sequence, NEH and insertions procedures, are then 
presented.

Section 5 contains the computational results. First, we describe the problem 
set, performance measures and preliminary parameter adjustment tests. The dis-
patching rules are then compared, followed by an analysis of the improvement 
procedures. The non-dominated procedures are also compared with optimal 
solutions for small instances. Finally, Sect. 6 concludes the paper.
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2  Problem formulation and literature review

Formally, the problem considered in this paper can be stated as follows. 
A set N = {1, 2,… , n} of n independent jobs have to be processed on a set 
M = {1, 2,… ,m} of m machines. All jobs follow the same route through the 
machines, and it is assumed that the processing order of the jobs is the same for 
all machines (permutation flowshop). The machines are continuously available 
from time zero onwards, and preemptions are not allowed.

Job j, j ∈ N  , requires a processing time pij on machine i, i ∈ M  , and has a 
weight wj and a due date dj . Let Cij denote the completion time of job j, j ∈ N 
on machine i, i ∈ M  . Furthermore, let the job sequenced in position j be 
denoted by 

[
j
]
 and recall that C1[0] = 0 , since all machines are available at 

time zero. Then, C1[j] = C1[j−1] + p1[j] and Ck[j] = max
{
Ck−1[j],Ck[j−1]

}
+ pk[j] , 

for k = {2, 3,… ,m} . Finally, for convenience, let the completion time of job 
j , that is, the time at which job j finishes processing on the last machine, 
also be denoted by Cj , so Cj = Cmj.

Given a schedule, the tardiness of job j is defined as Tj = max
{
Cj − dj;0

}
 . The 

objective is then to find a schedule that minimizes the sum of the weighted 
squared tardiness values 

n∑
j=1

wjT
2
j
.

The squared tardiness objective function has been previously studied in vari-
ous production settings. Several papers addressed the single machine problem. 
Approaches include: dominance rules and branch-and-bound procedures incor-
porating these rules (Schaller and Valente 2012), efficient dispatching heuristics 
(Valente and Schaller 2012), and metaheuristics (Gonçalves et  al. 2016). Vari-
ous heuristics have also been proposed for the single machine problem, but with 
release dates and sequence-dependent setups (Sun et al. 1999).

A parallel machines environment has also been addressed. In this context, a 
Lagrangian relaxation procedure was developed and applied to some examples 
from a Pratt and Whitney plant (Hoitomt et  al. 1990; Luh and Hoitomt 1993). 
Furthermore, several efficient heuristics and an improvement procedure were pro-
posed by Schaller and Valente (2018).

Multiple stage problems were addressed by Luh and Hoitomt (1993), Thomalla 
(2001) and Dalfard et al. (2011). In both Luh and Hoitomt (1993) and Thomalla 
(2001), a Lagrangian relaxation procedure is developed for a job shop environ-
ment. Dalfard et al. (2011) consider a three-stage problem, with parallel machines 
with sequence-dependent setup times at the first stage, transportation times in a 
second stage, and assembly of components into a final product in the third stage. 
A hybrid genetic algorithm is proposed to minimize the weighted sum of four 
objectives, one of which is weighted squared tardiness.

Therefore, the literature on multiple stage problems with a squared tardiness 
objective is limited and, to the best of our knowledge, has never addressed the 
specific problem we consider. Furthermore, the literature on multiple stage envi-
ronments considers job shops, and multi-stage scenarios with an assembly stage, 
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which are quite different in nature from a permutation flowshop. Thus, this paper 
addresses a gap in the existing literature.

The flowshop is a common manufacturing environment, and as such has been 
studied in a quite large number of papers, as illustrated by the multiple reviews 
that have been conducted (Framinan et al. 2004; Neufeld et al. 2016; Reza Hejazi 
and Saghafian 2005; Ruiz and Maroto 2005; Sun et al. 2011). The minimization 
of the makespan is likely the most addressed objective function. A comprehen-
sive review and evaluation of both constructive procedures and metaheuristics 
for the makespan objective is provided by Fernandez-Viagas et al. (2017). The 
total completion time objective has also been considered in many papers. In 
what regards this objective, an overview and comparison of multiple algorithms 
is given in Fernandez-Viagas and Framinan (2015b), while Fernandez-Viagas 
et  al. (2016) perform a computational evaluation of constructive and improve-
ment procedures for a flowshop with the blocking constraint.

Multiple papers have considered the permutation flowshop with a total lin-
ear unweighted tardiness objective. A review and evaluation of heuristics and 
metaheuristics is given in Vallada et  al. (2008). Genetic algorithms with path 
relinking are proposed by Vallada and Ruiz (2010), and compared with state-
of-the-art methods. A comparison of procedures based on the NEH heuristic 
(Nawaz et  al. 1983) is conducted in Fernandez-Viagas and Framinan (2015a). 
A hybrid iterated greedy procedure is proposed in Karabulut (2016). Iterated-
greedy-based algorithms with a beam search initialization were developed by 
Fernandez-Viagas et al. (2018), and a comprehensive computational comparison 
was performed against existing procedures.

3  Dispatching rules

3.1  Notation

In the following, let S be the current partial schedule, that is, the sequence of 
jobs that are scheduled so far. The completion time of job j ∉ S , if j is scheduled 
at the end of sequence S , is denoted by Cj(S) . Also, let sj(S) be the slack of job 
j ∉ S if j is scheduled at the end of S , where sj(S) = dj − Cj(S).

The current availability time of machine i under schedule S will be repre-
sented by ti(S) . For convenience, the current availability time on the first 
machine will also be denoted by t  , so t = t1(S).

Let Pj(S) = Cj(S) − t be the total time (total processing time plus any eventual 
forced idle time) between the start and finish of job j ∉ S if j is scheduled at the 
end of sequence S . The average, over all jobs j ∉ S , of the Pj(S) values will be 
denoted by P(S) . Finally, let Tj(S) = max

{
Cj(S) − dj;0

}
 be the tardiness of job 

j ∉ S if j is scheduled at the end of sequence S.
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3.2  General rules

Several general rules are considered because they have been previously used for 
multiple problems with due date related criteria, under multiple production set-
tings. We do not expect these rules to match the performance of the other, more 
sophisticated, dispatching procedures. Nevertheless, their inclusion is still war-
ranted, since they are widely used in a variety of environments, and usually con-
sidered for comparison purposes.

The earliest due date (EDD) (Jackson 1955) is one of the first and most well-
known sequencing rules, and has been extensively applied to scheduling models 
with due dates. This rule schedules the jobs in non-decreasing order of their due 
dates dj . Equivalently, the EDD rule selects, at each iteration, the job with the 
largest value of the priority index EDDj(S) = −dj.

The earliest weighted due date (EWDD) rule (Ruiz and Stützle 2008) sched-
ules the jobs in non-decreasing order of their weighted due dates dj∕wj , thereby 
expanding the EDD heuristic to take into account job-specific weights. Equiva-
lently, the EWDD rule selects, at each iteration, the job with the largest value of 
the priority index EWDDj(S) = wj∕dj.

