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Abstract. Cervical cancer remains a significant cause of mortality in
low-income countries. As in many other diseases, the existence of sev-
eral screening/diagnosis methods and subjective physician preferences
creates a complex ecosystem for automated methods. In order to dimin-
ish the amount of labeled data from each modality/expert we propose
a regularization-based transfer learning strategy that encourages source
and target models to share the same coefficient signs. We instantiated
the proposed framework to predict cross-modality individual risk and
cross-expert subjective quality assessment of colposcopic images for dif-
ferent modalities. Thus, we are able to transfer knowledge gained from
one expert/modality to another.
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1 Introduction

Despite the possibility of prevention with regular cytological screening, cervical
cancer remains a significant cause of mortality in low-income countries. This
being the cause of more than half a million cases per year, and killing more than
a quarter of a million in the same period [1]. As in many other diseases, the exis-
tence of several screening and diagnosis methods creates a complex ecosystem
from a Computed Aided Diagnosis (CAD) system point of view. For instance, in
the detection of pre-cancerous cervical lesions, screening strategies include cytol-
ogy, colposcopy (covering its several modalities [1]) and the gold-standard biopsy.
In developing countries resources are very limited and patients usually have poor
adherence to routine screening due to low problem awareness. Consequently, the
prediction of the individual patient’s risk and the best screening strategy during
her diagnosis becomes a fundamental problem. Most of these screening methods
highly depend on the physician expertise and subjective comfort on the deci-
sion process, being a key aspect to improve data acquisition using the physician
preferences.

Thereby, from a technical point of view, all these predictive tasks are
immersed in a multi-modal and multi-expert setting. Traditionally, supervised
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learning techniques would require to collect a vast amount of data from each
source (i.e. modalities and experts) and to build predictive models separately
for each task. Transfer learning (TL) aims to extract knowledge from at least
one source task and use it when learning a predictive model for a new target task
[2]. The intuition behind this idea is that learning a new task from related tasks
should be easier (faster, with better solutions or with less amount of labeled
data) than learning the target task in isolation. In this work, we focus on induc-
tive TL, where both domains are represented by the same feature space and
where the source and target tasks are different but related [2]. A main trend in
inductive transfer consists on transferring data, namely, strategically including
data from the source task in the target dataset [3]. Another approach consists
on finding a shared source-target low-dimensional feature representation that is
suitable for learning the target task [4]. We group these two approaches under
the umbrella of data-driven transfer, where source data is re-used to train the
target task. Although these approaches may seem appealing, the vast amount of
training data in the source task turns the process prohibitively expensive.

TL techniques (and its community) should be focused on adapting knowledge
instead of data. This idea is handled by parameter transfer approaches, which
rely on the idea that individual models for related tasks should share some
structure (parameters or hyper-parameters) [2]. In this sense, the knowledge
generated from a source task is understood as the parameters (and hyperpara-
meters) that define a given model: the coefficients of a regression, the weights of
a neural network, the feature hierarchy of a decision tree. Previous works [5-8]
explored transferring knowledge from/to linear models by means of regularizing
the coefficient difference between different tasks. In this work, we extend this
idea by including the notion of partial transfer where high-level properties of
the source model are transferred instead of the whole model structure. Partial
transfer can be understood as improving the model performance on the target
task by using a partially observable source model. This capability is specially
important in some scenarios, where unlimited access to the model parameters
is not possible due to privacy and security concerns (e.g. health and biometrics
applications). In these cases just high-level properties of the model are available.
Also, regularizing high-level properties of the models allows transfer between less
similar tasks. Therefore, even when the source model is fully observable, it can
be interesting to study partial transfer mechanisms.

In this work we focus on transferring the coefficient sign by proposing a new
regularization scheme that encourages coefficients to share the same contribution
type (i.e. positive, negative) instead of the coefficient impact (i.e. actual value).
In order to prove its adequacy to different problems, we instantiated this idea to
two different problems: cross-modal individual risk prediction and cross-modal
and cross-expert quality assessment of digital colposcopies.

2 Proposed Method

We consider the following scenario in this work. We have two learning tasks
(source and target) denoted by src and tgt. We assume that both tasks share
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the same feature space X C R? and output type Y C T (e.g. regression, clas-
sification). For a given task T € {src,tgt}, we have labelled training data
DT = XT x YT, In order to induce similar models, a TL objective can be
understood as finding the best model that balances the tradeoff between model
performance on the target data and its similarity with the source model:

arg min (dataLoss(M, X"") + X\ dissimilarity(M, M*")), X >0 (1)
M

Since a predictive model is a succinct representation of the data, this frame-
work is an efficient way to introduce knowledge obtained from the source task
without resorting to the source data. Therefore, it is also useful in scenarios
where source data is unavailable at transfer time or in online learning settings.

2.1 Partial Model Transfer: Sign Regularization

Using the proposed framework we can selectively transfer knowledge. This can
be done by considering regularization schemes that explore high-level proper-
ties of the model instead of its actual state (i.e. assumed values). This can be
understood as having partial observability of the model structure.

