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Abstract— The ability to employ autonomous vehicles to find
and track the boundary between two different water masses
can increase the efficiency in waterborne data collection, by
concentrating measurements in the most relevant regions and
capturing detailed spacial and temporal variations. In this paper
we provide a guidance mechanism to enable an autonomous
vehicle to find and track the steepest gradient of a scalar field
in the horizontal plane. The main innovation in our approach is
the mechanism to adapt the orientation of the crossings to the
local curvature of the boundary, so that the vehicle can keep
tracking the gradient regardless of its horizontal orientation. As
an example, we show how the algorithms can be used to find
and track the boundary of a dredged navigation channel, using
only altimeter measurements.

I. INTRODUCTION

The use of autonomous marine vehicles has been growing
exponentially in the last years, yielding tremendous increase
in the efficiency of data collection at sea. In most of these
applications, the unmanned vessels are programmed to follow
geo-referenced trajectories, while collecting relevant data from
the payload sensors, with minimum intervention from an
operator. However, there are many scenarios in which the
main objective is to find and track a given feature, like an
oceanographic front, for example, or to map other features that
can be characterized by its boundary, like a pollution plume or
the area affected by a harmful algae bloom episode. In these
cases, a standard lawn-mower pattern may not be adequate, not
only because of the small percentage of useful data, but mainly
because the time wasted sampling the whole scalar field may
prevent the vehicle to capture the spacio-temporal variations
of the phenomenon. Instead of this brute force approach, it
is possible to take advantage of the on-board computational
power to process the data received from the payload sensors
in real time, identify points in the boundary, and guide the
vehicle so that it will continue to sample the region closest to
the boundary. With this strategy, most of data will be collected
around the boundary region, further increasing the efficiency
in the observation procedure, in a process frequently known
as adaptive sampling.

Even though this is not a new concept, it was only during the
last decade that there were the first practical implementations
of real-time adaptive sampling on robotic marine vehicles. The
first examples include the use of segmentation algorithms on
video images from ROVs to track benthic boundaries [1],
and, also, the use of AUVs for searching for the sources
of chemical plumes, trying to mimic the real behavior of
lobsters or bacterium in odor source localization [2]–[4]. In

[5], the authors used adaptive sampling primitives on MOOS
[6] to control the motion of an autonomous surface vehicle
to detect the horizontal thermal gradient. More recently, there
has been some successful experiments on autonomous vertical
controllers for thermocline tracking, carried out on gliders
[7] and other AUVs [8]–[12]. In [13], the authors used the
Tethys AUV to detect a coastal upwelling front off the coast
of California. Later, in [12] the authors adapted the algorithms
to effectively track the front by crossing it at fixed angles,
taking advantage of some a priori knowledge of the typical
orientation.

There have also been some proposals for the use of coop-
erating platforms to collectively sample the environment [14],
but with few implementations in the field, probably due to
practical difficulties. Recently, the possibility of using adaptive
sampling with multiple AUVs has regained attention, as a
means to improve even further the efficiency in the sampling
process, such as the algorithms proposed in [15] and [16] to
track plumes and other dynamic ocean features.

II. TRACKING A HORIZONTAL BOUNDARY

The work presented in this paper is an evolution of the
work described in [8] and [9], where the MARES AUV1 has
been used to identify and track thermoclines in real time. The
thermocline is a vertical transition layer in the water column,
separating the warm surface layer, or mixed layer, from the
cold deep water bellow it. It is typically a very thin layer,
where the water temperature drops nearly linearly as the depth
increases, with a significant gradient as compared to the rest of
the profile. The MARES AUV has independent horizontal and
vertical controllers, and in order to track the thermocline, only
the vertical controller was affected. The navigation system had
a standard reference in the horizontal plane, while the vehicle
was continuously performing vertical yo-yo’s, for which the
limits were set according to the temperature profiles being
captured in real time.

In this paper, we expand this approach to two dimensions
and show how it can be applied to the efficient characterization
and tracking of a horizontal boundary for a specific scalar
field Φ(x, t), or Φ for simplicity. We assume that the scalar
field Φ has a transition zone with a higher gradient than
in the rest of the area, which is a typical characteristic of
many oceanographic phenomena, like fronts or plume bound-
aries. We further assume that the vehicle can take only local

1MARES – Modular Autonomous Robot for Environment Sampling [17]



Fig. 1. A simplified view of a transect along a scalar field, passing from the
region with low values to the region with high values. Below, the derivative
along the same trajectory, with the frontal point located at the maximum
derivative.

measurements of Φ, therefore in order to find the maximum
horizontal gradient, the vehicle needs to cross the transition
zone, moving from the region where the scalar field has high
values (the HIGH region, to be defined later) to the region with
low values (the LOW region), and vice-versa. A simplified
view of an expected transect along this scalar field can be
seen in figure 1.