In the modified due date (MDD) heuristic (Baker and Ber-
trand 1982; Vepsalainen and Morton 1987), at each iteration we 
select the job with the minimum value of the modified due date 
max

{
dj,Cj(S)

}
= max

{
dj, t + Pj(S)

}
= max

{
dj − t,Pj(S)

}
 . Alternatively, this 

rule selects, at each iteration, the job with the largest value of the priority index 
MDDj(S):

The minimum slack (SLK) rule (Panwalkar and Iskander 1977; Vepsalainen and 
Morton 1987) chooses, at each iteration, the job with the minimum slack sj(S) or, 
equivalently, the job with the largest value of the priority index SLKj(S) = −sj(S) . 
The minimum slack per required time (SLK/P) (Panwalkar and Iskander 1977; 
Vepsalainen and Morton 1987), on the other hand, selects, at each iteration, the job 
with the minimum value of the ratio between the slack and the total required time 
sj(S)∕Pj(S) . Alternatively, it chooses the job with the largest value of the priority 
index SLK∕Pj(S) = −

(
sj(S)∕Pj(S)

)
.

3.3  Rules for the linear objective function

We consider a simple but commonly used procedure, as well as more sophisti-
cated rules, including those shown to have performed best in the single machine 
linear weighted tardiness problem. Again, it is expected that these rules will be 
outperformed by the quadratic procedures, which specifically take the squared 
objective function into account. However, the inclusion of the linear rules makes 
it possible to evaluate how much of an improvement is made possible by taking 

MDDj(S) =

{
1∕Pj(S) if sj(S) ≤ 0

1∕
(
dj − t

)
otherwise

.
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the quadratic nature of the problem into consideration, instead of simply using 
procedures developed for the linear setting.

Most of these procedures were originally developed for a single machine envi-
ronment. Some of them, however, have also been applied to other production set-
tings. In this subsection, we explicitly show how the priority indexes of these 
procedures are adjusted in order to take the flowshop environment into account.

The weighted shortest processing time (WSPT) rule (Smith 1956) schedules 
the jobs in non-increasing order of the ratio wj∕Pj(S) or, equivalently, chooses, at 
each iteration, the job with the highest priority index WSPTj(S) = wj∕Pj(S) . This 
rule provides an optimal sequence for the single machine linear problem if all 
jobs are necessarily tardy.

The weighted minimum slack/shortest processing time (WSLK_SPT) rule 
(Osman et al. 2009) selects, at each iteration, the job with the minimum value of 
the weighted slack or weighted processing time, as appropriate, that is, it selects 
the job with the minimum ratio max

{
sj(S),Pj(S)

}
∕wj . Equivalently, the WSLK_

SPT rule selects, at each iteration, the job with the largest value of the priority 
index WSLK_SPTj(S):

The weighted modified due date (WMDD) (Kanet and Li 2004), Alidaee–Ram-
akrishnan (AR) (Alidaee and Ramakrishnan 1996) and Apparent Tardiness Cost 
(ATC) (Vepsalainen and Morton 1987) heuristics were developed for the single 
machine linear problem, and several computational studies show that they pro-
vide the best performance among the efficient dispatching rules available for that 
problem (Alidaee and Ramakrishnan 1996; Kanet and Li 2004; Volgenant and 
Teerhuis 1999). These heuristics select, at each iteration, the job with the largest 
value of the following priority indexes:

The parameter k provides the ATC and AR heuristics with a look ahead capa-
bility. Indeed, and as described by Vepsalainen and Morton (1987), the parameter 
k is related with the number of competing critical jobs. i.e. jobs which are close 
to becoming tardy. In this paper, we consider a job to be critical if its slack is 

WSLK_SPTj(S) =

{
wj∕Pj(S) if sj(S) ≤ Pj(S)

wj∕sj(S) otherwise
.

WMDDj(S) =

{
wj∕Pj(S) if sj(S) ≤ 0

wj∕
(
dj − t

)
otherwise

,

ARj(S) =

{
wj∕Pj(S) if sj(S) ≤ 0(
wj∕Pj(S)

)
∗
[
kP(S)∕

(
kP(S) + sj(S)

)]
otherwise

and

ATCj(S) =

{
wj∕Pj(S) if sj(S) ≤ 0(
wj∕Pj(S)

)
∗ exp

(
−sj(S)∕kP(S)

)
otherwise

.
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positive, but less than or equal to a value slk_thr , which stands for “slack thresh-
old”. Thus, a job is considered critical if 0 < sj(S) ≤ slk_thr.

At each iteration, k is then set equal to the number of critical jobs. If, at a given itera-
tion, no job is critical according to our criterion, k is then set equal to 0.5, since this is 
the lowest value that has been usually considered for this parameter (Alidaee and Ram-
akrishnan 1996; Holsenback et al. 1999).

The slack threshold is meant to represent a value such that slacks which are greater 
are considered large, so the job is not close to becoming tardy, and is therefore not criti-
cal. As such, we calculate the slk_thr parameter as follows. At each iteration, the slack 
threshold is set equal to slk_thr = v ×

(
CLB
max

(S) − t
)
 , where CLB

max
(S) is a lower bound 

on the completion time of the last job on the final machine (makespan), given the cur-
rent schedule S , and 0 ≤ v ≤ 1 is a user–defined parameter. The calculation of the lower 
bound on the makespan will be described at the end of this section.

3.4  Rules for the quadratic objective function

The linear rules presented in the previous subsection have been adapted to a weighted 
quadratic tardiness objective, and tested under a single machine environment. We will 
show how their priority indexes are adjusted in order to take the flowshop setting into 
account. Since the quadratic rules specifically consider the squared nature of the objec-
tive function, it is expected that they will outperform the previous procedures.

The quadratic weighted shortest processing time (QWSPT) rule (Valente and Alves 
2008) is an adaptation of the WSPT heuristic to a quadratic setting. At each iteration, 
the QWSPT rule selects the job with the largest value of the priority index 
QWSPTj(S) =

(
wj∕Pj(S)

)
∗
(
P(S) + 2Tj(S)

)
.

The WSLK_SPT rule can be adapted to a quadratic setting by essentially replac-
ing, in its priority index, the WSPT component by a QWSPT expression. The result-
ing quadratic weighted minimum slack/shortest processing time (QWSLK_SPT) 
rule chooses, at each iteration, the job with the largest value of the priority index 
QWSLK_SPTj(S):

The WMDD, AR and ATC rules have been adapted to a quadratic setting (Valente 
and Schaller 2012) by, once more, replacing WSPT by QWSPT in their priority 
indexes. The resulting QWMDD, QAR and QATC heuristics select, at each iteration, 
the job with the largest value of the priority indexes:

QWSLK_SPTj(S) =

{(
wj∕Pj(S)

)
∗
(
P(S) + 2Tj(S)

)
if sj(S) ≤ Pj(S)(

wj∕sj(S)
)
∗ P(S) otherwise

.

QWMDDj(S) =

{(
wj∕Pj(S)

)
∗
(
P(S) + 2Tj(S)

)
if sj(S) ≤ 0(

wj∕
(
dj − t

))
∗ P(S) otherwise

,
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A list of all the considered procedures (general, linear and quadratic), along 
with their corresponding priority index and references, is provided in Table 1.

3.5  Lower bound on the makespan

The AR, ATC, QAR and QATC heuristics use the look ahead parameter k in their 
priority indexes. In order to set the value of k at each iteration we require CLB

max
(S) , 

a lower bound on the completion time of the last job on the final machine, given 
the current schedule S.

This lower bound on the makespan is calculated using an adaptation of the 
procedure proposed by Taillard (1993). Indeed, the lower bound given in Tail-
lard (1993) assumes that all machines are available at time zero. Since a lower 
bound must here be calculated at each iteration, the procedure was adapted to 
deal with non-zero machine availability times, which will necessarily occur as 
jobs are scheduled.