In this work we focus on linear predictive models for regression (e.g. Lin-
ear Regression) and classification (e.g. Logistic Regression, Support Vector
Machines). Thereby, we assume that our model can be defined by a vector of
coefficients w € R!, which includes the bias term wg. Here, we are inter-
ested in transferring the contribution direction of each feature (i.e. coeflicient
sign) instead of its importance in the source task (i.e. coefficient magnitude).
Equation (2) defines a dissimilarity regularizer that encourages sign relatedness,

where w*™ and w'? denote the source and target coefficients respectively.
d
Sp(W W) = ZmaX(O, —w - sign(w™))P, p> 0 (2)
i=1

Although this regularizer is able to control the sign change between source
and target task, it does not establish any type of control on models with large
coefficients with the same sign. Thereby, we introduce the classical L,-norm reg-
ularizer (see Eq. (3)). Figure 1 illustrates the behavior of two particular instances
of the proposed regularizer with p =1 and p = 2.

Apa(w,wi) = adp(w; ", wi™) + (L—a) [ |7, 0<a<1  (3)

K3 K3 (3 P

The proposed regularizer is based on the Hinge loss traditionally used in the
optimization of Support Vector Machines. In this sense, the particular case when
p = 2 is a smooth version that allows gradient computation on its entire domain
(see Eq. (4)). Thereby, it can be easily included in gradient descent optimization
strategies.

tgt <2, ( )z _|wt9t|sign(wfrc), otherwise

3 src 3 lgt
80 Ay o {o, sign(w)”) = sign(i”)
W i
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Fig. 1. Regularization factors assuming w;"™ > 0. First row illustrates the penalization

using L regularizers (p = 1) with same-sign uncontrolled penalty on the left and with
different o values on the right (0.9 - solid, 0.7 - dashed, 0.5 - dotted). Second row is
analogous to the first row but using L, penalty (p = 2).

On the other hand, when p = 1, the derivative at w; = 0 is non-deterministic.
However, the subgradient at w; = 0 can be computed, inducing a subgradient
descent optimization strategy. Due to space limitations we only present results
for the smooth version of the proposed regularizer.

3 Experiments

Data was split using a stratified training-test partition (80-20). Then, in order
to validate the model performance on different stages of the data acquisition
process, the training set was randomly subsampled in 10 nested subsets with
several sizes (10%, 20%, 30%, . . ., 100%). Each experiment was repeated 30 times
varying the test partition. The regularization factor (A) and all the remaining
intrinsic hyper-parameters were learned using Stratified K-fold cross-validation
(K = 3) over the training set. For reproducibility purposes, the datasets are
made available!.

For each method, the normalized signed Area Under the gain Curve (sAUC) is
measured when compared with training the model using target data only, where
gain is measured in terms of percentage relative gain. Thus, positive gain reflects
positive transfer and, analogously, negative gain reflects negative transfer.

We instantiate the proposed sign-transfer method to two linear models: linear
regression for the risk prediction task and Support Vector Machines for the
quality assessment task. In each case, we validate the proposed method with fixed

! http://vemi.inescporto.pt /reproducible_research /ibpria2017/CervicalCancer /.
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sign importance (o = 1) - denoted as Sign - and with varying tradeoff between
sign agreement and coefficient magnitude (0 < o < 1) - denoted as «-Sign. The
proposed regularizers are compared to the state-of-the-art approach, hereafter
referred as Diff, where the model is learned using full-observability transfer by
regularizing coefficients to be similar to the source-model coefficients [5-8].

3.1 Risk Factors

In this section we instantiate the proposed partial transfer technique to pre-
dict the individual patient’s risk when multiple screening strategies are avail-
able (i.e. colposcopy using acetic acid - Hinselmann, colposcopy using Lugol
iodine - Schiller, cytology and biopsy). For this purpose a database with 858
patients including demographic information, habits and historic medical records
was collected (see Table1). Several patients decided not to answer some of the
questions due to privacy concerns. Hence, the features denoted by bool x T,
T € {bool,int}, were encoded as two independent values: whether or not the
patient answered the question and the reported value. Missing values were filled
using the sample mean. Categorical features were encoded using the one-of-K
scheme.

Table 1. Features acquired in the risk factors dataset.

Feature Type Feature Type

Age int IUD (years) int

# sexual partners bool x int | STDs bool X bool
Age of 1st sexual intercourse | bool x int | STDs (how many?) int

# of pregnancies bool x int | Diagnosed STDs categorical
Smokes? bool X bool | STDs (years since first diag.) | int
Smokes? (years & packs) int X int STDs (years last diag.) int
Hormonal Contraceptives? bool Has previous cervical diag.? | bool

Horm. Contr.? (years) int Prev. cervical diag. (years) |int
Intrauterine device? (IUD) bool Prev. cervical diagnosis categorical

Table 2 shows the results for this task using a regularized linear regression.
It was validated that gains achieved by the proposed partial transfer framework
were higher than the obtained by the fully observable transfer recently used in
the literature. In most cases, the best results were obtained by the a-controlled
sign regularization approach.

