
Computers and Operations Research 109 (2019) 1–11

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

Branch-and-bound algorithms for minimizing total earliness and

tardiness in a two-machine permutation flow shop with unforced idle

allowed

Jeffrey Schaller a , ∗, Jorge Valente

b

a Department of Business Administration, Eastern Connecticut State University, 83 Windham St., Willimantic, CT 06226-2295, USA
b LIAAD-INESC TEC, Faculdade de Economia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-464 Porto, Portugal

a r t i c l e i n f o

Article history:

Received 22 April 2018

Revised 27 February 2019

Accepted 22 April 2019

Available online 23 April 2019

Keywords:

Scheduling

Branch-and-Bound

Flow shop

Earliness and tardiness

a b s t r a c t

The two-machine permutation flow shop scheduling problem with the objective of minimizing total ear-

liness and tardiness is addressed. Unforced idle time can be used to complete jobs closer to their due

dates. It is shown that unforced idle time only needs to be considered on the second machine. This re-

sult is then used to extend a lower bound and dominance conditions for the single-machine problem

to the two-machine permutation flow shop problem. Two branch-and-bound algorithms are developed

for the problem utilizing the lower bound and dominance conditions. The algorithms are tested using

instances that represent a wide variety of conditions.

© 2019 Elsevier Ltd. All rights reserved.

1

p

e

i

s

c

d

t

c

l

i

d

d

f

e

m

I

w

V

i

t

c

i

t

h

s

f

o

o

h

t

m

c

i

c

c

p

h

0

. Introduction

The focus of our research in this paper is on the scheduling

roblem of minimizing total earliness and tardiness in a flow shop

nvironment. When scheduling customer jobs to be completed us-

ng an organization’s resources, a variety of objectives can be con-

idered, including the efficient use of resources and providing good

ustomer service.

An important customer service objective is meeting customer

ue dates. Typically, when a customer places an order, a date for

he completion of the order or job is agreed upon. If the job is

ompleted after the date it was due, the job is tardy, and the

ength of time between the job’s completion time and its due date

s its tardiness. On the contrary, if a job is completed before its due

ate, then the job is early, and the length of time between the due

ate and the job’s completion time is its earliness.

Tardiness has long been a traditional measure of scheduling ef-

ectiveness. When jobs are tardy, this can cause sales to be lost or,

ven worse, customers might switch to another supplier. Producers

ust also be concerned with early completion of customer orders.

ndeed, when jobs are completed early the product must be stored,

hich not only requires space, but also causes capital to be tied up
∗ Corresponding author.

E-mail addresses: schallerj@ecsu.ctstateu.edu (J. Schaller), jvalente@fep.up.pt (J.

alente).

t

t

(

a

f

ttps://doi.org/10.1016/j.cor.2019.04.017

305-0548/© 2019 Elsevier Ltd. All rights reserved.
n inventory. This is true whether the product is stored at the cus-

omer’s site or the producer’s site.

As industry has intensified its emphasis on improving supply

hain management in recent decades, earliness has been increas-

ngly included as a measure of scheduling effectiveness. Therefore,

here has been increased research into scheduling problems that

ave the objective of minimizing total earliness and tardiness.

In this paper, we consider a flow shop environment. In a flow

hop there are multiple resources of different types, which we re-

er to as machines, which are used to complete jobs. A key feature

f a flow shop is that all the jobs use the machines in the same

rder as they progress through the shop.

Historically, most of the research on the flow shop environment

as considered the so-called permutation flow shop. In a permu-

ation flow shop the jobs are processed in the same order on each

achine. There are two reasons why most of the research has fo-

used on permutation flow shops. First, a permutation flow shop

s conceptually simpler. Second, in practice it is often difficult to

hange the order of the jobs from machine to machine. We only

onsider permutation schedules in this paper.

One of the ways to reduce the earliness of a job is to delay its

rocessing and therefore its completion time. On a single-machine

his is referred to as inserted idle time. Methods for finding op-

imal schedules that consider inserted idle have been developed

 Schaller, 2007) for the single-machine problem, but not for more

dvanced multi-stage production systems. For example, research

or flow shops with minimizing total earliness and tardiness (see

https://doi.org/10.1016/j.cor.2019.04.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2019.04.017&domain=pdf
mailto:schallerj@ecsu.ctstateu.edu
mailto:jvalente@fep.up.pt
https://doi.org/10.1016/j.cor.2019.04.017

2 J. Schaller and J. Valente / Computers and Operations Research 109 (2019) 1–11

p

d

i

s

s

s

t

d

a

t

w

t

fl

d

o

w

c

m

e

M

i

a

w

b

h

i

f

o

s

p

t

3

c

j

j

C

{

T

e

f

t

F

a

r

h

u

F

u

F

c

p

C

C

s
Fernandez-Viagas et al., 2016) have focused only on heuristic meth-

ods, and do not consider delaying of job processing by using un-

forced idle time.

In this research our goal is to extend the methods used in

branch-and-bound algorithms for the single-machine problem to

the two-machine permutation flow shop problem. By doing this,

we hope to develop methods that can optimally solve small-sized

instances of the problem. Additionally, we hope to obtain insights

that will prove useful for developing heuristic methods that can be

applied to larger-sized instances.

The remainder of the paper is organized as follows. Section two

provides a literature review of relevant research for the problem.

Section three gives a formal description of the problem and ex-

plains how to insert unforced idle time, in a two-machine permu-

tation flow shop, to minimize total earliness and tardiness given

a sequence. In section four, we show how a lower bound for

the single-machine problem can be extended to the two-machine

permutation flow shop and propose two branch-and-bound algo-

rithms.

In section five, we develop dominance conditions that are de-

rived from the single-machine problem and integrate them into

the branch-and-bound algorithms. In section six we describe how

the computational tests were constructed, and then present the re-

sults of those tests. Finally, section seven concludes the paper.

2. Literature review

Many papers for scheduling problems with both earliness and

tardiness costs have been published. The first survey for early/tardy

scheduling that covers most of the early work was provided by

Baker and Scudder (1990) . Hoogeveen (2005) reviewed multicrite-

ria problems that included earliness and tardiness in a more recent

survey. The single-machine environment has the most papers with

an early/tardy objective. Valente (2009) reviews more recent pa-

pers that address an early/tardy scheduling with no idle time on a

single-machine.

Kanet and Sridharan (20 0 0) reviewed the early papers that ad-

dressed scheduling problems that include inserted idle time. Three

of these early papers focused on how to insert idle time to opti-

mize the objective, given a sequence for the single-machine prob-

lem. Fry et al. (1987) first addressed this problem by using a linear

programming formulation. Davis and Kanet (1993) and Yano and

Kim (1991) used special characteristics of the problem to develop

more efficient timetabling procedures.

Branch-and-bound procedures were developed by Davis and

Kanet (1993), Kim and Yano (1994) , and Schaller (2007) for finding

an optimal sequence and schedule for the single-machine problem.

In all three of these branch-and-bound procedures a partial se-

quence of jobs is represented by a node in the branch-and-bound-

tree.

Davis and Kanet (1993) use their timetabling procedure to cal-

culate the earliness and tardiness of jobs in a partial sequence,

which provides a lower bound for the objective, but does not con-

sider the yet to be sequenced jobs. Kim and Yano (1994) developed

an improved lower bound by considering all jobs, i.e. both those in

the partial sequence and the ones that are still to be sequenced.

Schaller (2007) integrated the timetabling algorithm into the

lower bound calculation, and also considered all jobs (those in the

partial sequence, as well as the remaining ones), and found this

lower bound to be better than that of Kim and Yano. Dominance

conditions for the single-machine problem with inserted idle time

were also developed by Kim and Yano (1994), Szwarc (1993) , and

Schaller (2007) .

Much less research has been conducted, for the earliness and

tardiness objective, on production environments other than a

single-machine. To the best of our knowledge, there are eight pa-
ers for the flow shop environment that include earliness and tar-

iness in the objective. None of these papers considers unforced

dle time.

Moslehi et al. (2009) consider the objective of minimizing the

um of maximum earliness and tardiness in a two-machine flow

hop and present an optimal procedure. Chandra et al. (2009) con-

idered a permutation flow shop problem where all the jobs have

he same due date. Several objectives, including earliness and tar-

iness minimization, were considered by Madhushini et al. (2009) ,

nd branch-and-bound procedures were developed for permuta-

ion flow shops.