The lower bound CLB
max

(S) is then calculated as follows. Let 

Bef_Mi(S) = minj∉S

�
t +

i−1∑
k=1

pkj

�
 . Then, Bef_Mi(S) is a lower bound on the time 

needed before reaching machine i , since it considers the availability time on the first 
machine, plus the minimum, over all unscheduled jobs, of the sum of the processing 
times on the machines that precede i . Also let TPT_Mi(S) =

∑
j∉S

pij ; thus, TPT_Mi(S) 

is simply the total processing time required by all unscheduled jobs on machine i . 

Furthermore, let Aft_Mi(S) = minj∉S

�
m∑

k=i+1

pkj

�
 . Then, Aft_Mi(S) is a lower bound 

on the time required after machine i , since it considers the minimum, over all 
unscheduled jobs, of the sum of the processing times on the machines that follow i.

For each machine i , a lower bound on the makespan can then be calculated 
as CLB

max
_Mi(S) = max

(
Bef_Mi(S), ti

)
+ TPT_Mi(S) + Aft_Mi(S) . In the origi-

nal lower bound presented in Taillard (1993), all the machine availability times 
were assumed to be zero, since the lower bound was being calculated for all jobs. 

QARj(S) =

⎧
⎪⎨⎪⎩

�
wj∕Pj(S)

�
∗
�
P(S) + 2Tj(S)

�
if sj(S) ≤ 0

�
wj∕Pj(S)

�
∗ P(S) ∗

�
kP(S)∕

�
kP(S) + sj(S)

��
otherwise

and

QATCj(S) =

⎧
⎪⎨⎪⎩

�
wj∕Pj(S)

�
∗
�
P(S) + 2Tj(S)

�
if sj(S) ≤ 0

�
wj∕Pj(S)

�
∗ P(S) ∗ exp

�
−sj(S)∕kP(S)

�
otherwise

.
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Given a partial schedule, and/or machine availability times which differ from 
zero, two adaptations were then required.

The first is to include the availability time of the first machine in Bef_Mi(S) . The 
second is in using the maximum between the lower bound on the time needed before 
reaching machine i and the availability time of this machine: max

(
Bef_Mi(S), ti

)
 . 

The lower bound on the makespan CLB
max

(S) is then simply equal to the maximum of 
all machine lower bounds, that is, CLB

max
(S) = maxi∈M

(
CLB
max

_Mi(S)
)
.

4  Improvement procedures

4.1  Multiple sequence dispatching rule

The first improvement procedure is a method that modifies a dispatching heuris-
tic so that it generates multiple sequences, instead of a single one. This method, as 
well as those described in the next subsections, was only applied to the QATC rule, 
since this was the best performing of the heuristic procedures. We will denote this 
method by MS, standing for multiple sequences. The multiple sequence version of 
the QATC rule builds m sequences, one for each machine and using data related to 
that machine, and selects the best of those sequences.

The MS version is inspired by the earliest apportioned due date (EADD) heu-
ristic developed by Hasija and Rajendran (2004). Indeed, this heuristic first calcu-
lates a due date for each job on each machine. Then, a sequence is obtained for each 
machine i by scheduling the jobs in non-decreasing order of their due dates on that 
machine. Finally, the best of those m sequences is then selected.

The multiple sequence version of the QATC heuristic also uses the apportioned 
due dates of the EADD procedure. Additional modifications of the QATC rule 
are, however, required in order to develop a multiple sequence version. Indeed, the 
EADD heuristic is a multiple sequence version of the EDD rule, which relies solely 
on a job’s due date. The QATC priority index, on other hand, uses additional infor-
mation. Thus, more extensive changes are needed in order to achieve a procedure 
that adequately generates multiple sequences, one for each machine and using data 
related to that machine.

The apportioned due date of job j on machine i , denoted by dij , is obtained pre-
cisely by apportioning the original due date according to the accumulated sum of the 
processing times on the various machines. That is, dij is calculated by multiplying 
dj by the ratio between the sum of the processing times of job j up to and including 
machine i and the sum of the processing times of job j on all machines. Thus, on the 
final machine the apportioned due date will be equal to the original due date, that is 
dmj = dj . Formally, the due dates dij are then calculated as:

and

d1j =
(
dj × p1j

)
∕

m∑
i=1

pij
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In order to present the MS version of QATC, some notation must first be 
defined. Let Cij(S) be the completion time of job j ∉ S , on machine i , if j is 
scheduled at the end of sequence S . Also, let sij(S) = dij − Cij(S) be the slack of 
job j ∉ S , on machine i , if j is scheduled at the end of sequence S . Therefore, the 
slack of a certain job on a given machine is obtained by using the correspond-
ing apportioned due date and completion time. In the multiple sequence version 
of QATC, the general slack sj(S) is then replaced, in the priority index, by the 
machine–dependent slack sij(S).

Similarly, let Tij(S) = max
{
Cij(S) − dij;0

}
 be the tardiness of job j ∉ S , on 

machine i , if j is scheduled at the end of sequence S . Again, the machine–depend-
ent tardiness Tij(S) is used in the priority index of the multiple sequence QATC, 
instead of the general tardiness Tj(S).

Let CLB
max_Mi(S) be a lower bound on the completion time of the last job on 

machine i (that is, a lower bound on the makespan of machine i ), given the cur-
rent schedule S . The machine makespan lower bound CLB

max_Mi(S) is calculated as 
previously described for the final machine lower bound CLB

max
(S) , with the differ-

ence that, naturally, only the processing times on the machines up to and includ-
ing machine i are considered. Therefore, the lower bound is calculated as if only 
the first i machines existed. The slack threshold parameter is calculated as before, 
with the difference that the machine lower bound CLB

max_Mi(S) replaces the final 
machine lower bound CLB

max
(S) , that is slk_thr = v ×

(
CLB
max_Mi(S) − t

)
.

Let Pij(S) = Cij(S) − t be the total time (total processing time plus any eventual 
forced idle time) between the start of job j ∉ S and its finish on machine i , if j is 
scheduled at the end of sequence S . In the multiple sequence version of QATC, 
the total time between the start and finish of a job Pj(S) is then replaced, in the 
priority index, by the total time up to and including the current machine Pij(S) . 
In the same way, let Pi(S) be the average, over all jobs j ∉ S , of the Pij(S) values. 
Again, Pi(S) takes the place of P(S) in the multiple sequence version.

In short, and when considering machine i , the priority index of the multiple 
sequence procedure is then obtained by replacing sj(S) , Tj(S) , Pj(S) and P(S) by 
their machine–specific counterparts sij(S) , Tij(S) , Pij(S) and Pi(S) , respectively. 
The priority index of the multiple sequence version of QATC is then equal to:

We remark that procedure MS will generate a sequence that is at least as 
good as the one obtained by the original (single sequence) QATC heuristic. 
This is due to the fact that the solution obtained for the last machine is the 

dij = di−1,j +
(
dj × pij

)
∕

m∑
k=1

pkj, i = 2, 3,… ,m.

QATCij(S) =

⎧⎪⎨⎪⎩

�
wj∕Pij(S)

�
∗
�
Pi(S) + 2Tij(S)

�
if sij(S) ≤ 0

�
wj∕Pij(S)

�
∗ Pi(S) ∗ exp

�
−sij(S)∕kPi(S)

�
otherwise
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same as the one generated by the original QATC rule. Indeed, and for the last 
machine m , we have smj(S) = sj(S) , Tmj(S) = Tj(S) , Pmj(S) = Pj(S) , Pm(S) = P(S) 
and CLB

max_Mm(S) = CLB
max(S).

