
Improvasher: a real-time mashup system
for live musical input

Matthew E. P. Davies
INESC TEC

Sound and Music Computing Group
Porto, Portugal

mdavies@inescporto.pt

Adam M. Stark
Independent Researcher
London, United Kingdom

adamstark.uk@gmail.com

Fabien Gouyon
INESC TEC

Sound and Music Computing Group
Porto, Portugal

fgouyon@inescporto.pt

Masataka Goto
National Institute of Advanced

Industrial Science and
Technology (AIST)

Tsukuba, Ibaraki, Japan
m.goto@aist.go.jp

ABSTRACT
In this paper we present Improvasher a real-time musical ac-
companiment system which creates an automatic mashup to
accompany live musical input. Improvasher is built around
two music processing modules, the first, a performance fol-
lowing technique, makes beat-synchronous predictions of
chroma features from a live musical input. The second,
a music mashup system, determines the compatibility be-
tween beat-synchronous chromagrams from different pieces
of music. Through the combination of these two techniques,
a real-time predictive mashup can be generated towards a
new form of automatic accompaniment for interactive mu-
sical performance.

Keywords
Automatic accompaniment, music mashups, real-time mu-
sical interaction, Max.

1. INTRODUCTION
One of the earliest research areas in music information re-
trieval (MIR) addressed the topic of automatic musical ac-
companiment [4] to enable computers to play along with
musicians in a live performance context. While much re-
search in this area is built around a priori knowledge of
the input piece through access to the musical score [3], a
recent system [12] addressed the automatic accompaniment
problem for improvised music where no score exists. In
this so called “performance following” system, the output
of a real-time beat-synchronous chromagram was passed to
a dynamic programming search method to make a predic-
tion of future chroma content based on analysis of repeated
structure from earlier in the live performance.

A related research topic which address the combination of
music signals, but in a different context, is music mashups.
The goal of computational systems which attempt to auto-
mate the music mashup creation process is to determine the
best match between a target song and some number of possi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME’14, June 30 – July 03, 2014, Goldsmiths, University of London, UK.
Copyright remains with the author(s).

ble candidate songs, such that two (or more) musical signals
can be seamlessly mixed together to create an interesting
listening experience [11]. To this end, a recent mashup sys-
tem [5] used time-stretching and pitch-shifting to explore a
large search space of possible matches whereby songs were
not only beat-matched to enable temporal synchronisation,
but were also modulated in key to create harmonically com-
patible mixes for songs originally in different keys. Through
the use of phrase-level structural segmentation on the input
song, a multi-song mashup could be created by finding the
best match per phrase from a set of candidate songs, and
piecing the mashup together section by section.

In this work we seek to extend the creative musical pos-
sibilities available from the predictive aspect of the perfor-
mance following system, by attempting to fuse automatic
accompaniment with music mashups. Our goal is to create
a new kind of musical interaction which we call“automashup
accompaniment”. Given a live musical input (e.g. from a
musician playing the guitar), we use the performance fol-
lower to predict the chroma (i.e. harmonic) content for the
next beat in the live input signal, and send this chroma
information to the mashup system to determine the best
matching beat slice from a set of candidate songs. Once the
beat slice with the highest compatibility has been found, the
corresponding audio content is played back in real-time to
accompany the live input. Proceeding in this way, beat-
by-beat, our system Improvasher, can create a real-time
mashup accompaniment for the live musician. An overview
of our real-time mashup concept is shown in Figure 1.

Within the field of computer music, our goal of au-
tomashup accompaniment can be considered similar to con-
catenative synthesis [10, 13] since we attempt to use some
properties of a input signal to drive the some other audio
content – in this case a matching of beat-synchronous har-
monic content. The main distinction here is that we work
at a larger time-scale (i.e. at the beat level) rather than at
the frame-level of audio signals to allow the musical con-
tent comprising the real-time mashup to be recognisable
to the performer and to listeners. In this light, perhaps
the most closely related system to ours is Jehan’s cross-
synthesis technique [7]. However, our approach is designed
to operate in a predictive real-time context, rather than of-
fline. Furthermore, we require the matching content to be
played back to accompany the live input, as opposed to Je-
han’s goal of approximate reconstruction of one song from
another.

Improvasher is implemented using Max for the perfor-

Proceedings of the International Conference on New Interfaces for Musical Expression

541

Figure 1: The concept of the real-time mashup sys-
tem. Performance following analysis is used to pre-
dict the chroma content of the next beat of the live
input. The best matching chroma to this prediction
in a set of candidate songs is found, and played back
to accompany the input.

mance following module, and a standalone C++ applica-
tion for the mashup module, where the two are connected
via Open Sound Control (OSC).