Zegordi et al. (1995) present a simulated annealing algorithm

ith specialized knowledge for scheduling permutation flow shops

o minimize the sum of weighted earliness and tardiness. A kanban

ow shop was addressed by Rajendran (1999) , and heuristics were

eveloped for scheduling the kanban containers, for the objectives

f minimizing the total weighted flowtime, weighted tardiness and

eighted earliness.

Schaller and Valente (2013b) proposed a genetic algorithm and

ompared it with five other neighborhood search procedures and

etaheuristics, for a permutation flow shop to minimize total

arliness and tardiness. The same problem was considered by

’Hallah (2014) , who developed a variable neighborhood search-

nspired heuristic for the same problem.

Schaller and Valente (2013a) compare several metaheuristics for

 permutation flow shop to minimize total earliness and tardiness

ith family setups; and found that a genetic algorithm worked

est. Fernandez-Viagas et al. (2016) present a new constructive

euristic, as well as bounded local search procedures, for minimiz-

ng total earliness and tardiness in permutation flow shops.

To the best of our knowledge, the consideration of using un-

orced idle time in a permutation flow shop to reduce the sum

f earliness and tardiness has not been addressed in previous re-

earch. In this paper, we show how results for the single-machine

roblem to minimize total earliness and tardiness can be extended

o a two-machine permutation flow shop.

. Problem description

In the problem considered there are n jobs that need to be pro-

essed in a flow shop with two machines. Let d j be the due date of

ob j (j = 1, …, n). The processing time and completion time of job

 (j = 1, …, n) on machine m (m = 1, 2) are represented by p jm

and

 jm

, respectively. The earliness of job j, E j , is defined as: E j = max

d j – C j2 , 0}, for j = 1,…, n. The tardiness of job j, T j , is defined as:

 j = max {C j2 – d j , 0}, for j = 1,…, n. Minimizing Z =

n ∑

j=1

E j + T j (total

arliness and tardiness) is the objective.

This problem has a non-regular objective, and therefore un-

orced idle time can be inserted to possibly improve the objec-

ive, by increasing the completion time of jobs that would be early.

orced idle time is required whenever a machine becomes avail-

ble but the next job to be processed on that machine is not yet

eady for processing. However, to our knowledge, previous research

as not considered unforced idle time for this problem.

In this paper, we consider unforced inserted idle time. We

se [j] to denote the job sequenced in position j. Also, we use

I [j]m

to denote the forced idle time, and UI [j]m

to denote the

nforced idle time, before the job in position j on machine m.

urthermore, we use I [j]m

to denote the total idle time on ma-

hine m before the job in position j (I [j]m

= FI [j]m

+ UI [j]m

). Com-

letion times for the job in position j can then be calculated as

 [0]1 = C [0]2 = 0, C [j]1 = C [j – 1]1 + UI [j]1 + p [j]1 and C [j]2 = max {C [j]1 ,

 [j – 1]2 } + UI [j]2 + p [j]2 .

Since only permutation schedules are considered in this re-

earch, a sequence of jobs that will be processed in the same

J. Schaller and J. Valente / Computers and Operations Research 109 (2019) 1–11 3

Table 1

Notation used in the paper.

Notation Description

n Number of jobs

j Job index. j = 1, …, n

m Machine index. m = 1 or 2

d j Due date of job j

C jm Completion time of job j on machine m

E j Earliness of job j, E j = max {d j – C j2 , 0}

T j Tardiness of job j, T j = max {C j2 – d j , 0}

[j] Job sequenced in position j

FI [j]m Forced idle time on machine m before the job sequenced in position j

UI [j]m Unforced idle time on machine m before the job sequenced in position j

I [j]m Total idle time on machine m before the job sequenced in position j (I [j]m = FI [j]m + UI [j]m)

o

u

j

i

a

i

m

p

t

C

p

S

s

i

(

b

{

c

t

j

g

M

C

C

C

C

U

3

m

c

(

4

4

g

S

a

r

a

o

a

a

n

l

o

a

a

b

t

a

i

t

i

j

r

t

o

q

c

a

n

w

t

s

c

fi

b

g

t

i

s

t

p

c

k
rder on each machine is required to define a solution. Also, since

nforced inserted idle time can be used to reduce the earliness of

obs, we also need to determine if and where to insert unforced

dle time, for a given sequence of jobs, to determine a schedule,

nd hence a solution. Table 1 provides a summary of the notation

ntroduced in this section.

For a given sequence of jobs, the completion time of job [j] on

achine 2 will determine the earliness or tardiness of the job in

osition j of the sequence. As previously shown in this section,

he completion time C [j]2 = max {C [j]1 , C [j – 1]2 } + UI [j]2 + p [j]2 , where

 [0]2 = 0. Therefore, a lower bound on the start time of the job in

osition j on the second machine is given by max {C [j]1 , C [j – 1]2 }.

imilarly, a lower bound on the completion time of the job in po-

ition j is max {C [j]1 , C [j – 1]2 } + p [j]2 (UI [j]2 = 0).

A single-machine timetabling procedure for inserting idle time

nto a given sequence for minimizing total earliness and tardiness

 Fry et al., 1987; Davis and Kanet, 1993; Kim and Yano, 1994) can

e used with the constraint that the jobs cannot start before max

C [j] , C [j – 1]2 } for [j] = 1,…, n. Inserting unforced idle time on ma-

hine 1 does not need to be considered, as doing so can only

ighten the above constraint, and possibly increase a solution’s ob-

ective value.

The problem can therefore be written as the mathematical pro-

ram FS2ET.

FS2ET:

inimize Z =

∑ n

j=1
max

{
C [j] 2 − d [j] , 0

}
+ max

{
d [j] − C [j] 2 , 0

}
(1)

Subject to:

 [j] 1 =

∑ j

k =1

(
p [k] 1

)
for j = 1 , . . . , n (2)

 [j] 2 ≥ C [j −−1] 2 + U I [j] 2 + p [j] 2 for j = 1 , . . . , n (3)

 [j] 2 ≥ C [j] 1 + U I [j] 2 + p [j] 2 for j = 1 , . . . , n (4)

 [0] 2 = 0 (5)

 I [j] 2 ≥ 0 for all j . (6)

Eq. (1) is the sum of earliness and tardiness. Constraint sets 2,

, 4 and 5 develop the completion times for each job on the second

achine. These completion times are compared to the due dates to

alculate the total earliness and tardiness in Eq. (1). Constraint set

6) requires nonnegative unforced idle times.
. Branch-and-bound algorithms and bounds

.1. Branch-and-bound algorithms

In this section, we propose two branch-and-bound al-

orithms that extend a procedure previously developed by

challer (2007) for the single-machine problem. In both branch-

nd-bound algorithms, a node in the branch-and-bound tree rep-

esents a partial sequence of jobs. For each node in the branch-

nd-bound tree, both a lower bound and an upper bound on the

ptimal objective value is calculated, an upper bound is calculated,

nd some conditions that could help fathom the node are also ex-

mined.

An incumbent value, that represents the value of the total earli-

ess and tardiness of the current best sequence, is compared to the

ower bound found for a node. If the incumbent value is less than

r equal to the lower bound, the node is fathomed. Each node’s

ssociated partial sequence is completed using a simple heuristic,

nd its associated objective value is calculated to obtain an upper

ound. If the upper bound found is less than the incumbent value,

hen the incumbent value is updated, and the sequence is retained

s the best sequence found so far.

If a complete sequence is found with an objective value that

s less than the incumbent, then the incumbent is updated, and

he complete sequence is retained as the best sequence found. An

nitial incumbent value and solution are obtained by sorting the

obs in earliest due date order (EDD), inserting idle time in the

esulting sequence and calculating the solution’s total earliness and

ardiness.

The difference between the two algorithms is that in the first

ne, referred to as BBI, a node represents an initial partial se-

uence, while in the second one, denoted as BBP, a node instead

orresponds to a post partial sequence. When a node represents

n initial partial sequence, the sequence is built from the begin-

ing, starting with the first job to be processed, and working to-

ard the end of the sequence to the last job to be processed. On

he contrary, when a node represents a post partial sequence, the

equence is built from the end, starting with the last job to be pro-

essed, and working toward the beginning of the sequence to the

rst job to be processed.