4.2  NEH insertion procedure

The well-known NEH method, developed by Nawaz et al. (1983), is an insertion 
procedure that requires an initial sequence or list of the jobs. If the NEH method 
is applied alone, or when it comes first in a combined improvement procedure, 
this initial sequence or list is simply the solution provided by the QATC rule. 
When NEH is applied after another method in a combined procedure, the initial 
sequence is the one generated by the previous improvement method.

Given the initial sequence, an insertion procedure is then used to create another 
sequence. During the insertion phase, the jobs are considered in the order in which 
they appear in the initial sequence or list. At each step, the currently considered job 
is tentatively inserted in each possible position of the current partial sequence. The 
job is then inserted in the position which provides the best objective function value.

The importance of using a tie–breaking method in the NEH procedure in the con-
text of the total tardiness objective has been analyzed by Fernandez-Viagas and Frami-
nan (2015a). This work showed that an appropriate tie–breaking method could lead to 
substantially better results. Indeed, and particularly in the first iterations and/or when 
the tardiness factor of a problem is low, multiple insertions positions may lead to the 
same lowest objective function value of 0. When this is the case, a good tie–breaking 
method is essential in enhancing the performance of the NEH procedure.

The tie–breaking methods proposed in Fernandez-Viagas and Framinan (2015a), 
though developed for the total tardiness problem, are still applicable to our weighted 
squared problem, in which the issue of adequately dealing with multiple objective 
function values of 0 is even more pressing, given our objective function includes 
squared tardiness. Therefore, our implementation of the NEH procedure uses the 
tie–breaking method which performed best among those proposed in Fernandez-
Viagas and Framinan (2015a), and which was denoted by Total Idle Time IT1.

In short, when multiple insertion positions lead to the same lowest objective func-
tion value, the tie is broken by selecting the position with the minimum value of the 
total idle time over all machines. In the Total Idle Time IT1 method, the definition 
of idle time includes front delays (idle time before the first job starts on a machine) 
but excludes back delays (the time between the finish time on a machine and the 
overall finish time). For further details concerning IT1, please see Fernandez-Viagas 
and Framinan (2015a).

Also, in our implementation the sequence resulting from the NEH procedure 
is kept if it is not worse than the initial sequence. Otherwise, the (better) initial 
sequence is retained. This choice was motivated by some preliminary tests which 
showed that the NEH method could lead to a final schedule that was worse than the 
initial sequence. Though this behavior was infrequent, it was nevertheless decided to 
keep the best of the two sequences.
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4.3  Insertions local search

A third improvement method consists in a local search procedure, using the inser-
tions neighborhood, and a first-improve strategy. Given that an insertions neighbor-
hood is used, this procedure will be denoted by INS.

In the insertions neighborhood, a move consists in removing one job from its cur-
rent position, and inserting it in another position. In the INS procedure, all possi-
ble insertions are considered. An improving insertion is performed whenever it is 
detected (first-improve). This is repeated until no improving insertion is found.

4.4  Combined improvement procedures

We have considered not only the standalone application of each of the MS, NEH 
and INS methods, but also several other procedures which combine two of more 
of them, in order to see if a better performance could be obtained. In total, we con-
sidered four combined improvement procedures, denoted by MS+NEH, MS+INS, 
NEH+INS and MS+NEH+INS. In these four combined procedures, the improve-
ment methods are applied in succession. So, and for instance, NEH+INS consists in 
applying NEH, followed by INS.

The four proposed combined procedures essentially correspond to the various 
combinations of the three standalone methods, when they are used in increasing 
order of their search space. Indeed, INS can be more disruptive, and generate more 
alternatives, than NEH, which is itself more general than MS.

5  Computational results

5.1  Problem set

The computational tests were performed on a set of randomly generated problems, 
with various sizes in terms of both the number of jobs and the number of machines, 
and for multiple combinations of due date tightness and range. The method chosen 
to generate the test problems is quite common, and in line with both initial tardiness 
papers (Ow and Morton 1988; Potts and van Wassenhove 1991), and recent works 
on permutation flowshop with a tardiness criterion (Vallada and Ruiz 2010; Vallada 
et al. 2008). More specifically, the problems were generated as follows.

In what regards the number of jobs, the following sizes were considered: 25, 50, 
75, 100, 300 and 500. For the machines, we considered problems with 5, 10 and 
20 machines. For each job j , the processing times on the various machines pij were 
generated from a uniform distribution over the integers 1 to 100, and the weight wj 
was obtained using a uniform distribution [1, 10].

Finally, for each job j , the due date dj was obtained using a uniform distribution [
MS(1 − T − R∕2),MS(1 − T + R∕2)

]
 , where MS is an estimate of the makespan cal-

culated using the lower bound proposed in Taillard (1993), T  is the tardiness factor 
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and R is the range of due dates. Both the tardiness factor and the range of due dates 
parameters were set at 0.2, 0.4, 0.6, 0.8 and 1.0.

For each combination of n , m , T  and R , 50 instances were randomly generated. 
Therefore, a total of 1250 instances were generated for each problem size, where the 
size is given by both the number of jobs and the number of machines. The dataset 
is available from the corresponding author, on reasonable request. The procedures 
were coded in C++, compiled for 64–bit Windows, and executed on a personal 
computer with a Windows 7 64–bit operating system, an Intel Core i7 4770 3.4G 
processor and 16 GB RAM.

5.2  Performance measures

The analysis and comparison of the dispatching rules will mostly rely on a measure 
of performance denoted by relative improvement versus the worst result (ivw). This 
measure was previously used by Valente and Schaller (2012) for the single machine 
scheduling problem with a weighted squared tardiness objective.

The relative improvement versus the worst result (ivw), for heuristic Hi , when 
evaluated with heuristics H1 , H2,…,Hz , on a given instance, is calculated as follows. 
Let ofvworst be the worst objective function value obtained by all the z heuristic pro-
cedures. If ofvworst = 0 , then the ivw for each heuristic Hi is set to 0; otherwise, ivw 
is calculated as 

(
ofvworst − ofvHi

)
∕ofvworst ∗ 100 , where ofvHi

 is the objective function 
value of heuristic Hi.

This measurement quantifies the improvement provided by a certain heuristic 
over the worst result provided by all of the considered procedures. As such, higher 
ivw values are indicative of a better performance.

The particular nature of the squared weighted tardiness problem motivated 
the use of the relative improvement versus the worst result performance measure, 
instead of more usual measures, such as the relative improvement over another heu-
ristic, or the deviation from the best heuristic result. Indeed, as and also described in 
Valente and Schaller (2012), when due dates are relatively loose, or there is a wide 
range of due dates, a schedule with no tardy jobs is easy to find, with a resulting 
objective function value of 0.

When one or more heuristics find an optimal solution with an objective function 
value of 0, measures such as the deviation from the best heuristic result cannot be 
used, since they would lead to a division by 0. The relative improvement versus the 
worst result avoids this problem. Indeed, the only situation in which the denomina-
tor would be 0 is if all dispatching rules find an optimal solution with an objective 
function value equal to 0. In this case, all procedures were optimal and we have 
ofvworst = 0 . As mentioned above, when this occurs the relative improvement versus 
the worst is set at 0 for all heuristics, and division by 0 does not occur.

The number of times a dispatching rule provides a result that is better (btr), equal 
(eql) or worse (wrs) than another procedure will also be used as a performance 
measure. The computational time (in seconds) required by the dispatching rules is 
also considered.
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The comparison of the improvement procedures will rely on three performance 
measures. The first is the relative improvement a procedure provides over the QATC 
dispatching rule, denoted by imp.