The remainder of this paper is structured as follows. In
Section 2 we summarise the technical implementation of
Improvasher and highlight two possible usage scenarios. In
Section 3 we summarise the main contributions of the paper
and propose areas for future work.

2. IMPROVASHER
In this section we outline the main components which com-
prise Improvasher, beginning with the performance follow-
ing module, after which we discuss the mashup module, the
overall system implementation and usage scenarios.

2.1 Performance following module
The live input processing module of the system is the “per-
formance following” algorithm presented in [12]. As a front
end, using a click track or beat tracker, this algorithm cal-
culates a real-time sequence of beat-synchronous chroma-
gram features by summing frame-level chroma estimations
between beats. This means that at the ith beat bi, we have
the beat-synchronous chromagram Ck for the kth inter-beat
interval [bi−1, bi].

This information only tells us about what has just hap-
pened, and so in order to have some information on the
harmonic content of the current inter-beat interval, the
algorithm attempts to predict the next beat-synchronous
chroma vector Ĉk+1, based upon the sequence of chroma-
gram vectors observed to date in the live musical input.

The prediction process involves comparing the long term
history (e.g. the previous 150 beat-synchronous chroma vec-
tors) to the short term history (e.g. the previous 16 beat-
synchronous chroma vectors). The intention is to find an
example of a repetition (or partial repetition) of the short
term history at a previous point in the long term history.
If such an example can be found, we can then inspect the
beat-synchronous chromagram over the beats that follow
on from this point and use them as predictions of future
harmonic content.

In order to achieve this, an alignment matrix is calculated
between the long term and short term histories, as shown in
Figure 2. This is used to estimate the inter-beat interval in
the past where the short term history (i.e. what is currently
being played by the musician) best aligns with the long term
history. Finally, the chroma vector of the beat-synchronous
chromagram which immediately follows the point of best

Figure 2: An example of the alignment matrix cal-
culated using the long term (300 beat) and short
term (52 beats) histories. There are several points
of strong alignment, the strongest of which is indi-
cated by the arrow.

alignment is used as our prediction Ĉk+1.

2.2 Mashup Module
The goal of the mashup module within Improvasher is to
determine the compatibility or so-called “mashability” be-
tween harmonic content from the input and some set of can-
didate songs which could form part of the real-time mashup.
The estimation of mashability is built around the measure-
ment of cosine similarity between beat-synchronous chro-
magrams - in our case, between the live performance and
pre-calculated beat-synchronous chromagrams for the set
of candidate songs. In contrast to the mashup system in
[5] which measured mashability over phrase-level sections
(e.g. 16 or 32 beats) in the input signal, we perform the
matching over a much shorter time-scale, i.e. the one beat
at a time that the performance follower predicts on the fly.
We currently restrict the range of the prediction to a single
beat to ensure the highest reliability and consistency in the
predicted chroma content used.

The input to the mashup module is the predicted chroma
vector Ĉk+1 given by the performance follower module at
the onset of the ith beat bi in the music. To find the
best matching beat-slice from the set of N candidate songs,
we measure the cosine similarity, S, between Ĉk+1 and all
beats, p, of the beat-synchronous chromagrams Cn across
all candidate songs,

Sn
p =

Ĉk+1 · Cn
p

||Ĉk+1|| ||Cn
p ||

. (1)

Once this brute-force search has been completed across all
beat frames p and candidate songs n, the song, nmax, with
the highest cosine similarity is found as follows

nmax = argmax
n

(max(Sn
p)) (2)

and then the corresponding beat slice pmax is found from
nmax as

pmax = argmax
p

(Snmax
p). (3)

Having found the best matching beat frame, we then imme-
diately playback the corresponding audio slice so that it is
beat-synchronised with the live input. At the onset of the
next beat, and hence the next predicted beat chroma vector,
the process repeats as before. To smooth out any potential

Proceedings of the International Conference on New Interfaces for Musical Expression

542

Figure 3: An overview of the Improvasher architecture showing the inputs, outputs and interconnections
between components.

discontinuities which might arise from the concatenation of
non-consecutive beat slices of audio, we implement a cross-
fade over the first 10ms of each new beat.