The reason for trying these two versions of the branch-and-

ound algorithm is that in Schaller (2007) ’s branch-and-bound al-

orithm for the single-machine problem, which was shown to be

he most effective, a node represented a post partial sequence. Us-

ng a post partial sequence in the single machine problem was

traightforward as a job’s completion time before the considera-

ion of inserting idle time is known (it is equal to the sum of the

rocessing times of the not yet scheduled jobs, plus the job’s pro-

essing time).

In the two-machine permutation flow shop problem we would

now the job’s completion time on the first machine. However, we

4 J. Schaller and J. Valente / Computers and Operations Research 109 (2019) 1–11

Table 2

Notation introduced in this section.

Notation Description

σ A partial sequence.

p The number of jobs in the partial sequence σ ’.

σ ’ Set of jobs that have not yet been sequenced.

q The number of jobs in the set σ ’ (q = n – p).

P (SPT jm) The sum of the processing times of the j jobs with the shortest processing times on machine m, in the set σ ’.

P (LPT jm) The sum of the processing times of the j jobs with the longest processing times on machine m, in the set σ ’.

d EDD[j] The jth job’s due date when the jobs in σ ’ are sorted in earliest due date order.

LBC [j]2 A lower bound for the completion time on the second machine, for the job in position j of a sequence, when no unforced idle time is used.

I [j]2 The idle time on machine two before the job in position j.

C

a

j

l

l

P

a∑
A

P

a∑

o

t

i

(

t

d

M

P

∑

P

∑

C

I
would not know its completion time on the second machine. We

can calculate a lower bound for a job’s completion time on the

second machine and use it in place of the actual completion time,

but this causes the lower bound to be weaker. Using a node to

represent an initial partial sequence in the branch-and-bound tree

overcomes this problem, as we can calculate the completion times

on both the first and second machines, for each job in the partial

sequence, before any unforced idle time is considered.

4.2. Lower bounds

The lower bounds developed in this section are based on the

lower bound developed by Schaller (2007) for a single machine

environment, suitably modified to reflect scheduling in a two- ma-

chine flow shop. The lower bounds for the two branch-and-bound

algorithms are quite similar in nature, though they necessarily dif-

fer somewhat due to the use of initial or post partial sequences.

We will first consider a node in BBP that represents p jobs in

a post partial sequence σ . Let q = n – p and let σ ’ be the set con-

sisting of these q jobs that have not yet been sequenced. When

we complete the sequence, including the jobs in the set σ ’, then

a timetabling algorithm will be used to solve FS2ET and obtain its

sum of earliness and tardiness.

We could obtain a lower bound without considering the jobs

in σ ’ by solving FS2ET for the jobs in σ , but this lower bound

would be weak. The lower bound can be improved by considering

the jobs that have not yet been sequenced, that is, the jobs in the

set σ .’ To develop the lower bound we use the following notation.

P(SPT j1) = the sum of the processing times of the j jobs with the

shortest processing times on the first machine, in the set σ ’.

P(SPT j2) = the sum of the processing times of the j jobs with the

shortest processing times on the second machine, in the set

σ ’.

P(LPT j2) = the sum of the processing times of the j jobs with the

longest processing times on the second machine, in the set

σ ’.

d EDD[j] = the jth job’s due date when the jobs in σ ’ are sorted in

earliest due date (EDD) order (d EDD[j] ≤ d EDD[k] if j < k).

LBC [j]2 = a lower bound for the completion time on the second

machine, for the job in position j of the sequence, when no

unforced idle time is used.

I [j]2 = the idle time immediately inserted before the job in posi-

tion j.

Table 2 provides a summary of the notation introduced in this

section.

Schaller (2007) proved that if the due dates in EDD order (d EDD)

are substituted for the actual due dates, and compared to the ac-

tual completion times, a lower bound on the total earliness and

tardiness is obtained. That is, we have:
n ∑

j=1

(max {C [j]2 – d EDD[j] ,

0}) + max {d EDD[j] – C [j]2 , 0}) ≤
n ∑

j=1

(max {C [j]2 – d [j] , 0} + max {d [j] –
 [j]2 , 0}). This result can be used as a substitute for (1) to provide

 lower bound.

We also would not know the actual completion times (C [j]2 for

 = 1, …, n) of the jobs in a sequence. However, we can calculate

ower and upper bounds on these completion times using the fol-

owing equations. First the lower bound:

(
SP T j2

)
+

∑ j

k=1
I [k] 2 ≤ C [j] 2 for j = 1 , . . . , q

nd

k ∈ σ ′ p k2 +

∑ j

k = q +1
p [k] 2 +

∑ j

k=1
I [k] 2 ≤ C [j] 2 for j =q + 1 , . . . , n

nd the upper bound:

(
LP T j2

)
+

∑ j

k =1
I [k] 2 ≥ C [j] 2 for j = 1 , . . . , q

nd

k ∈ σ ′ p k2 +

∑ j

k = q +1
p [k] 2 +

∑ j

k =1
I [k] 2 ≥C [j] 2 for j =q + 1 , . . . , n

We also know that the completion time for the job in position j

f a sequence must be greater than or equal to the lower bound on

he completion time if no unforced idle time is used before the job

n position j (C [j]2 ≥ LBC [j]2). These equations can be substituted for

2) , (3) and (4) of the mathematical program FS2ET, and we can

hen formulate the following mathematical program FS2ETEDD1 to

evelop a lower bound, given a post partial sequence σ .

FS2ETEDD1:

inimize Z LB

=

∑ q

j=1

(
max

{
C [j] 2 − d EDD [j] , 0

}
+ max

{
d EDD [j] − C [j] 2 , 0

})
+

∑ n

j=q+1

(
max

{
C [j] 2 − d [j] , 0

}
+ max

{
d [j] − C [j] 2 , 0

})
(7)

Subject to:

(
SP T j2

)
+

∑ j

k = q +1
p [k] 2 +

∑ j

k=1
I [k] 2 ≤ C [j] 2 for j = 1 , . . . , q

(8)

k ∈ σ ′ p k2 +

∑ j

k=q+1
p [k] 2 +

∑ j

k=1
I [k] 2 ≤C [j] 2 for j =q + 1 , . . . , n

(9)

(
LP T j2

)
+

∑ j

k=1
I [k] 2 ≥ C [j] 2 for j = 1 , . . . , q (10)

k ∈ σ ′ p k2 +

∑ j

k=q+1
p [k] 2 +

∑ j

k=1
I [k] 2 ≥ C [j] 2 for j =q + 1 , . . . , n

(11)

 [j] 2 ≥ LB C [j] 2 for j = 1 , . . . , n (12)

 [j] 2 , ≥ 0 forj = 1 , . . . n. (13)

J. Schaller and J. Valente / Computers and Operations Research 109 (2019) 1–11 5

F

q

f

o

m

o

T

q

a

σ

d

o

T

q

q

t

s

s

o

q

j

n

o

s

c

a

o

T

q

q

t

p

p

q

a

m

s

9

c

a

c

t

c

l

t

a

{

p

L

l

fi

t

o

p

t

c

t

m

a

i

o

b

o

t

m

c

o

t

t

m

g

t

t

i

r

a

M

∑

C

C

P

P

C

I

h

t

w

j
Eq. (7) is the objective function in mathematical program

S2ETEDD1. The due dates of the jobs that have not yet been se-

uenced (σ ’) are sorted in EDD order. These due dates are used

or the first q positions, and the actual due dates are used for the

ther positions. Completion times and idle times need to be deter-

ined for the solution of the mathematical program.

Constraint set 8 sets a lower bound for the completion times

n the second machine for the first q jobs of a complete sequence.

his constraint set requires the completion time of the job se-

uenced in the jth position of a complete sequence to be at least

s great as the sum of the processing times of the jobs in the set

’ on the second machine, sorted in shortest processing time or-

er, for the first j positions, plus any idle time that is used.

Constraint set 9 sets a lower bound for the completion times

n the second machine, for the last p jobs of a complete sequence.

his constraint set requires the completion time of the job se-

uenced in the jth position of a complete sequence, for positions

 + 1 to n, to be at least as great as the sum of the processing

imes of the jobs in the set σ ’ on the second machine, plus the

um of the processing times on the second machine of the jobs

equenced in positions q + 1 to j, plus any idle time that is used.