The relative improvement over the QATC rule (imp), for improvement procedure 
IP , on a given instance, is calculated as follows. Let ofvQATC and ofvIP be the objec-
tive function values of the schedules generated by the QATC rule and the improve-
ment procedure, respectively. If ofvQATC = 0 , then the relative improvement imp is 
set to 0; otherwise, imp is calculated as 

(
ofvQATC − ofvIP

)
∕ofvQATC ∗ 100.

The number of times an improvement procedure provides a result that is better 
(btr) than that of the QATC rule is also used as a performance measure. The compu-
tational time (in seconds) required to run the improvement procedures, including the 
initial application of the QATC rule when appropriate, is also considered.

The comparison with the optimal results will involve two performance meas-
ures. One is simply the number of times a procedure provides the optimal solution, 
denoted by n_opt. The other measure is the relative improvement provided by the 
optimum objective function value over a heuristic procedure, previously used in 
Valente and Schaller (2012) for the single machine problem, denoted by ivh. This 
measure was chosen over the relative deviation from the optimum due to the same 
reason that motivated the use of the ivw measure.

The relative improvement provided by the optimum objective function value over 
heuristic procedure H , on a given instance, is calculated as follows. Let ofvOPT be the 
optimum objective function value, while ofvH is the objective function value of the 
schedule generated by heuristic procedure H , respectively. When ofvH = 0 , the rela-
tive improvement versus the heuristic procedure is set at 0. Otherwise, the relative 
improvement provided by the optimum is calculated as 

(
ofvH − ofvOPT

)
∕ofvH ∗ 100.

5.3  Parameter adjustment tests

The AR, ATC, QAR and QATC heuristics require a value for the parameter v , 
0 ≤ v ≤ 1 . Preliminary tests were then performed in order to find a good value for v . 
In order to avoid possible overfitting, these tests were performed on a separate, and 
smaller, test set. This test set was generated in the same way as described for the full 
problem set. However, only five instances were generated for each combination of n , 
m , T  and R.

The values {0.00, 0.05, 0.10, 0.15, 0.20,… , 0.90, 0.95, 1.00} were considered 
for the parameter v . The AR, ATC, QAR and QATC dispatching rules were then 
applied to the instances on the test set, and the objective function value was calcu-
lated for each considered value. These results were then analyzed, and we selected a 
value that provided good performance across all instance types. The value of v was 
then set at 0.00 for all four dispatching rules.

Setting v equal to 0.00 means that the slack threshold slk_thr will also 
be equal to 0, since at each iteration the slack threshold is set equal to 
slk_thr = v ×

(
CLB
max

(S) − t
)
 . Therefore, no job will ever be considered critical, since 

our criterion states that a job is critical if 0 < sj(S) ≤ slk_thr , and we will always 
have slk_thr equal to 0. As previously described, if no job is critical according to 
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our criterion, the parameter k in the AR, ATC, QAR and QATC rules is set at 0.5. 
Therefore, a value of 0.00 for v means that the parameter k will always be equal to 
0.5.

This result is quite different from those obtained in previous experiments in the 
single machine environment. Indeed, Valente and Schaller (2012) showed that, in 
the single machine problem, the most adequate value of v was 0.1 and 0.3, for the 
QAR and QATC rules, respectively. This highlights the importance of performing 
parameter adjustment tests for each production environment, instead of relying on 
values obtained for other settings. Indeed, if the single machine values for v were 
used, the performance of the QAR and QATC rules would have suffered.

5.4  Comparison of the dispatching rules

We first compare the linear dispatching rules (i.e. the rules developed for the lin-
ear weighted tardiness problem) with their quadratic counterparts (that is, their 
adaptations to the quadratic objective). Table 2 provides, for each pair of heuristics 
(quadratic and its linear equivalent), the mean ivw of each heuristic. This measure is 
denoted as ivw_q for the quadratic heuristic and ivw_l for the associated linear heu-
ristic. The table also provides the number of instances in which the quadratic rule 
was better (btr), equal (eql) or worse (wrs) than its corresponding linear rule. The 
overall average (average) across all instances is also given.

Since Table 2 aims at directly comparing each quadratic rule with its associated 
linear rule, the values given in this table are calculated separately for each pair of 
quadratic procedure and corresponding linear counterpart. Thus, and as an example, 
in the comparison of QWSPT with WSPT, ofvworst is the worst result among these 
two procedures.

The results in Table 2 clearly show that the quadratic dispatching rules signifi-
cantly outperform their linear counterparts. Indeed, for the larger instances the mean 
ivw is between about 20 and 40% for the quadratic procedures, and close to 0 for 
the linear heuristics. Also, the quadratic rules provide better results for a quite large 
number of instances and, again for the larger problem sizes, are rarely worse.

We performed tests to determine if the differences between each quadratic rule 
and its linear counterpart are statistically significant. Since the heuristics were 
applied to the same instances, a paired-samples test can be conducted. The non-par-
ametric Wilcoxon signed-rank test was selected, since the assumptions of the paired-
samples t test were not all met.

The test was applied to each pair of heuristics, and for each combination of the 
number of jobs n and the number of machines m , and the significance level was 
set at 0.05. To take into account, and correct for, the multiple tests that were per-
formed, we applied Holm’s procedure (also known as Holm’s sequential Bonferroni) 
to adjust the significance level.

These tests showed that the differences between the quadratic rules and their 
linear counterparts are statistically significant. Indeed, the hypothesis that quad-
ratic and linear rules have similar performance was always rejected, for each pair of 
procedures.
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Thus, heuristics that specifically take into account the quadratic nature of the 
objective function perform significantly better than their counterparts that were 
designed for a linear problem. As such, the linear dispatching rules will not be con-
sidered again in the remainder of this paper.

As previously mentioned, it was to be expected that the quadratic rules, which 
specifically take the squared nature of the objective function into account, would 
perform better than the linear rules. The results in Table 2, and the statistical tests, 
show that the difference in performance is quite large, and statistically significant. 
This is most relevant from a managerial point of view. Indeed, the results clearly 
show that, when dealing with a quadratic tardiness measure, managers should use a 
rule that is suitably adapted to such a measure, instead of simply relying on proce-
dures developed for a linear problem.

We now compare the general dispatching heuristics and the quadratic rules. 
Table 3 gives the mean ivw of each procedure; ofvworst is now the worst result among 
all the heuristics included in this table. In Table 4, we provide the number of times 
the QATC rule performed better (btr), equal (eql) or worse (wrs) than each of the 
other procedures. In both tables, the overall average (average) across all instances is 
also given.

The results in Table 3 show that, among the general rules, EDD, SLK and SLK/P 
perform better than EWDD and MDD. However, and as expected, the general rules 
are considerably outperformed by the quadratic dispatching heuristics. Once more, 
this result is useful for managers. Though simple and general rules may seem attrac-
tive, their performance is quite inferior to that of the specialized and more sophisti-
cated quadratic procedures.

The QWSPT is inferior to the remaining quadratic rules. Again, this is to be 
expected, since the other quadratic procedures essentially use the QWSPT priority 
when a job is late (or on time), but then adjust this priority value as the slack of the 
job increases.

The overall best performance is provided by the QATC rule, closely followed by 
the QAR procedure. Indeed, the QATC heuristic not only provides the largest mean 
ivw, but also provides better results for a large number of instances.