2.3 Implementation
The Improvasher system comprises two main parts, the per-
formance follower module and the mashup module. The
core of the Improvasher system is an extension of the per-
formance follower Max patch from [12]. This handles the in-
coming audio stream, the creation of the beat-synchronous
chromagram and the prediction of future chroma vectors
at the onset of each new beat. The mashup module is im-
plemented as a separate standalone C++ application built
using the Juce Library [9] which receives a chroma vector
as input, determines mashability and then triggers play-
back of the audio corresponding to the best matching beat
slice from the set of candidate songs. This transmission
of chroma vectors from the performance follower to the
mashup module happens via OSC (open sound control). An
overview of the complete Improvasher system is shown in
Figure 3. A corresponding screenshot of the Improvasher
Max patch is shown in Figure 4.

For this prototype implementation of Improvasher we im-
pose three constraints to simplify the processing and reduce
the computational burden:

• For all candidate songs, we pre-compute the beat-
synchronous chromagram representation so this can
be pre-loaded into Improvasher prior to the start of
the live musical performance, thus negating the need
to analyse the set of candidate songs more than once.

• We force the tempo of the live input to be fixed by
having the musician play along with a metronome set
to 120 beats per minute (bpm). This removes the need
to include real-time beat tracking which could intro-
duce errors, and allows us to time-stretch all candidate
songs to be at 120 bpm (i.e. exactly 500 ms per beat
slice) before run-time. For time-stretching and pitch-
shifting we use the open source Rubberband Library
[2].

• To reflect the ability of the mashup system in [5]
to find matches between songs in different keys, we
pre-compute the pitch-shifted versions of all candi-
date songs, over a range of ±3 semitones. These key-
shifted versions effectively appear as different candi-
date songs, but this prevents the need perform pitch-
shifting at run time.

Figure 4: A screenshot of the Improvasher patch
for Max.

By constraining Improvasher in this way, we need only
retrieve the audio corresponding to the best matching beat
slice and commence playback without any additional pro-
cessing, thus minimising the computational cost while main-
taining the majority of the core functionality of the mashup
system in [5]. We revisit these constraints within future
work in Section 3.

2.4 Usage
Based on our initial experiments we have explored two main
usage scenarios for Improvasher. The first involves creating
a real-time mashup to accompany a live music performance,
e.g. from a guitar. As specified above, we simplify the cre-
ation of the real-time mashup accompaniment by restricting
the performer to play along to a metronome, thus eliminat-
ing the need for real-time automatic beat tracking. To exert
some control over how the mashup can sound, the musician
can specify a subset of the pre-analysed candidate songs, for
instance only using examples of solo bass playing, or only
music from a particular style (e.g. house music). Alter-
natively, the musician can choose to include all candidate
songs to create more experimental mashups.

The second usage scenario is a direct result of the pre-

Proceedings of the International Conference on New Interfaces for Musical Expression

543

computation of time-stretched versions of the candidate
songs. Since we know the precise locations of the beats
ahead of time, any of these candidate songs can them-
selves be the input to the system coupled to the 120 bpm
metronome used for the live musical input. In this way, we
can use Improvasher as kind a of real-time DJ mashup tool.
Once again, the choice of remaining candidate songs can be
customised, and the user can control when the mashup is
generated by interacting with the “Start Click Track” but-
ton in Figure 4. To demonstrate the usage of Improvasher
in both usage scenarios, we provide a website with video
examples [6].

3. DISCUSSION AND CONCLUSIONS
In this paper we have presented Improvasher, a system for
creating real-time music mashups as accompaniment to a
live musical input. The main contribution of this work is
in the application of a predictive model of harmonic con-
tent to drive a real-time mashup accompaniment for live
musical input. Our initial experiences using Improvasher,
particularly with a live guitar input have shown that we can
use the musical performance to “guide” the selection of har-
monically related beat segments by playing different chords.
While the output of the system can sound very different to
the input, it appears to exhibit some musical connection
with the live input.

In the current implementation of Improvasher we imposed
several constraints. In particular, we fixed the tempo of the
input using a metronome and pre-computed time-stretched
and pitch-shifted candidates for use in the the mashup ac-
companiment. To expand the flexibility for live musical
input – to allow for more expressive musical timing, our
main goal in future work will be to relax these constraints
and directly incorporate a real-time beat tracking front-end.
While this increases the complexity of the front-end analy-
sis, and requires accurate estimation of beats in real-time, it
also generates the need to undertake time-stretching (and
potentially pitch-shifting) on the fly, which we consider a
significant technical challenge.