Constraint set 10 sets an upper bound for the completion times

n the second machine for the first q jobs of a complete se-

uence. This constraint set requires the completion time of the

ob sequenced in the jth position of a complete sequence to be

o greater than the total processing time, on the second machine,

f the j jobs in the set σ ’ with the longest processing times on the

econd machine, plus the total processing time on the second ma-

hine of the jobs sequenced in positions q + 1 to j (if j > q), plus

ny idle time that is used.

Constraint set 11 sets an upper bound for the completion times

n the second machine for the last p jobs of a complete sequence.

his constraint set requires the completion time of the job se-

uenced in the jth position of a complete sequence, for positions

 + 1 to n, to be no greater than the sum of the processing times of

he jobs in the set σ ’ on the second machine, plus the sum of the

rocessing times, on the second machine, of the jobs sequenced in

ositions q + 1 to, j plus any idle time that is used.

Constraint set 12 requires the completion time of the job se-

uenced in the jth position of a complete sequence to be at least

s great as a lower bound on the completion time considering both

achines. This lower bound will be defined below. Finally, con-

traint set (13) requires nonnegative inserted idle times.

The lower bounds on completion times in constraint sets 8 and

 only consider the processing times on the second machine. By

onsidering the processing times of jobs on the first machine, an

dditional lower bound for completion times on the second ma-

hine can be developed. We use the notation LBC [j]2 to denote that

his is a lower bound on the completion time on the second ma-

hine of the job in the jth position of a complete sequence. This

ower bound does not consider any unforced idle time but may be

ighter than the lower bound obtained by using constraint sets 8

nd 9.

For positions 1 through q, LBC [j]2 is defined as: LBC [j]2 = max

P(SPT k1) + P(SPT (j-k + 1)2) k = 1, …, j} for positions 1 through q. For

ositions q + 1 through n, it is instead calculated as:

B C [j] 2 = max

{ ∑

k ∈ σ ′
p k1 +

j ∑

k = q +1

p [k] 1 , LB C [j −1] 2

}

+ p [j] 2 .

In this lower bound, and for the first q positions, we obtain a

ower bound for the processing times on the first machine for the

rst k jobs. This represents a lower bound on the start time, on

he second machine, of the job in position k. After the job starts,

n the second machine, of the job in position k, we still need to

rocess the jobs in positions k through j, on the second machine,
o complete the job in position j. We would not know these pro-

essing times but use a lower bound on their sum. We then take

he maximum lower bound for k < j.

If j > q, we know the sum of the processing times on the first

achine for the first j jobs of a complete sequence. This represents

 lower bound on the start, on the second machine, of the job

n position k. To this start time, we then add the processing time

n the second machine of the job in position k, to obtain a lower

ound on its completion. A lower bound on the start, on the sec-

nd machine, of the job in position k can also be obtained by using

he lower bound on the completion time of the job sequenced im-

ediately before job [k] (LBC [j-1]2). To this, we then add the pro-

essing time, on the second machine, of the job in position k, to

btain a lower bound on its completion. We use the maximum of

hese two lower bounds for the jobs sequenced in positions j > q.

The objective (7) and constraint sets 8, 9, and 11 correspond to

he mathematical model that provides a lower bound for the single

achine problem developed by Schaller (2007) . The timetabling al-

orithm developed by Schaller (2007) can then be used to solve

he model with these constraint sets. A minor modification to the

imetabling algorithm, in order to include constraint set 10, is used

n this research to develop the lower bound.

Given an initial partial sequence σ with p jobs, in the BBI algo-

ithm we can use the mathematical program FS2ETEDD2 to obtain

 lower bound.

FS2ETEDD2:

inimize Z LB

=

p ∑

j=1

(
max

{
C [j] 2 − d [j] , 0

}
+ max

{
d [j] − C [j] 2 , 0

})

+

n ∑

j= p+1

(
max

{
C [j] 2 − d EDD [j] , 0

}
+ max

{
d EDD [j] − C [j] 2 , 0

})
(14)

Subject to:

j

k =1

p [k] 2 +

j ∑

k =1

I [k] 2 = C [j] 2 for j = 1 , . . . , p (15)

 [j] 2 ≥ C [j −−1] 2 + I [j] 2 + p [j] 2 for j = 1 , . . . , p (16)

 [j] 2 ≥ C [j] 1 + I [j] 2 + p [j] 2 for j = 1 , . . . , p (17)

(
SP T (j −p) 2

)
+

p ∑

k =1

p [k] 2 +

j ∑

k =1

I [k] 2 ≤ C [j] 2 for j = p + 1 , . . . , n

(18)

(
LP T (j −p) 2

)
+

p ∑

k =1

p [k] 2 +

j ∑

k =1

I [k] 2 ≥ C [j] 2 for j = p + 1 , . . . , n

(19)

 [j] 2 ≥ LB C [j] 2 for j = p + 1 , . . . , n (20)

 [j] 2 , ≥ 0 for j = 1 , . . . n . (21)

The objective (14) is the same as (7) . However, and since we

ave an initial partial sequence instead of a post partial sequence,

he actual due dates are used for the jobs in the first p positions,

hile due dates sorted in earliest due date order are used for the

obs in the last n – p positions (that is, for the jobs in set σ ’).

6 J. Schaller and J. Valente / Computers and Operations Research 109 (2019) 1–11

Table 3

Data for the example.

Job

1 2 3 4 5

p j1 2 8 5 5 2

p j2 2 4 6 10 10

d j 39 37 38 36 39

Table 4

Completion times for the example initial partial sequence.

4A. Before unforced idle time is used.

job

Machine 1 2 3

C j1 2 10 15

C j2 4 14 21

4B. After unforced idle time is used.

Job

Machine 1 2 3

C j1 2 10 15

C j2 33 37 43

4C. After adding two more jobs.

Job

Machine 1 2 3 4 5

C j1 2 10 15 20 22

C j2 28 32 38 48 58

Fig. 1. Gantt chart for initial partial sequence, without unforced idle time.

p

I

t

b

t

i

c

t

d

u

c

t

i

f

a

t

a

t

j

t

c

b

s

a

Since we know the processing times on both machines of the first

p jobs in a sequence, we can calculate the actual completion times

when the amount of unforced idle time is determined. This is rep-

resented by constraints 15, 16, and 17.

We can obtain lower and upper bounds for the completion

times for the positions that will be filled by the jobs in the set σ ’,

and this is represented by constraint sets 18, 19, and 20. Constraint

set (21) requires nonnegative inserted idle times. The timetabling

algorithm used in FS2ETEDD1 was modified to account for the dif-

ferent constraints, and this algorithm is used to solve FS2ETEDD2

to obtain a lower bound.

4.3. Upper bound

For each node to be evaluated, in either of the branch-and-

bound algorithms (BBI or BBP), if its lower bound is less than the

incumbent value, then an upper bound is calculated. First, the par-

tial sequence is completed. This is done by sorting the unscheduled

jobs in earliest due date order (EDD). For the BBI algorithm these

jobs are placed after the initial partial sequence, while for the BBP

algorithm they are placed before the partial sequence.

A timetabling algorithm is then used to insert unforced idle

time, by minimizing the objective value for the sequence. The total

earliness and tardiness of this schedule is the upper bound. If the

upper bound is less than the incumbent value, then the incumbent

value is updated, and this sequence is retained as the best solution

found.

5. Dominance conditions

This section presents conditions for jobs that are adjacent in

a partial sequence that can eliminate further consideration of the

partial sequence in the branch-and-bound tree. There are condi-

tions that have been used for the single-machine early/tardy prob-

lem with inserted idle allowed that can be modified, to be used in

the two-machine permutation flow shop problem.

The modifications to the single-machine conditions are needed

because we need to consider processing on the first machine, as

well as the second machine, in the two-machine permutation flow

shop problem. Also, since the conditions are examined with re-

spect to a partial sequence, we need to consider what will happen

to the start and completion times on the second machine, as jobs

are added to a partial sequence. In order to evaluate a partial se-

quence, we can use a timetabling algorithm to insert unforced idle

time on the second machine for the jobs in the partial sequence

and calculate the earliness and tardiness of the jobs in the partial

sequence.