A test was performed to determine if the differences between the QATC rule and 
each of the other procedures are statistically significant. As before, the non-para-
metric Wilcoxon signed-rank test was selected, and the significance level was set 
at 0.05. Again, this test was applied to each pair of heuristics tested (QATC versus 
each of the other procedures), and for each combination of the number of jobs n 
and the number of machines m . Holm’s procedure was once more used to take into 
account the multiple comparisons.

The tests showed that the differences between the QATC heuristic and the general 
rules (EDD, EWDD, MDD, SLK and SLK/P) were always statistically significant. 
The identical performance hypothesis was also always rejected when comparing 
with the QWSPT and QWSLK_SPT heuristics. In what regards the QWMDD and 
QAR heuristics, the differences were not statistically significant in only about 11% 
and 22% of the cases, respectively. More detailed information about the statistical 
tests, and their results, are available in the electronic supplementary material.
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The results in Tables 3 and 4, and the statistical tests, show that the QATC is the 
best performing dispatching heuristic, with the QAR rule not too far behind. Indeed, 
the results show that the QATC significantly outperforms all the other heuristics, 
with the exception of QAR, for most or all of the instance sizes. The QAR rule is 
not statistically different from QATC in about 22% of the problem sizes, but is still 
significantly outperformed in the remaining instances.

The results concerning the relative performance of the QATC and QAR rules are 
the opposite of those previously obtained for the single machine problem (Valente 
and Schaller 2012). Indeed, in the single machine environment the QAR rule was 
somewhat superior to QATC. This shows the importance of comparing procedures 
for each production environment, instead of simply assuming that the heuristic that 
performed best for another setting will also perform best in a different environment.

The heuristic procedures were all extremely efficient, and therefore a table with 
computational times is omitted, since most would be quite small. For the largest 
problem size (500 jobs and 20 machines), and on average, the general rules required 
less than 0.01 s to solve a problem. The QWSPT, QWSLK_SPT and QWMDD rules 
needed less than 0.02 s, while the QATC and QAR took about 0.04 s.

5.5  Comparison of the improvement procedures

Table 5 provides, for each improvement procedure, the mean relative improvement 
over the QATC rule (imp), as well as the number of times a better result is achieved 
(btr). The overall average (average) across all instances is also given.

The MS method is outperformed by the other improvement procedures. Indeed, 
not only does it provide the lowest relative improvement, but it also finds a better 
result a much lower number of times. The remaining procedures, on the other hand, 
manage to improve the QATC result on nearly all, and in some cases actually all, of 
the test instances.

In what regards the mean relative improvement imp, procedures with and without 
MS are quite close. That is, NEH and MS+NEH provide quite similar imp values, 
as do the pairs INS and MS+INS, and NEH+INS and MS+NEH+INS. The applica-
tion of both NEH and INS provides a slightly higher imp than just using INS. Also, 
the mean relative improvement given by solely applying INS is slightly higher than 
that given by NEH alone.

For the MS procedure, the performance decreases clearly as the number of jobs 
increase. The effect of the number of machines is not as clear. The number of times 
a better solution is reached increases with the number of machines. However, the 
mean relative improvement decreases with the number of machines for the small-
est number of jobs (25), but increases with m for the two largest job sizes (300 and 
400), and increases then decreases for the remaining values of the number of jobs.

In what regards the other improvement procedures, the number of times a bet-
ter solution is found increases with the number of machines. The mean relative 
improvement is usually first increasing, then decreasing, with the number of jobs. 
As the number of machines increases, the switching point seems to increase. That is, 
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the number of jobs at which the mean relative improvement changes from increasing 
to decreasing is higher when there are more machines.

The effect of the number of machines on the mean relative improvement 
depends on the number of jobs. As n increases, the mean relative improvement 
switches from decreasing, to increasing then decreasing, to finally increasing, as 
the number of machines increases. It should be pointed out, however, that the 
mean relative improvement is always quite high. For instance, it is usually higher 
than 40% for the NEH and MS+NEH procedures, and quite often higher than 
50% for the procedures that include INS.

A statistical test was performed to determine if the improvement provided by 
each of the improvement procedures, when compared with the QATC rule, is sta-
tistically significant. The Wilcoxon signed-rank test was selected, with a signifi-
cance level of 0.05.

This test was applied to all pairs consisting of one improvement procedure and 
the QATC rule (e.g., MS vs. QATC, NEH+INS vs. QATC), and for each combi-
nation of number of jobs n and the number of machines m . Holm’s procedure was 
once more used to take into account the multiple comparisons. All these compari-
sons were statistically significant. Thus, all the improvement procedures provide 
results that are significantly better than the QATC rule.

A second statistical test was performed in order to compare the improvement 
procedures among themselves. As usual, we conducted a Wilcoxon signed-rank 
test, with a significance level of 0.05. In this second test, we compared the fol-
lowing eight pairs of procedures: NEH versus MS; INS versus MS; INS versus 
NEH; MS+NEH versus NEH; MS+INS versus INS; NEH+INS versus NEH, 
NEH+INS versus INS and MS+NEH+INS versus NEH+INS. As before, the tests 
are applied for each combination of number of jobs n and the number of machines 
m , and Holm’s procedure is used to take into account the multiple comparisons.

The tests showed that the differences in pairs NEH versus MS, INS versus MS, 
INS versus NEH and NEH+INS versus NEH are, with a single exception, statisti-
cally significant. Therefore, in what concerns the standalone methods, both NEH 
and INS are superior to MS, and INS outperforms NEH. The superiority of INS 
when compared with NEH is again stressed by the fact that NEH+INS is statisti-
cally better than NEH.

Procedure NEH+INS was also always statistically different from INS, so there 
are benefits in applying NEH in addition to INS. On the contrary, there seem to 
be little to no benefits in adding MS to the other methods. Indeed, MS+NEH was 
not statistically different from NEH in about 40% of the cases. Also, only about 
22% and 17% of the cases yielded significant differences in the pairs MS+INS 
versus INS and MS+NEH+INS versus NEH+INS, respectively.

The results of the statistical tests therefore show that, in terms of solution 
quality, the procedures essentially can be divided in the following four ranks (in 
descending order of performance): (1) (MS+)NEH+INS; (2) (MS+)INS; (3) 
(MS+)NEH; (4) MS. Detailed information about these statistical tests, and their 
results, are available in the electronic supplementary material.

Table 6 provides the mean relative improvement over the QATC rule (imp), as 
well as the number of times a better result is achieved (btr), for each combination 
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Table 6  Improvement procedures comparison, for n = 300 and m = 10

T R MM NEH MM+NEH INS

imp btr imp btr imp btr imp btr

0.2 0.2 15.50 41 78.29 50 74.43 50 85.63 50
0.4 2.42 10 94.13 50 93.92 50 99.59 50
0.6 2.78 8 99.79 50 99.69 50 100.00 50
0.8 0.00 0 80.00 40 80.00 40 80.00 40
1.0 0.00 0 14.00 7 14.00 7 14.00 7

0.4 0.2 8.59 39 51.46 50 48.46 50 54.89 50
0.4 3.98 25 59.84 50 58.31 50 64.86 50
0.6 0.19 3 71.32 50 71.14 50 80.16 50
0.8 0.02 1 88.32 50 88.23 50 97.70 50
1.0 0.00 0 96.40 50 96.40 50 99.99 50