In our approach, the successful tracking of a horizontal
gradient results in a combination of a main direction of travel
(aligned with the horizontal location of the boundary), together
with a zig-zag around that direction. Note that neither the
evolution of the boundary line, nor the amplitude of the zig-
zag are known at the beginning of the mission.

Our strategy for implementing this tracking in the horizontal
plane develops in two phases, as follows.

A. Phase I – Finding the Boundary

Even though it may be preferable to have a full autonomous
system, in most of the missions there is some a priori infor-
mation about the phenomena being studied, at least locally. In
our case, we assume that there is an area where it is likely
that the boundary is located and we start the mission close
to that area. For simplicity, let’s assume that we start in the
LOW part of the scalar field. We define three initial waypoints
WP1–WP3, so that the first three trajectories cross the likely
location of the boundary, as represented in figure 2.

For each of these trajectories we need to acquire a full
profile with a shape similar to figure 1, and find the location
of each frontal point. At the end of this first stage, there
should be the first three points of maximum gradient (or frontal
points FP1–FP3), so that the strategy can proceed to phase II.
Depending on the application scenario, this first processing can
be made online, taking advantage of the availability of the full
profile, or it can be done offline by an operator, particularly if
the temporal variations of the scalar field are slow. Note also
that the trajectory represented in figure 2 can be replaced by a

Fig. 2. Initial phase of the mission, finding the boundary. WP1–WP3 are
programmed so that the likely location of the boundary is crossed three times.
For each crossing, a frontal point, FP, should be detected.

different sampling pattern, just to ensure that we find the first
three frontal points FP1–FP3.

B. Phase II – Tracking the Boundary

As soon as the vehicle gets to WP3, it enters a fully
autonomous mode, in which all processing is done online to
keep tracking of the boundary. This requires two algorithms,
to be detailed in section III:

1) Automatic generation of new waypoints;
2) Real time, online detection of the maximum gradient

along a trajectory.
In order to track the boundary, the vehicle uses algorithm

#1 to generate WP4, i.e it projects a new heading (extending
to waypoint WP4) that will ensure an additional crossing of
the boundary and, at the same time, some progress along the
same boundary, as shown in a simplified version in figure 3.
As soon as the vehicle starts this new transect, it also starts
algorithm #2, processing the samples of the scalar field as soon
as they are available and trying to detect the new frontal point
FP4. If algorithm #2 is successful, FP4 is detected before the
vehicle reaches WP4, so that WP5 can be generated and the
algorithms continue iteratively. WP4 can then be seen as the
maximum excursion that the vehicle will travel if algorithm
#2 fails.

III. ALGORITHMS FOR BOUNDARY TRACKING

A. Automatic Generation of New Waypoints

The simplified mechanism shown in figure 3 only works
well for the generation of waypoints when the boundary
follows a line. In fact, if the boundary follows a relatively
straight line, there is no need for three frontal points, as only
two would be enough to define such line. However, if there is
some curvature in the boundary, we need to know (at least)
the last three crossings in order to estimate the local curvature
and generate the following waypoint.

The proposed algorithm to adapt the crossings with the local
curvature is illustrated in figure 4. In this figure, WPi represent



Fig. 3. Beginning of fully autonomous mode tracking the boundary. WP4

is calculated when the vehicle is at WP3, in such a way as to ensure some
progress along the boundary, given by parameter α, so that the boundary is
expected to be crossed close to F̂P4.

Fig. 4. Generation of a new waypoint WPn+1, based on detections of frontal
points {FPn−2, FPn−1, FPn} and the curvature they define. The location of
the new frontal point is expected at F̂Pn+1.

the waypoints and FPi represent the points of maximum
gradient, or frontal points. Note that a certain FPi is detected
when the vehicle is moving towards WPi, but before actually
getting there. We identify the points DPi as the places where
that detection is made.