5.1. Initial versus post partial sequences

When we check the conditions, it is important to remember

that if we are working with an initial partial sequence (BBI), then

the completion times of the jobs (on the second machine) in this

initial partial sequence could be pushed earlier as jobs are added

to the partial sequence. If we are working with a post partial se-

quence (BBP), then the completion times of the jobs in the post

partial sequence could be pushed to a later completion time as

jobs are added to the partial sequence.

This can be demonstrated with the following five job example.

The data for p j1 , p j2 , and d j , j = 1, ..., 5, are shown in Table 3 .

If we are considering the initial partial sequence 1 – 2 – 3, the

completion times of these jobs without unforced idle are shown

in Table 4 A. Fig. 1 shows the Gantt chart for this initial partial se-

quence without unforced idle time.

As unforced idle time is used, the three jobs in the initial par-

tial sequence will have their completion times increased, as their
rocessing times are right-shifted because each of the jobs is early.

n this example, eventually the start and completion times of the

hree jobs on the second machine will form a block, and there will

e no idle time between these jobs.

The completion times of the jobs are shown in Table 4 B, and

he associated Gantt chart is shown in Fig. 2 . At this point, increas-

ng the idle time before the first job of the block by one unit will

ause the objective to increase one unit. This is due to the fact,

hat one job is early, one is on time, and one job is tardy. Likewise,

ecreasing the idle time before the first job of the block by one

nit will also cause the objective to increase one unit.

When jobs 4 and 5 are added to the partial sequence to create a

omplete sequence 1 – 2 – 3 – 4 – 5, then the completion times for

he jobs will be as shown in Table 4 C. The associated Gantt chart

s shown in Fig. 3 . Since the processing on the second machine

or the two additional jobs occurs after the other jobs, these two

dditional jobs will be tardy if the completion times for the first

hree jobs shown in Table 4 B were used.

Therefore, the processing of the first three jobs is left shifted,

nd idle time is decreased to decrease the objective value. With

he completion times shown in Table 4 C, two jobs are early, one

ob is on time, and two jobs are tardy, so adding or decreasing idle

ime before the block of jobs will increase the objective.

If we consider the post partial sequence 3 – 4 – 5, then the

ompletion times on the second machine of these jobs could

e right-shifted (increased) as additional jobs are added. Table 5

hows the completion times for the post partial sequence for the

bove example.

J. Schaller and J. Valente / Computers and Operations Research 109 (2019) 1–11 7

Fig. 2. Gantt chart for initial partial sequence, with unforced idle time.

Fig. 3. Gantt chart with two additional jobs added.

Table 5

Completion times for the example post partial sequence.

5A. With unforced idle time.

Job

Machine 1 2 3 4 5

C j1 15 20 22

C j2 26 36 46

5B. After adding two more jobs.

Job

Machine 1 2 3 4 5

C j1 2 10 15 20 22

C j2 28 32 38 48 58

5

e

e

t

r

w

S

a

t

s

a

t

d

0

c

a

w

r

m

s

t

k

r

t

S

p

b

j

5

r

t

i

b

c

k

s

a

s

w

a

k

h

t

S

t

(

l
.2. Rules for the single-machine problem

In this section, we provide a review of the rules used to

liminate nodes from further consideration in the single-machine

arly/tardy problem. In this paper, these rules will be modified so

hey can be used for the two-machine flow shop problem.

A rule for adjacent jobs was developed by Szwarc (1993) . This

ule determines the order for the two adjacent jobs based on

hether they are scheduled before or after a calculated time.

zwarc’s (1993) rule, restated by Schaller (2007) for the case where

ll weights for the costs are equal to 1, is provided below.

Szwarc’s (1993) Rule: For each pair of jobs j and k, if they are

o be adjacent to each other, job k should be before job j if they are

tarted before t jk , and j should be before job k if they are started

fter t jk , where

 jk =

{
d j − −0 . 5 ∗

(
p j + p k

)
, if d j − −d k > 0 . 5 ∗

(
p j − −p k

)
< 0 ,

 j − −p j − −0 . 5 ∗
(
p j + p k

)
, if d j − −d k ≤ 0 . 5 ∗

(
p j − −p k

)
< 0 ,

 , if p j = p k & d j − −d k ≤ 0

}
.

Kim and Yano (1994) provided two rules for a pair of adja-

ent jobs. The two rules are derived from Szwarc’s rule (1993) and

re therefore corollaries of Szwarc’s rule. The first rule determines
hich job is first if the jobs are early or on time, and the second

ule determines which job is first if the jobs are tardy or on time.

Rule 1: If adjacent jobs j and k are started later or equal to

ax {d j , d k }, job j should be before job k when p k > p j , and job k

hould be before job j when p k < p j .

Rule 2: If adjacent jobs j and k are completed earlier than or at

he same time as min {d j – p j , d k – p k }, job j should be before job

 when p k < p j , and job k should be before job j when p k > p j .

Szwarc’s rule is stronger than these rules, that is, Szwarc’s

ule eliminates the partial sequences that are eliminated by

hese rules. An additional corollary of Szwarc’s rule, as noted by

challer (2007) , is that if there exist two jobs j and k such that

 j = p k and d j < d k , and the jobs are adjacent, then job j should be

efore job k. Schaller (2007) also shows that job j should be before

ob k, even when they are not adjacent, if p j = p k and d j < d k .

.3. Rules for Two-machine permutation flow shop scheduling

The rules reviewed in the previous section could be valuable in

educing the search space in a flow shop environment. One condi-

ion that is necessary for the rules of the previous section to apply

n flow shops is that there is no idle time on the second machine

etween the two adjacent jobs to be examined.

Let jobs j and k be adjacent jobs in a sequence, with job j pre-

eding job k. Also, let St km

be the start time of processing for job

 on machine m. Then, for any of the rules in the preceding sub-

ection to be of use, we must have St k2 = C j2 . Consider schedules S

nd S’ which are the same, with the following exception. In both

chedules jobs j and k are adjacent, but job j precedes job k in S,

hile job k precedes job j in S’.

Let job h be the first job scheduled after jobs j and k, if jobs j

nd k are not the last two jobs in schedules S and S’. If jobs j and

 are the last jobs to be in the schedules, we define a fictitious job

 with p h1 = ∞ . Let C jm

(S), C km

(S), C jm

(S’), and C km

(S’) represent

he completion times of jobs j and k on machine m in schedules

 and S’. Since jobs j and k are adjacent, and there will be no idle

ime between the two jobs on the first machine, then C k1 (S) = C j1

S’).

The completion time on the second machine, for the job in the

atter of the two positions, could differ in schedules S and S’. If

8 J. Schaller and J. Valente / Computers and Operations Research 109 (2019) 1–11

b

t

e

l

t

c

(

(

t

S

p

t

f

s

p

s

j

d

fi

i

s

t

B

s

3

t

t

a

W

m

s

p

b

m

c

fi

b

t

l

q

(

t

t

g

j

o

l

t

(

g

m

t

d

j

the following two conditions (A and B) are both true, the rules

for adjacent jobs in previous subsection can be used for the two-

machine permutation flow shop problem.

A) Either C k2 (S) ≤ C j2 (S’) or C k2 (S) ≤ C j1 (S’) + p h1 , and

B) St k2 (S) = C j2 (S) and St j2 (S’) = C k2 (S’).

Proof. If schedule S has an earlier completion time for the two

jobs than schedule S’, that will not affect the completion times of

the jobs sequenced after jobs j and k, unless the earlier completion

time under schedule S is beneficial. The reason for this is unforced

idle time could be used to increase the completion time of these

jobs on the second machine, if that is needed to reduce earliness.

If the completion time on the second machine for the two jobs

in schedule S is greater than that of schedule S’, but less than the

completion time of the two jobs on the first machine plus the pro-

cessing time on the first machine of the next job to be scheduled

after jobs j and k (job h), then again the completion times for the

jobs sequenced after jobs j and k will also not be affected. If the

completion time is later under schedule S than schedule S’, how-

ever, that could increase the completion times on the second ma-

chine of the jobs sequenced after jobs j and k, and unforced idle

time cannot be used to cause earlier completion times, so the later

completion times could cause the objective to increase.