0.6 0.2 7.68 49 37.40 50 36.06 50 38.85 50
0.4 3.94 32 39.43 50 39.45 50 41.95 50
0.6 1.36 18 41.72 50 41.76 50 45.13 50
0.8 0.46 4 41.17 50 41.04 50 46.42 50
1.0 0.04 1 38.99 50 38.98 50 44.17 50

0.8 0.2 5.76 49 26.97 50 26.72 50 27.65 50
0.4 2.66 41 26.81 50 26.69 50 27.71 50
0.6 0.93 27 25.54 50 25.56 50 26.56 50
0.8 1.02 23 25.36 50 25.23 50 26.50 50
1.0 0.31 13 22.51 50 22.59 50 24.09 50

1.0 0.2 2.08 44 20.23 50 19.99 50 20.45 50
0.4 1.80 40 20.38 50 20.36 50 20.59 50
0.6 0.95 31 18.56 50 18.56 50 19.06 50
0.8 0.66 27 17.92 50 17.98 50 18.32 50
1.0 0.55 29 16.73 50 16.72 50 17.27 50

Average 2.55 22 46.13 48 45.69 48 48.86 48

T R MM+INS NEH+INS MM+NEH+INS

imp btr imp btr imp btr

0.2 0.2 85.69 50 85.85 50 85.69 50
0.4 99.59 50 99.58 50 99.58 50
0.6 100.00 50 100.00 50 100.00 50
0.8 80.00 40 80.00 40 80.00 40
1.0 14.00 7 14.00 7 14.00 7

0.4 0.2 54.57 50 56.20 50 55.62 50
0.4 64.62 50 66.37 50 65.98 50
0.6 80.20 50 80.91 50 80.82 50
0.8 97.70 50 97.68 50 97.68 50
1.0 99.99 50 99.99 50 99.99 50
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of the tardiness factor and the range of due dates parameters. The overall average 
(average) across all instances is also given. This table refers to instances with 300 
jobs and 10 machines; nonetheless, results are similar for other instance sizes.

The mean relative improvement is usually decreasing with the tardiness factor 
T  . We remark that the mean relative improvement can be quite large, and some-
times even equal to the maximum possible value of 100%, when the tardiness fac-
tor is low. These large relative improvements often correspond to relatively small 
absolute improvements. Indeed, few jobs will be tardy when T  is low, resulting 
in relatively small objective function values. The improvement procedures can 
greatly reduce even further these small values, and often they even generate an 
optimal solution with no tardy jobs. The effect of the range of due dates R on the 
mean relative improvement, however, is not so clear-cut. Indeed, the mean rela-
tive improvement is often increasing in R when the tardiness factor is equal to 0.4 
or 0.6, but decreasing when T  is 0.8 or 1.0.

Table  7 provides the computational time (in seconds) required to run the 
improvement procedures, including the initial application of the QATC rule, 
when appropriate (i.e. when the procedure does not include MS). The overall 
average (average) across all instances is also given. Procedure MS is extremely 
efficient, requiring only a little over half a second for the largest instances in the 
problem set. The NEH and MS+NEH methods are also quite fast. In this regard, 

Table 6  (continued)

T R MM+INS NEH+INS MM+NEH+INS

imp btr imp btr imp btr

0.6 0.2 38.39 50 40.64 50 40.28 50
0.4 41.64 50 44.22 50 44.04 50
0.6 44.83 50 48.20 50 48.07 50
0.8 46.31 50 49.18 50 49.14 50
1.0 44.18 50 46.28 50 46.28 50

0.8 0.2 27.49 50 29.34 50 29.35 50
0.4 27.26 50 29.64 50 29.62 50
0.6 26.17 50 28.63 50 28.68 50
0.8 26.33 50 28.62 50 28.64 50
1.0 24.01 50 26.03 50 25.94 50

1.0 0.2 20.26 50 21.82 50 21.71 50
0.4 20.33 50 22.03 50 22.12 50
0.6 19.04 50 20.40 50 20.40 50
0.8 18.21 50 19.76 50 19.75 50
1.0 17.23 50 18.69 50 18.69 50

Average 48.72 48 50.16 48 50.08 48

imp: mean relative improvement over the QATC rule
btr: number of times an improvement procedure provides a result better than that of the QATC rule
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NEH is more computationally efficient than MS+NEH, particularly for instances 
with a larger number of machines.

The four improvement procedures that include the insertions local search 
require a much higher computational time. In the context of these four proce-
dures, it should first be remarked that the presence of MS changes runtimes only 
very slightly. Indeed, the times required by INS and MS+INS, or by NEH+INS and 
MS+NEH+INS, are quite similar.

However, and secondly, the inclusion of NEH reduces the computational effort. 
In fact, NEH+INS is faster than INS alone, and the same is true when comparing 
MS+NEH+INS with MS+INS. Therefore, the time required by the initial applica-
tion of NEH is more than offset by the computational savings it allows when per-
forming the insertion local search.

The results regarding the mean relative improvement and the computation times 
can be combined to derive the non-dominated methods. Indeed, MS emerges as the 
fastest procedure, but also the one which provides the smallest improvement. Next, 
NEH is the second fastest, and its improvement is superior to that of MS. Finally, 
NEH+INS (and also MS+NEH+INS) provides the largest improvement, but is also 
slower than NEH or MS. These results provide a guide to decision makers on the 
method of choice. Indeed, as the time available to generate a solution increases, the 
decision maker can switch from QATC, to MS, then NEH, and finally NEH+INS.

Improvement procedures MS+NEH (slower than NEH) and INS and MS+INS 
(inferior to NEH+INS and MS+NEH+INS in both solution quality and runtime), on 
the other hand, are dominated. As such, in the next subsection, we will only consider 
the improvement procedures MS, NEH and NEH+INS, as well as the QATC rule 
without any improvement.

5.6  Comparison with optimal results

The comparison with optimal results is conducted on another problem set, contain-
ing instances with only 8, 10 and 12 jobs. These instances were otherwise generated 
as previously described in Subsection 4.1, and 50 problems were created for each 

Table 7  Computational times (in seconds)

m n MM NEH MM+NEH INS MM+INS NEH+INS MM+NEH+INS

5 100 0.0017 0.0034 0.0046 0.1135 0.1216 0.0844 0.0879
300 0.0147 0.0650 0.0767 4.2868 4.2941 3.0392 3.1034
500 0.0399 0.2878 0.3293 23.6987 23.5554 16.3991 16.1620

10 100 0.0064 0.0062 0.0118 0.2312 0.2197 0.1821 0.1800
300 0.0500 0.1199 0.1734 7.6485 7.6100 5.9519 6.0529
500 0.1355 0.5217 0.6811 43.1620 42.9692 31.7147 33.1299

20 100 0.0269 0.0157 0.0343 0.4086 0.4271 0.3266 0.3577
300 0.2101 0.2538 0.4538 14.1708 14.3808 12.2796 12.3444
500 0.5664 1.0774 1.6752 85.0410 86.6824 74.7569 74.1412

Average 0.1168 0.2612 0.3822 19.8624 20.0289 16.0816 16.1733
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combination of n , m , T  and R . The optimal solutions were calculated using com-
plete enumeration. As previously mentioned, only the QATC dispatching rule, as 
well as the non-dominated improvement procedures MS, NEH and NEH+INS, are 
compared with optimal solutions.

Table 8 gives the mean relative improvement provided by the optimum over each 
heuristic approach (ivh), as well as the number of times each procedure finds an 
optimal solution (n_opt). The overall average (average) across all instances is also 
given.

