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ABSTRACT
Eventual consistency is a relaxed consistency model used in
large-scale distributed systems that seek better availability
when consistency can be delayed. CRDTs are distributed
data types that make eventual consistency of a distributed
object possible and non ad-hoc. Specifically, state-based
CRDTs achieve this through shipping the entire replica state
that is, eventually, merged to other replicas ensuring conver-
gence. This imposes a large communication overhead when
the replica size or the number of replicas gets larger. In this
work, we introduce a decomposable version of state-based
CRDTs, called Delta State-based CRDTs (δ-CRDT). A
δ-CRDT is viewed as a join of multiple fine-grained CRDTs
of the same type, called deltas (δ). The deltas are produced
by applying δ-mutators, on a replica state, which are mod-
ified versions of the original CRDT mutators. This makes
it possible to ship small deltas (or batches) instead of ship-
ping the entire state. The challenges are to make the join
of deltas equivalent to the join of the entire object in clas-
sical state-based CRDTs, and to find a way to derive the
δ-mutators. We address this challenge in this work, and we
explore the minimal requirements that a communication al-
gorithm must offer according to the guarantees provided by
the underlying messaging middleware.

1. INTRODUCTION
Eventual consistency [12] has recently got the attention of

both research community and industry [5, 1, 11, 6] due to
the enormous growth of large-scale distributed systems, and
at the same time, the need to ensure availability for users
despite outages and partitioning. In fact, the practical ex-
perience of leading industry shows that daily server outages
and network partitioning in large-scale distributed systems
is a norm rather than an exception. Given that partitioning
cannot be avoided, the limitations explained by the CAP
theorem [7] requires some sacrifice in consistency (by delay-
ing it) for the sake of higher availability only when imme-
diate consistency is not a requirement; a like/unlike action
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in social networks is a concrete example. CRDTs [9, 10] are
formal methods to make eventual convergence of distributed
datatypes generic and easy. Although they are currently be-
ing used in industry [5], CRDTs are still not mature, and
many enhancements are still needed on both levels: design
and performance. This work addresses some design issues
to achieve better performance.

Conflict-free Replicated Data Types (CRDTs) [9, 10] are
formalized data types designed to ensure the convergence
of different replicas of a distributed CRDT object. Tradi-
tionally, two types of CRDTs were defined: operation-based
and state-based. In operation-based CRDTs [8, 10], once an
operation is invoked on a replica, a prepare phase returns a
payload message that comprises a derived operation of the
original one and possibly other meta-data. The message is
sent to other replicas that apply this message via the effect
phase which, in its turn, makes use of the received meta-
data to maintain the causal order of operations. To achieve
eventual consistency, this approach assumes a middleware
that provides causal delivery of operations and membership
management. In state-based CRDTs [2, 10], an invoked
operation is applied on the local object state that derives
a new state. Occasionally, the new state is sent to other
replicas that incorporate the received state with the local
state though a merge. A merge is designed in such a way
to achieve convergence from any two states, being commu-
tative, associative, and idempotent. In mathematical terms,
merge is defined as a join: a least upper bound over a join-
semilattice [2, 10].

State-based CRDTs are preferred to operation-based when
causal delivery is not guaranteed by the messaging mid-
dlware. However, the state-based approach has two main
weaknesses: (1) shipping updates becomes expensive when
the distributed object gets large, and (2) a sort of garbage
collection is often required. Some recent works [4, 3] ad-
dressed the problem of garbage collection; however, to the
best of our knowledge, no profound research dealt with re-
ducing the overhead of data shipping as we propose in this
work.

The communication overhead of shipping the entire state
in state-based CRDTs often grows with the replica state
size and the number of replicas. For instance, the state size
of a counter CRDT increases with the number of replicas,
whereas, in a grow-only Set, the state size grows as more
operations are invoked. Other CRDTs, like the OR-Set, im-
pose a similar overhead also (due to shipping the set and
its tombstones); although garbage collection can reduce this
overhead once used, this is only possible when the invoked



operations that cancel each others are close in time; e.g., an
add followed by remove of the same element must occur be-
fore the shipping time is due. These scalability issues limit
the use of state-based CRDTs to data-types with conserva-
tive payloads (e.g. few megabytes in Dynamo [6]). Recently,
calls in the industry started to show up asking for the pos-
sibility to consider larger state sizes (e.g., in RIAK [5]).

In this work, we rethink the way that state-based CRDTs
should be designed, having in mind the useless redundant
shipping of the entire state. Our idea is to decompose a
state-based CRDT in such a way to only ship recent up-
dates rather than the whole state. To achieve this goal, we
introduce Delta State-based CRDTs (δ-CRDT). A δ-CRDT
is roughly a union of multiple fine-grained δ-CRDTs of the
same type, which is built through multiple invocations of
δ-mutators which are then merged. A δ-mutator is a de-
rived version of a CRDT mutator that produces a δ which
only comprises the new changes that the original mutator in-
duced on the state. This way, we can retain the deltas, and
join these deltas together into batches, to be shipped later
instead of shipping the entire object. Once these batches of
deltas arrive at the receiving replica, they are joined with
its local state.

The challenge in our approach is to make sure that decom-
posing a CRDT into deltas and then joining them into an-
other replica state (after shipping) produces the same effect
as if the entire state had been shipped and merged. In par-
ticular, the challenge involves how to derive the δ-mutators
from the original CRDT mutators.

In this work, we discuss these challenges, and explore pos-
sible solutions. In addition, we discuss the benefits of this
approach given the guarantees provided by the messaging
middleware, and we propose the basic requirements a dis-
tributed algorithm must satisfy towards this goal.
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