The completion times of the jobs that are scheduled before jobs

j and k would also not be affected by whether schedule S or S’ is

chosen. Since there is no idle time between the two jobs on the

second machine (the start time of the job sequenced second equals

the completion time of the job sequenced first in both schedules),

the comparison of the schedules involves a simple interchange be-

tween the two jobs on the second machine and is not affected

by the completion times of the jobs on the first machine. There-

fore, the local problem (adjacent job exchange) becomes the same

as the single-machine problem, and the rules for comparing ex-

changes of adjacent jobs on a single-machine can be applied to

the two-machine permutation flow shop problem. //End of Proof

We can now restate the rules for adjacent jobs on a single ma-

chine, so they can be applied to the two-machine permutation

flow shop problem. Condition 1 is Kim and Yano’s (1994) rule 1

modified to be used for the two-machine flow shop problem.

Condition 1: If jobs j and k are adjacent and cannot be started

on the second machine earlier than max {d j , d k }, if (1) p k2 > p j2 ,

(2) St j2 (S’) = C k2 (S’) and St k2 (S) = C j2 (S), and (3) C k2 (S) ≤ C j2 (S’)

or C k2 (S) ≤ C j1 (S’) + p h1 , then schedule S will be at least as good

as schedule S’ in terms of the objective, and job j should be before

job k.

When evaluating partial sequences, condition 1 will be effective

for post partial sequences, as in BBP. A timetabling algorithm can

be used to optimize the partial sequence, and if a pair of adjacent

jobs is found to meet condition 1, then it can be used to eliminate

a node. The reason for this is that as jobs are added to partial se-

quences in BBP, the completion times on the second machine could

become later, but not earlier, and therefore condition 1 will still be

met.

However, this is not the case for initial partial sequences, as in

BBI. When an initial partial sequence is being evaluated, it must

be remembered that as jobs are added, the completion times on

the second machine of the jobs in the partial sequence could be

pushed earlier, and therefore cause the criteria of condition 1 to

not be met.

If it is determined that criteria 2) and 3) of condition 1 will

be met (this can be determined by scheduling the initial partial

sequence without using any unforced idle time) then Swarc’s rule

(1994) can be used to determine maximum completion times, on

the second machine, for jobs j and k as defined by condition 2.
These completion times can be used to strengthen the lower

ound for an initial partial sequence. These maximum completion

imes could also cause other completion times for jobs sequenced

arlier than jobs j and k to violate condition 3 (to be presented

ater).

Condition 2: If there are two adjacent jobs in an initial par-

ial sequence, j and k, that cannot be started on the second ma-

hine earlier than max {d j , d k }, and job k precedes job j, then if

1) p k2 > p j2 , and (2) St j2 (S’) = C k2 (S’) and St k2 (S) = C j2 (S), and

3) C k2 (S) ≤ C j2 (S’) or C k2 (S) ≤ C j1 (S’) + p q1 , with the comple-

ion of the partial sequence then the completion time of job k in

’ (C k2 (S’)) must be less than or equal to t jk + p k2 , and the com-

letion time of job j in S’ (C j2 (S’)) must be less than or equal to

 jk + p k2 + p j2 .

Condition 3 is Kim and Yano’s (1994) rule 2 modified to be used

or the two-machine permutation flow shop problem.

Condition 3: If two adjacent jobs, j and k, are completed on the

econd machine before or equal to min {d j – p j2 , d k – p k2 }, if (1)

 k2 < p j2 and (2) C k2 (S) ≤ C j2 (S’) or C k2 (S) ≤ C j1 (S’) + p h1 , then

chedule S will be at least as good as S’, and job j should be before

ob k.

Note that St j2 (S’) = C k2 (S’) and St k2 (S) = C j2 (S) has been

ropped from this condition. This is because the job sequenced

rst of the two jobs in either schedule will be early, and unforced

dle time will be used to increase its completion time to equal the

tart time of the job sequenced second of the two jobs. Therefore,

hese criteria will be met.

Condition 3 will be effective for initial partial sequences, as in

BI. A timetabling algorithm can be used to optimize the partial

equence, and if a pair of adjacent jobs is found to meet condition

, then it can be used to eliminate a node. The reason for this is

hat as jobs are added to partial sequences in BBI, the completion

imes on the second machine could become earlier, but not later,

nd therefore condition 3 will still be met.

However, this is not case for post partial sequences, as in BBP.

hen a post partial sequence is being evaluated, it must be re-

embered that as jobs are added, the completion times on the

econd machine of the jobs in the partial sequence could be

ushed later, and therefore cause the criteria of condition 3 to not

e met. If it is determined that criteria (2) of condition 3 will be

et, then Swarc’s rule (1994) can be used to determine minimum

ompletion times on the second machine for jobs j and k, as de-

ned by condition 4.

These completion times can be used to strengthen the lower

ound for a post partial sequence. These minimum completion

imes could also cause other completion times for jobs sequenced

ater than jobs j and k to violate condition 1.

Condition 4: If there are two adjacent jobs in a post partial se-

uence, j and k, and job k precedes job j, then if (1) p k2 < p j2 , and

2) C k2 (S) ≤ C j2 (S’) or C k2 (S) ≤ C j1 (S’) + p h1 , then the comple-

ion time of job k in S’ (C k2 (S’)) must be greater than or equal to

 jk + p k2 , and the completion time of job j in S’ (C j2 (S’)) must be

reater than or equal to t jk + p k2 + p j2 .

Condition 5 is the modified version of Schaller’s (2007) rule for

obs that have equal processing times, and are adjacent to each

ther, for use with the two-machine permutation flow shop prob-

em. In this condition, the two jobs must have equal processing

imes on the second machine.

Condition 5. If jobs j and k are adjacent, (1) p k2 = p j2 , (2) St j2
S’) = C k2 (S’), and (3) d j < d k , then schedule S will be at least as

ood as S’, and job j should be before job k.

The next condition, condition 6, is not derived from the single-

achine early/tardy problem, but from the two-machine permuta-

ion flow shop problem with an objective of minimizing total tar-

iness (Sen et al. 1989). For this condition, let set B be the set of

obs sequenced before jobs j and k.

J. Schaller and J. Valente / Computers and Operations Research 109 (2019) 1–11 9

p

u

k

P

a

R

t

s

t

a

t

u

u

T

t

h

(

(

I

w

P

c

a

s

a

m

a

s

j

o

B

a

P

a

s

p

i

i

o

t

s

j

a

n

T

(

(

(

A

s

i

C

b

–

A

(

Z

(

t

Z

t

d

s

c

p

6

d

c

6

o

a

i

d

j

t

o

t

(

m

i

a

a

r

d

p

T

3

a

t

a

a

6

n

q

s

r

c

r

i

t

r

j

p

t
Condition 6. If jobs j and k are adjacent, (1) p j2 ≤ p k2 , (2)

 j1 ≤ p k1 , (3) p j1 ≤ p j2 , and (4)
∑

l∈ B
p l1 + p j1 + p j2 ≥ d j , then sched-

le S will be at least as good as S’, and job j should be before job

.

roof. The completion times of the jobs sequenced before jobs j

nd k are not be affected by which schedule, S or S’, is selected.

equirements (1), (2) and (3) ensure C k2 (S) ≤ C j2 (S’), so addi-

ional unforced idle time can be used on the second machine for

chedule S for the jobs sequenced after jobs j and k. This allows

hat the completion times for schedule S, of the jobs sequenced

fter jobs j and k, could equal those for schedule S’. So, the to-

al earliness and tardiness of the jobs sequenced after jobs j and k

nder schedule S is less than or equal to that of schedule S’.

Criterion 4) ensures that job j will not be early in either sched-

le. Therefore, to prove this condition we only need to prove that

 j (S) + E k (S) + T k (S) ≤ T j (S’) + E k (S’) + T k (S’). If d k ≥ C j2 (S’),

hen T k (S) = T k (S’) = 0, T j (S) ≤ T j (S’), and E k (S’) < E k (S), so we

ave T j (S) + E k (S) + T k (S) ≤ T j (S’) + E k (S’) + T k (S’).