The performance of the QATC rule is somewhat poor. Indeed, this rule rarely 
finds the optimal solution, and its results are usually 20% to 30% above the optimum 
for instances with 10 and 20 machines. For instances with 5 machines, this deviation 
increases to close to 40%. The MS procedure provides better results, but it is still 
around 10% to 30% above the optimum.

The performance of the NEH method is much better. Indeed, for instances with 
20 and 10 machines, the mean relative improvement given by the optimum is under 
about 4% and 8%, respectively. For instances with 5 machines, however, that mean 
relative improvement can exceed 10%.

The NEH+INS procedure provides very good results. Indeed, it achieves an opti-
mal solution in about 40% to 75% of the instances. Also, the mean relative improve-
ment given by the optimum is below about 4.5%, and for some instance sizes below 
1%.

The performance of the procedures, when compared with the optimal results, 
somewhat degrades as the number of jobs increases. However, and particularly in 
what regards the mean relative improvement provided by the optimum, the perfor-
mance greatly improves as the number of machines increases. Indeed, all the proce-
dures, including the QATC rule without any improvement method, are closer to the 
optimal solution when the number of machines is higher.

Table 8  Comparison with optimum results

ivh: mean relative improvement provided by the optimum over a heuristic procedure
n_opt: number of times a heuristic finds the optimal solution

m n ivh n_opt

QATC MM NEH NEH+INS QATC MM NEH NEH+INS

5 8 34.05 20.93 6.67 1.68 13 41 453 935
10 39.22 27.49 10.24 2.87 2 8 225 732
12 42.38 32.57 13.33 4.54 1 1 124 552

10 8 25.82 14.68 3.69 0.75 11 41 473 967
10 30.37 19.24 5.62 1.48 2 4 252 762
12 33.62 23.30 8.17 2.20 0 0 115 533

20 8 19.89 10.84 2.01 0.50 4 38 501 950
10 21.96 13.31 3.03 0.80 1 4 255 750
12 25.35 16.29 4.15 1.26 0 0 143 529

Average 30.29 19.85 6.32 1.79 4 15 282 746
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The results obtained through the comparison with optimal solutions, and though 
it must be remarked that the instance sizes are quite distinct, are somewhat in line 
with those described when analyzing the improvement procedures. For instance, the 
QATC rule is sometimes up to 40% above the optimum results, while the NEH+INS 
improvement procedure is quite close to optimality. This is in line with the close to 
50% relative improvement that the NEH+INS procedure provides for many of the 
instance sizes on which the improvement methods were analyzed. Again, however, 
we stress that the sizes of the instances used in the comparison with optimal results, 
and in the analysis of the improvement procedures, are very different.

The NEH+INS method can provide very good results in relatively short compu-
tational times. For quite large instances, in which this procedure may take excessive 

Table 9  Comparison with optimum results, for n = 10 and m = 10

ivh: mean relative improvement provided by the optimum over a heuristic procedure
n_opt: number of times a heuristic finds the optimal solution

T R ivh n_opt

QATC MM NEH NEH+INS QATC MM NEH NEH+INS

0.2 0.2 57.69 36.33 15.87 5.07 0 0 5 22
0.4 58.25 38.57 13.81 2.95 0 0 4 31
0.6 58.80 45.55 14.28 5.49 0 0 12 29
0.8 56.67 49.53 15.76 2.77 0 0 8 35
1.0 46.60 35.69 9.12 0.93 0 0 13 38

0.4 0.2 40.01 22.18 6.84 1.85 0 0 9 30
0.4 40.53 23.00 5.87 2.09 0 0 9 28
0.6 30.44 19.52 6.83 2.15 0 0 9 27
0.8 30.62 19.86 5.42 1.56 0 0 13 29
1.0 30.49 21.52 4.72 0.93 0 0 12 35

0.6 0.2 31.39 14.85 3.55 1.07 0 0 11 31
0.4 30.16 14.73 3.92 1.23 0 1 6 29
0.6 24.20 14.29 2.95 0.44 0 0 15 38
0.8 22.54 13.53 4.30 1.27 0 0 8 27
1.0 19.93 13.08 3.32 0.90 0 0 7 24

0.8 0.2 20.96 10.13 3.56 0.71 0 0 10 33
0.4 20.84 10.78 2.57 0.67 0 0 8 29
0.6 19.54 11.77 2.96 0.63 0 0 10 34
0.8 18.47 9.83 1.86 0.74 0 0 16 32
1.0 16.73 11.16 1.93 0.61 0 0 12 31

1.0 0.2 18.06 8.62 2.80 0.69 0 1 15 33
0.4 17.61 9.46 2.20 0.37 0 0 8 28
0.6 17.42 9.40 2.17 0.44 2 2 10 33
0.8 16.30 8.50 1.91 0.80 0 0 11 28
1.0 15.11 9.06 1.97 0.57 0 0 11 28

Average 30.37 19.24 5.62 1.48 0 0 10 30
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time, the NEH improvement method can still provide reasonable quality solutions in 
an adequate computational time.

Table 9 provides the mean relative improvement provided by the optimum (ivh), 
as well as the number of times an optimal solution is found (n_opt), for each com-
bination of the tardiness factor and the range of due dates parameters. The overall 
average (average) across all instances is also given. This table refers to instances 
with 10 jobs and 10 machines; however, results are similar for other instance sizes.

The performance of the procedures nearly always improves as the tardiness factor 
T  increases. The effect of the range of due dates R on the mean relative improvement 
given by the optimum, however, is not so clear. The performance of the MS method 
tends to improve as the range of due dates increases. For the other procedures, how-
ever, this effect is not always present.

6  Conclusion

In this paper, we considered the permutation flowshop scheduling problem with a 
weighted squared tardiness objective function. Our focus was on identifying efficient 
procedures, capable of quickly solving even medium or large instances.

In this context, we presented several dispatching heuristics. These included 
general rules, heuristics developed for the linear problem, and heuristics suitably 
adapted to take the squared objective into account. Most of these rules were pre-
viously used in other production settings, and they were suitably adapted to the 
flowshop environment. Also, preliminary experiments were performed to determine 
an adequate value for a parameter required by some of the heuristics.

Then, we presented several improvement procedures, which use one or more of 
three techniques: multiple sequence dispatching (MS), the widely used NEH proce-
dure, and insertions-based local search (INS). These procedures were applied to the 
best performing dispatching rule (QATC).

The results showed that the quadratic heuristics clearly outperform their linear 
counterparts, as well as the general rules. Therefore, when dealing with a squared 
tardiness environment, it is important to use rules that specifically address the quad-
ratic nature of the objective function, instead of relying on simple and general rules, 
or on procedures developed for the linear problem.

The computational results additionally showed that all improvement procedures 
significantly improve upon the QATC solution. The MS, NEH and NEH+INS pro-
cedures emerge as non-dominated, when taking both solution quality and runtime 
into account. The QATC, MS and NEH procedures are quite efficient, and can be 
applied to even quite large instances. The NEH+INS method can provide somewhat 
higher quality solutions, but its computational requirements may be excessive for 
very large instances. The results thereby provide a guide to decision makers on the 
method of choice (dispatching rule and/different improvement procedures), given 
the time available to obtain a solution.

Future research may involve the development of lower bounds and branch-and-
bound algorithms, able to provide optimum solutions more efficiently than complete 
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enumeration. Another possibility is to consider metaheuristics, incorporating the 
QATC rule and the NEH or NEH+INS improvement procedure, in order to try to 
achieve higher quality solutions. Finally, the addition of features such as release 
dates or setup times is yet another option for further work.
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