Consider that the vehicle has crossed the gradient and has
just found front point FPn (this happens when the vehicle is
located at DPn). The algorithm to generate the next waypoint,
WPn+1, is:

1) Compute Cn, the center of the circumference defined
by the last three frontal points, {FPn-2, FPn-1, FPn},
by intersecting the bisector of FPn−2FPn−1 with the
bisector of FPn−1FPn. This circumference represents the
local curvature of the boundary.

2) Connect Cn with DPn to define an axis of symmetry.
3) Project the last frontal point, FPn to the other side of

this axis to get the next estimated frontal point, F̂Pn+1.
4) Determine the new waypoint WPn+1, extending the line

connecting DPn with F̂Pn+1, up to a reasonable distance.
This algorithm ensures that each ”V” shape of a zig-zag is

oriented towards the center of the local curvature, therefore
adapting the crossing angles to ensure future detections of
FP’s. In terms of practical implementation, however, the un-
certainty in the determination of FPn may result in an incorrect
estimate of Cn. This, in turn, can yield a projection F̂Pn+1

either backwards or too far from FPn. For this reason, we
limit the rate of advance along the boundary within a preset
interval, and we assess the direction of motion, verifying that

−−−−−→
FPn−1FPn .

−−−−−→
FPnF̂Pn+1 > 0

As an illustrative example, we’ve synthesized a scalar field
representing a contour (for example, a plume), and used this
algorithm to produce new waypoints. Figure 5 demonstrates
the ability to track the curvature of the boundary. Figure 6
details some of the simulated trajectories, where the adaptation
of the crossing angles is clear.

B. Online Detection of the Maximum Gradient

When looking at a full profile similar to the shape in figure
1, there are several options to find the maximum gradient
and extracting the diferent regions of the data. However, in
a practical implementation, the main challenge is to maintain
the vehicle as close as possible to the region of the maximum
gradient. This means that the vehicle has to detect as early as
possible a significant decrease in the gradient and avoiding as
much as possible to navigate within those flatter regions. A
difficult problem in detecting the gradient is then to estimate de
derivatives of the scalar field along the track, dΦ

ds from a limited
number of previous data points and decide if those derivatives
are sufficient to conclude that the maximum gradient has
already been passed and there is no need to proceed further.
More, it is quite likely that these data will be updated several
times per second, possibly showing small scale variations, it
may not be uniformly distributed and, surely, may have errors.



Fig. 5. Demonstration of the waypoint generation mechanism being used to
track a boundary along a closed contour. Note the zig-zag’s oriented towards
the center of the ellipse.

Fig. 6. Detail of the vehicle trajectory while tracking a horizontal boundary
with a sharp gradient.

In order to solve this problem and estimate the gradient
of the scalar field, we follow the approach described in [8]
and [9], which has produced very good results in tracking
the temperature gradient associated with the thermocline. We
cluster data points into bins of distance traveled and take
the differences of the averaged values. The size of the bins
depends on the estimated slope that we intend to track and
the amount of data available (which is a function of the
sampling rate of the sensor and vehicle velocity). This size
acts as a low pass filter which may affect the ability to detect
gradients. Smaller bins result in large variations in gradient
estimation, while larger bins smooth the variations but hinder
the separation of gradients.

As an example, consider the bathymetry map represented in
figure 7, and suppose we intend to follow the line of maximum
gradient. Note that in this case, the channel wall drops from
roughly 3.5m to roughly 5.5m in less than 5m.

Although the map seems to be relatively smooth, if we
analyze the raw altimeter measurements taken during the

Fig. 7. Example of a bathymetry map of the slope of a navigation channel,
acquired by the Zarco ASV [18] in July 2014, at Base Naval do Alfeite,
Portugal.

bathymetry mission, we can verify that they are relatively
noisy, as can be seen in the example of a profile shown in
figure 8 (the topmost left plot). It is also quite difficult to
quantify the variations of the gradient along track (in the
topmost right plot). However, in the other plots of figure 8 we
show the result of aggregating the measurements into bins of
increasing size. The smoothness of the data points is obvious,
as well as the increasing evidence of the maximum gradient
(around 0.5 m/m).

The full algorithm developed for online gradient tracking
can be described by the state machine represented in fig.
9, where the dark arrows represent the transitions that are
expected during a successful tracking. These transitions will
cycle the state machine through the most relevant states:

• HIGH - The vehicle is located at the higher part of the
scalar field.

• HIGH2LOW - The vehicle is descending the gradient,
towards the lower part of the scalar field.

• LOW - The vehicle is located at the lower part of the
scalar field.