If d k ≤ d j , then neither job j or k will be early, and E k (S) = E k
S’) = 0. By (1) and (2), we have C j (S) ≤ C k (S’), and C k2 (S) ≤ C j2

S’). Therefore, T j (S) + E k (S) + T k (S) ≤ T j (S’) + E k (S’) + T k (S’).

f d j < d k < C j2 (S’), then T j (S’) – T j (S) ≥ E k (S) + T k (S). Thus,

e have T j (S) + E k (S) + T k (S) ≤ T j (S’) + E k (S’) + T k (S’). //End of

roof

Condition seven is based on Schaller (2007) ’s single-machine

ondition for jobs that have equal processing times, but these jobs

re not necessarily adjacent to each other. For this condition let

et B be the set of jobs sequenced between jobs j and k. Consider

 schedule S in which job j precedes job k and is sequenced im-

ediately before the set of jobs B, and job k is sequenced immedi-

tely after the set of jobs B. Let S’ be a schedule that has the same

equence as schedule S, with the exception that the positions of

obs j and k are exchanged, so job k immediately precedes the set

f jobs B, and job j is sequenced immediately after the set of jobs

.

Condition 7. If for two jobs j and k, (1) p k2 = p j2 , (2) p j1 ≤ p k1 ,

nd (3) d j < d k , then job j precedes job k in an optimal schedule.

roof. The completion times of the jobs sequenced before jobs j

nd k will not be affected by the choice of which job, j or k, is

equenced earlier. Since p j1 ≤ p k1 , the jobs in set B will be com-

leted on the first machine earlier or at the same time (if p j1 = p k1)

f job j precedes job k. Therefore, unforced idle time can be used,

f necessary, to set the completion times on the second machine,

f the jobs in set B when j is sequenced before job k to be equal

o those when job k is sequenced before job j.

Since the completion time on the first machine will be the

ame for the job sequenced immediately after the set B (either job

 or k) and p j2 = p k2 , the completion times of the jobs sequenced

fter the job that is sequenced second among jobs j and k will

ot be affected by the choice of which schedule S or S’ is chosen.

herefore, to prove this theorem it only needs to be proved that E j
S) + T j (S) + E k (S) + T k (S) ≤ E j (S’) + T j (S’) + E k (S’) + T k (S’).

Note that we have C j1 (S) + p j2 ≤ C k1 (S’) + p k2 and C k1

S) + p k2 = C j1 (S’) + p j2 . Let Z j (S) = E j (S) + T j (S), Z k (S) = E k (S) + T k
S), Z j (S’) = E j (S’) + T j (S’), and Z k (S’) = E k (S’) + T k (S’). Also let

 = d k – d j and D = C k2 (S) – C k2 (S’). There are two cases to con-

ider: (1) C k1 (S) + p k2 – d k ≥ 0 and (2) C k1 (S) + p k2 – d k < 0.

Case (1) C k1 (S) + p k2 – d k ≥ 0. Having C k1 (S) + p k2 – d k ≥ 0

mplies that C k2 (S) = C j2 (S’) and Z j (S’) = Z k (S) + A. Also, we have

 k2 (S’) ≥ C k1 (S’) + p k2 ≥ C j1 (S) + p j2 . Since unforced idle time can

e used to set C j2 (S) = C k2 (S’), if d k ≥ C k2 (S’) then Z k (S’) ≥ Z j (S)

A. Since C j2 (S) ≤ C k2 (S’), if d k < C k2 (S’) then Z k (S’) ≥ Z j (S) –

. Therefore, for this case, Z j (S) + Z k (S) ≤ Z j (S’) + Z k (S’).
Case 2) C k1 (S) + p k2 – d k < 0. If d k < C k2 (S), then C j2 (S’) = C k2

S) and Z j (S’) = Z k (S) + A . Since Z k (S’) ≥ Z j (S) – A , we have

 j (S) + Z k (S) ≤ Z j (S’) + Z k (S’). If d k ≥ C k2 (S), then Z k (S’) = Z k
S) + D. Also, C j2 (S’) ≤ C k2 (S) and d j ≤ d k . Since unforced idle

ime can be used to set C j2 (S) = C k2 (S’), if necessary, then Z j (S) ≤
 j (S’) + D. Therefore, we have Z j (S) + Z k (S) ≤ Z j (S’) + Z k (S’) for

his case. //End of Proof

Two additional procedures are created by incorporating the

ominance conditions. The BBID algorithm uses a node to repre-

ent an initial partial sequence and incorporates the dominance

onditions. The BBPD algorithm uses a node to represent a post

artial sequence and incorporates the dominance conditions.

. Computational test

The proposed algorithms are tested on instances generated ran-

omly with several levels of the number of jobs, and under various

onditions of due date range and tightness.

.1. Data

The procedures described in sections four and five were tested

n problems that consisted of several levels of the number of jobs,

nd for nine due date range and tightness distributions. A set of 10

nstances is generated for each combination of number of jobs and

ue date range and tightness parameters. Nine levels of number of

obs (n) are tested: n = 8, 10, 12, 14, 16, 18, 20, 25, and 30.

A uniform distribution was used to generate the processing

imes of the jobs on each machine. These times were generated

ver the integers 1 and 10. To randomly generate the due dates for

he jobs, a uniform distribution was also used over the integers MS

1 – r – R/2) and MS (1 – r + R/2), where MS is the makespan esti-

ated for the instance using the makespan lower bound proposed

n Taillard (1993) , and R and r referred to as the due date range

nd tardiness factors are parameters.

Three levels of due date range (R) were tested: R = 0.2, 0.6

nd 1.0. We also considered three levels of due date tightness (r):

 = 0.0, 0.2 and 0.4. These levels of R and r result in nine sets of

ue date parameters for each level of n.

The Turbo Pascal programming language was used to code the

rocedures, which then tested on a Dell Inspiron 1525 GHz Lap

op computer. Each procedure was performed for a maximum of

00 seconds for an instance. If a procedure was unable to prove

n optimal solution for an instance within the time limit, it was

erminated. For each procedure and for each combination of n, R

nd r, we recorded the average seconds used per instance, as well

s the number of instances solved within 300 seconds.

.2. Results of the test

Tables 6 and 7 show the results of the test for each level of

umber of jobs. Table 6 shows the average amount of time re-

uired per instance, while Table 7 shows how many instances were

olved within the time limit. It is shown that for each of the algo-

ithms the time required to solve instances increases with an in-

rease in the number of jobs.

The results also show that the procedures that use a node to

epresent a post partial sequence (BBP and BBPD) instead of an

nitial partial sequence (BBI and BBID) generally require less time

o solve instances than their counterpart algorithms. These algo-

ithms were able to solve more of the instances with 16 or more

obs than their counterparts.

Including the dominance conditions into the algorithms had a

ositive effect. The BBID and BBPD algorithms required less time

han the BBI and BBP procedures, respectively, for all levels of jobs.

10 J. Schaller and J. Valente / Computers and Operations Research 109 (2019) 1–11

Table 6

Average seconds by number of jobs.

Number of Jobs

Procedure 8 10 12 14 16 18 20 25 30

BBI 0.061 0.629 6.77 27.83 97.84 172.36 265.21 299.47 30 0.0 0

BBP 0.060 0.516 2.63 21.40 94.69 177.67 259.23 297.85 298.49

BBID 0.047 0.238 1.22 8.15 26.52 73.97 157.42 287.91 288.73

BBPD 0.050 0.264 0.97 4.08 15.67 67.56 129.56 265.34 289.67

Table 7

Number of problems solved by number of jobs.

Number of Jobs

Procedure 8 10 12 14 16 18 20 25 30

BBI 90 90 90 90 73 54 17 2 0

BBP 90 90 90 90 78 51 20 1 1

BBID 90 90 90 90 88 77 61 9 5

BBPD 90 90 90 90 90 82 71 18 6

Table 8

Average seconds by r and R for n = 16.

Procedure

r R BBI BBP BBID BBPD

0.00 0.20 129.86 127.57 16.32 8.40

0.00 0.60 91.53 107.39 10.10 9.19

0.00 1.00 54.11 8.42 10.93 2.20

0.20 0.20 103.23 129.76 13.32 26.07

0.20 0.60 71.13 99.69 14.71 14.87

0.20 1.00 12.37 14.08 3.92 2.81

0.40 0.20 204.54 121.39 91.06 31.44

0.40 0.60 166.06 174.60 53.47 33.64

0.40 1.00 47.71 69.27 26.04 12.41

Table 9

Number of problems solved by r and R for n = 16.