Beyond the inclusion of time-varying analysis into Im-
provasher, we intend to explore several further extensions.
We will examine the effect of extending the duration of
the prediction of harmonic content made by the perfor-
mance following module. This could allow for real-time
bar-synchronous mashups, or the use of longer phrase-level
structure, and thereby make the components used in the
mashup more recognisable, potentially increasing the over-
all enjoyment of the musical result for listeners. Following
the techniques presented in the earGram system [1] for con-
catenative music composition, we will also investigate the
nature of the transitions between contiguous sections used
in the mashup towards imposing more structure and inter-
nal coherence. In addition, we plan to incorporate more fea-
tures for estimating mashability, in particular those which
can capture timbral and rhythmic characteristics of the mu-
sic to offer users more than just harmonic compatibility in
mashup creation.

Finally, we will address the interface, or possible inter-
faces of Improvasher. Within the context of the real-time
DJ mashup usage scenario, we plan to build a Max for Live
device for direct integration into Abelton Live, thus remov-
ing the need for separate Max and Juce applications. Fur-
thermore, we believe that tangible interfaces (e.g. [8]) could
allow users to control and interact in different ways with the
content used in the real-time mashup. We believe that these
extensions will greatly enhance the creative possibilities of
Improvasher and the field of real-time mashups in general.

Acknowledgments
This research was partially funded by the FCT post-
doctoral grant (SFRH/BPD/88722/2012), the Media
Arts and Technologies project (MAT), NORTE-07-0124-
FEDER-000061, financed by the North Portugal Regional
Operational Programme (ON.2 – O Novo Norte), under the
National Strategic Reference Framework (NSRF), through
the European Regional Development Fund (ERDF), and
by national funds, through the Portuguese funding agency,
Fundação para a Ciência e a Tecnologia (FCT), and by On-
gaCrest, CREST, JST.

4. REFERENCES
[1] G. Bernardes, C. Guedes, and B. Pennycook.

Eargram: An application for interactive exploration
of concatenative sound synthesis in Pure Data. In
M. Aramaki, M. Barthet, R. Kronland-Martinet, and
S. Ystad, editors, From Sounds to Music and
Emotions, volume 7900 of Lecture Notes in Computer
Science, pages 110–129. Springer Berlin Heidelberg,
2013.

[2] C. Cannam. Rubber Band Library.
http://breakfastquay.com/rubberband/.

[3] A. Cont. A coupled duration-focused architecture for
realtime music to score alignment. IEEE Transactions
on Pattern Analysis and Machine Intelligence,
32(6):974–987, 2010.

[4] R. Dannenberg. An on-line algorithm for real-time
accompaniment. In Proceedings of the International
Computer Music Conference, pages 193–198, 1984.

[5] M. E. P. Davies, P. Hamel, K. Yoshii, and M. Goto.
AutoMashUpper: An automatic multi-song mashup
system. In Proceedings of the 14th International
Society for Music Information Retrieval Conference,
pages 575–580, 2013.

[6] M. E. P. Davies, A. M. Stark, F. Gouyon, and
M. Goto. Improvasher web site.
http://smc.inescporto.pt/technologies/improvasher/.

[7] T. Jehan. Event-synchronous music
analysis/synthesis. In Proceedings of the 7th
International Conference on Digital Audio Effects
(DAFx-04), pages 361–366, 2004.

[8] S. Jordà, G. Geiger, M. Alonso, and
M. Kaltenbrunner. The reacTable: Exploring the
synergy between live music performance and tabletop
tangible interfaces. In Proceedings of the 1st
International Conference on Tangible and Embedded
Interaction, pages 139–146, 2007.

[9] Juce. Juce Cross-Platform C++ Library.
http://www.juce.com.

[10] D. Schwarz, G. Beller, B. Verbugghe, and S. Britton.
Real-time corpus-based concatenative synthesis with
CataRT. In Proceedings of the 9th International
Conference on Digital Audio Effects (DAFx-06),
pages 279–282, 2006.

[11] J. Shiga. Copy-and-Persist: The Logic of Mash-Up
Culture. Critical Studies in Media Communication,
24(2):93–114, 2007.

[12] A. M. Stark and M. D. Plumbley. Performance
following: Real-time prediction of musical sequences
without a score. IEEE Transactions on Audio, Speech,
and Language Processing, 20(1):190–199, 2012.

[13] B. Sturm. Adaptive concatenative sound synthesis
and its application to micromontage composition.
Computer Music Journal, 30(4):44–66, 2006.

Proceedings of the International Conference on New Interfaces for Musical Expression

544