• LOW2HIGH - The vehicle is climbing the gradient,
towards the higher part of the scalar field.

Suppose for simplicity that the vehicle is in the HIGHER
part of the scalar field, moving towards a given waypoint.
During the trajectory, the vehicle will evaluate the gradient of
the scalar field and compare it with a given threshold, Thr.
When this threshold is exceeded, it will assume it has started
descending the gradient towards the lower part of the scalar
field, entering the HIGH2LOW state. The vehicle will proceed
towards the same waypoint until it detects a reduction in the
gradient to a level below Thr bot. In order to confirm the
lower limit of the gradient and avoid (early) false detections,
an additional test is performed, verifying that the vehicle has
moved a minimum distance away from the frontal point, FP,
i.e. if ||x − FP|| > sspan.low, where x is the current position,
FP is the position of the frontal point detected, and sspan.low is
a parameter set by the user to allow further excursion into



Fig. 8. Example of altimeter samples collected across the slope of the map shown in figure 7 (left-side plots) and gradient estimated from differences
(right-side plots). As the samples are aggregated into larger bins (top to bottom), both the profile and the gradient gets smoother.

Fig. 9. State machine and transitions representing the gradient tracking
maneuver. The bold arrows represent the expected cyclic transitions during
normal tracking.

the LOW part of the scalar field (for example to capture
complementary data). When both these conditions are met,
the vehicle enters the BOTTOM state.

Note from the state machine of fig. 9 that the LOW state is
also reached if ||x−WP|| < dmin, which is a safety mechanism
to ensure that the trajectory is limited to reaching the waypoint,
even if the algorithm is not able to positively detect the upper
limit or the lower limit of the gradient. When the vehicle
enters the LOW state, the characteristics of the gradient are
extracted from the previous profile (in particular, the maximum
gradient and the limits of the regions) and this information is
used to adapt the thresholds for the gradient detection during
the next trajectory. The new waypoint is then generated with
the algorithm described before, and passed on to the onboard
navigation system. As long as this process is active, the above
cycle will be maintained, resulting in a zig-zag pattern around
the boundary.

In order to evaluate the performance of the algorithm, a
simple mechanism is to maintain 3 different counters that
are incremented depending on the state transitions that lead
to the reversal of the profiles (HIGH and LOW states). The
first counter, full track, is increased when the vehicle detects
both the beginning and the end of the gradient, i.e. reaches
the HIGH or LOW states through a dark arrow; the second,
begin only, is increased when the vehicle enters a transition
state (HIGH2LOW or LOW2HIGH) but does not detect the
end of the gradient, i.e. it changes trajectory because it reaches



the waypoint. Finally, a third counter, fail, is increased if there
is a direct transition from the HIGH state to LOW, or vice-
versa. Naturally, the information provided by these counters
can be used individually or in combination (for example, abort
the mission if fail > 3 or if fail/full track > 0.1).

IV. CONCLUSIONS AND FUTURE WORK

This paper describes the algorithms required to find and
track a horizontal boundary with an autonomous marine ve-
hicle and provide evidence of their efficacy. These algorithms
interpret the samples from the scalar field and produce geo-
graphic waypoints or directions that the vehicle has to follow,
therefore they can can be implemented on virtually any ASV
or AUV that is able to move at a constant depth. The vehicle
is commanded to cross the transition zone in constant zig-
zag’s, while advancing along the boundary. On each crossing,
the maximum gradient is detected and its position is used
to generate a new waypoint, taking into account the local
curvature of the boundary.

During the tracking phase, a set of counters is maintained to
assess the performance of the algorithms and make appropriate
decisions in case of poor performance. The parameters of the
transition zone (location and gradient) can be passed onto other
processes, for example to switch any special sensor, to guide
another vehicle with complementary sensors, or to trigger an
underwater sampler to capture a relevant sample of water for
lab analysis, like the work described in [19].

Even though we have tested the algorithms thoroughly
with data taken from field samples, the next stage of de-
velopment is to validate the integrated system in the field,
tracking a challenging boundary both with an ASV and also
with an AUV. At a later stage, we intend to combine this
horizontal tracking with the vertical tracking demonstrated for
thermocline sampling, resulting in a 3D adaptive sampling
mechanism. Finally, we will also provide metrics for the
evaluation of the sampling efficiency, for example comparing
the total track length covered by the vehicle with the length
of the projection on the boundary.
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