Procedure

r R BBI BBP BBID BBPD

0.00 0.20 9 7 10 10

0.00 0.60 8 8 10 10

0.00 1.00 9 10 10 10

0.20 0.20 8 8 10 10

0.20 0.60 10 8 10 10

0.20 1.00 10 10 10 10

0.40 0.20 4 10 9 10

0.40 0.60 6 7 9 10

0.40 1.00 9 10 10 10

o

a

c

a

7

l

i

s

n

s

t

c

d

a

s

b

m

a

q

t

o

s

l

R

B

C

D

F

F

H

K

M

M

M

S
The two algorithms with the dominance conditions included also

solved more instances with 16 or more jobs. As the number of

jobs increased the difference in the number of instances solved by

the algorithms with the dominance conditions, compared to their

counterparts without the dominance conditions increased.

Tables 8 and 9 show the results of the test for each combination

of due date tightness and range parameters (r and R) when n = 16.

Table 8 shows the average amount of time required per instance,

while Table 9 shows the number of instances solved within the

time limit.

The results show that as due dates become tighter, the algo-

rithms generally required more time to solve instances. Three of

the four algorithms were unable to solve all the instances with

the tightest due dates tested (r = 0.40). As the due date range in-

creases, the algorithms generally required less time to solve in-

stances.

When the due date range was 1.00, three of the four algorithms

were able to solve all the instances within the time limit and the
ther algorithm was able to solve 28 of the 30 instances. The BBPD

lgorithm required the least amount of time for seven of the nine

ombinations, and was the only algorithm that was able to solve

ll the instances within the time limit.

. Conclusion

In this research, the two-machine permutation flow shop prob-

em with the objective of minimizing total earliness and tardiness

s addressed. Using unforced idle time to reduce the earliness of

ome jobs is considered. It is shown that unforced idle time is only

eeded on the second machine.

Approaches for the single-machine early/tardy problem with in-

erted idle time allowed are extended to the two-machine permu-

ation flow shop. These include lower bounding procedures and

onditions to reduce the search. Four branch-and-bound proce-

ures were developed and tested. The tests show that the branch-

nd-bound procedure that uses a node to represent a post partial

equence and includes dominance conditions generally worked the

est.

Since the approaches use properties of the two-machine per-

utation flow shop problem, and the results of the tests show the

mount of time required to solve problems to optimality increases

uickly, it is unlikely that extending the methods to more than

wo machines will allow for quickly solving to optimality problems

ther than those with a small number of jobs. Therefore, future re-

earch on heuristic methods that can generate good solutions for

arger sized instances would be beneficial.

eferences

aker, K.R. , Scudder, G.D. , 1990. Sequencing with earliness and tardiness penalties:
a review. Oper. Res. 38, 22–36 .

handra, C. , Mehta, P. , Tirupati, D. , 2009. Permutation flow shop scheduling with
earliness and tardiness penalties. Int. J. Prod. Res. 47, 5591–5610 .

avis, J.S. , Kanet, J.J. , 1993. Single-machine scheduling with early and tardy comple-

tion costs. Naval Res. Logist. 40, 85–101 .
ernandez-Viagas, V. , Dios, M. , Framinan, J.M. , 2016. Efficient constructive and com-

posite heuristics for the permutation flowshop to minimize total earliness and
tardiness. Comput. Oper. Res. 70, 38–68 .

ry, T.D. , Armstrong, R.D. , Blackstone, J.H. , 1987. Minimizing weighted absolute de-
viation in single machine scheduling. IIE Trans. 9, 445–450 .

oogeveen, H. , 2005. Multicriteria scheduling. Eur. J. Oper. Res. 167, 592–623 .

Kanet, J.J. , Sridharan, V. , 20 0 0. Scheduling with inserted idle time: problem taxon-
omy and literature review. Oper. Res. 48, 99–110 .

im, Y.D. , Yano, C.A. , 1994. Minimizing mean tardiness and earliness in single–
machine scheduling problems with unequal due dates. Naval Res. Logist. 41,

913–933 .
adhushini, N. , Rajendran, C. , Deepa, Y. , 2009. Branch-and-bound algorithms for

scheduling in permutation flowshops to minimize the sum of weighted flow-

time/sum of weighted tardiness/sum of weighted flowtime and weighted tardi-
ness/sum of weighted flowtime, weighted tardiness and weighted earliness of

jobs. J. Oper. Res. Soc. 40, 991–1004 .
oslehi, G. , Mirzaee, M. , Vasei, M. , Azaron, A. , 2009. Two-machine flow shop

scheduling to minimize the sum of maximum earliness and tardiness. Int. J.
Prod. Econ. 122, 763–773 .

’Hallah, R. , 2014. An iterated local search variable neighborhood descent hybrid
heuristic for the total earliness tardiness permutation flow shop. Int. J. Prod.

Res. 52 (13), 3802–3819 .

Rajendran, C. , 1999. Formulations and heuristics for scheduling in a Kanban flow-
shop to minimize the sum of weighted flowtime, weighted tardiness and

weighted earliness of containers. Int. J. Prod. Res. 37, 1137–1158 .
challer, J.E. , 2007. A comparison of lower bounds for the single-machine early tardy

problem. Comput. Oper. Res. 34, 2279–2292 .

http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0003
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0003
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0003
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0004
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0004
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0004
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0004
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0005
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0005
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0005
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0006
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0006
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0006
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0006
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0007
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0007
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0007
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0007
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0008
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0008
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0010
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0010
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0010
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0011
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0011
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0011
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0012
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0012
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0012
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0012
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0013
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0013
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0013
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0013
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0013
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0414
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0414
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0016
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0016
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0017
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0017

J. Schaller and J. Valente / Computers and Operations Research 109 (2019) 1–11 11

S

S

S

S

Y

T

V

Z

challer, J.E. , Valente, J.M. , 2013. An evaluation of heuristics for scheduling a non-de-
lay permutation flow shop with family setups to minimize total earliness and

tardiness. J. Oper. Res. Soc. 64 (6), 805 .
challer, J.E. , Valente, J.M. , 2013. A comparison of metaheuristic procedures to

schedule jobs in a permutation flow shop to minimise total earliness and tardi-
ness. Int. J. Prod. Res. 51 (3), 772 .

en, T. , Dileepan, P. , Gupta, J.N.D. , 1989. The two-machine flowshop scheduling
problem with total tardiness. Comput. Oper. Res. 16, 333–340 .

zwarc, W. , 1993. Adjacent ordering in single-machine scheduling with earliness

and tardiness penalties. Naval Res. Logist. 40 (2), 229–244 .
ano, C.A. , Kim, Y-D. , 1991. Algorithms for a class of single machine weighted tardi-
ness and earliness problems. Eur. J. Oper. Res. 52, 161–178 .

aillard, E. , 1993. Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64,
278–285 .

alente, J.M.S. , 2009. Beam search heuristics for the single machine scheduling
problem with linear earliness and quadratic tardiness costs. Asia-Pacific J. Oper.

Res. 26, 319–339 .
egordi, S.H. , Itoh, K. , Enkawa, T. , 1995. A knowledgeable simulated annealing

scheme for the early/tardy flow shop scheduling problem. Int. J. Prod. Res. 33,

1449–1466 .

http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0018
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0018
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0018
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0019
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0019
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0019
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0020
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0020
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0020
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0020
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0022
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0022
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0023
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0023
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0023
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0024
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0024
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0026
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0026
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0029
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0029
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0029
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0029

	Branch-and-bound algorithms for minimizing total earliness and tardiness in a two-machine permutation flow shop with unforced idle allowed
	1 Introduction
	2 Literature review
	3 Problem description
	4 Branch-and-bound algorithms and bounds
	4.1 Branch-and-bound algorithms
	4.2 Lower bounds
	4.3 Upper bound

	5 Dominance conditions
	5.1 Initial versus post partial sequences
	5.2 Rules for the single-machine problem
	5.3 Rules for Two-machine permutation flow shop scheduling

	6 Computational test
	6.1 Data
	6.2 Results of the test

	7 Conclusion
	References