3.2 Quality Assessment

Choosing frames with good quality to perform the screening is an important step
on improving physician’s effectiveness. However, several challenges arise when
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Table 2. sAUC obtained by the TL approaches on the risk prediction task with mul-
tiple screening strategies: Hinselmann (H), Schiller (S), Cytology (C) and Biopsy (B).
Performance is measured in terms of Rooted Mean Squared Error (RMSE).

Source | Target | Diff | Sign | a-Sign | Source | Target | Diff | Sign | a-Sign
66.09 |66.02 | 68.96 35.05 | 34.51|35.11
19.51 |24.67|37.12 55.45|53.97 | 55.81
54.70 |52.39 | 54.96 47.37|47.40 | 47.54
38.72 |36.44 | 38.74 47.99 | 47.39 | 48.80
33.55 |34.21|39.90 64.10 | 61.89 | 66.66
45.48 |1 42.19 | 45.34 28.18 | 34.14 | 43.69

w|w|lv|h| =™
Wl w Q|
W wwa ala
Qln =l wl nlx

defining the quality in this context. Thus, quality becomes a subjective concept
subject to human preferences. In this work we consider a binary annotation
scheme (e.g. good and bad quality) to simplify the presentation of the proposed
framework. However, in the future we will consider ordinal scales (e.g. poor, fair,
good, excellent) and pairwise relative preferences (e.g. the image A is better than
the image B). The following semantic medical features were considered:

— Image area occupied by each anatomical body part (cervix, external os and
vaginal walls) and occluding objects (speculum and other artifacts).

— The area of each region occluded by artifacts or by specular reflections.

— The maximum area difference between the four cervix quadrants.

— Fitness goodness of the cervix to a given geometric model: convex hull, bound-
ing box, circle and ellipse.

— Distance between the image center and the cervix centroid/external os.

— Mean and standard deviation of each RGB and HSV channel in the cervix
area and in the entire image.

In a joint collaboration with Hospital Universitario de Caracas, a dataset
with annotations from 6 experts on about 100 cervigrams per modality (see
Fig.2) was collected [1]. In the experimental evaluation, each region of interest
was manually segmented by an expert to simplify the comparison of the transfer
learning approaches.

Fig. 2. Colposcopy modalities. From left to right: Hinselmann, Green light and Schiller.
(Color figure online)
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Table 3. sSAUC obtained by the TL approaches on the quality prediction task with sev-

eral colposcopic modalities: Hinselmann (H), Green (G) and Schiller (S). Performance
is measured in terms of accuracy.

Source | Target | Diff | Sign | a-Sign | Source | Target | Diff |Sign | a-Sign
H G 53.31 |54.14|53.83 |H S 47.82 | 46.58 |45.73
G H 64.13 |68.05 | 68.30 | G S 47.07 147.98 | 48.15
S H 63.73|62.67 1 61.02 |S G 47.16 | 49.28 | 48.54

Table 3 shows the results for the binary classification of the subjective image
quality using SVM. The target labels are assigned using the mode of the anno-
tations given by the physicians. Contrary to the linear regression case, the ver-
sion with @ = 1 obtained better results than the a-Sign approach. This can
be explained by the fact that each modality has a few annotated instances per
expert (about 100), turning it difficult to correctly estimate the @ parameter.

Figure 3 shows the gains obtained by the a-Sign version of the regularizer
when compared with the state-of-the-art approach on a multi-expert setting.
Here, source and target tasks represent different annotators’ preferences (i.e.
transferring from the i-th expert in the row to the j-th expert in the column).
Analogously to previous experiments, the proposed transfer with partial observ-
ability obtained the best results in most cases. Schiller was the modality with
highest gains. However, it was also the most unstable, being also the one with
lowest gains in some cases. Using partial transfer schemes, some experts reflected
poor performance as source in some modalities (e.g. expert 2in Hinselmann)
while behave as good sources in other modalities (e.g. expert 2in Green). More-
over, since the partial model observability is a weak prior over the model space,
the set of models that achieves an optimal regularization value is infinite, induc-
ing a non-symmetric gain matrix.

Fig. 3. Heatmap of the transfer gain obtained by the a-Sign regularizer when compared
to the state-of-the-art regularizer. Transfer is done from a given expert’s preferences
(row) to another expert’s preferences (column) between the same modality. The modal-
ities are, from left to right: Hinselmann, Green light and Schiller. (Color figure online)
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4 Conclusions

In this work we presented a regularization-based TL approach to transfer the
contribution type for each feature on linear models. In order to show its adequacy
to different contexts, the proposed model-relatedness regularizer was instantiated
to several learning tasks related to cervical cancer screening. Positive results were
obtained in most experiments, being competitive with other methods in the
literature. This work suggests that the analysis of how models encode high-level
properties of the domain may improve transfer performance. Future research
lines will tackle this type of transfer in multi-class and ordinal classification
settings. Also, we will study how to synthesize high-level transferable knowledge
in other non-linear models.
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