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Abstract—Nowadays, industrial robots are still commonly
programmed using essentially off-line tools, such as is the case of
structured languages or simulated environments. This is a very
time-consuming process, which necessarily requires the presence
of an experienced programmer with technical knowledge of the
set-up to be used, as well as a concept and a complete definition of
the details associated with the operations. Moreover, considering
some industrial applications such as coating, painting, and
polishing, which commonly require the presence of highly skilled
shop floor operators, the translation of this human craftsmanship
into robot language using the available programming tools is
still a very difficult task. In this regard, this paper presents a
programming by demonstration solution, that allows a skilled
shop floor operator to directly teach the industrial robot. The
proposed system is based on the 6D Mimic innovative solution,
endowed with an IMU sensor as to enable the system to tolerate
temporary occlusions of the 6D Marker. Results show that, in
the event of an occlusion, a reliable and highly accurate pose
estimation is achieved using the IMU data. Furthermore, the
selected IMU was a low-cost model, to not severely increase the
6D Mimic cost, despite lowering the quality of the readings. Even
in these conditions, the developed algorithm was able to produce
high-quality estimations during short time occlusions.

Index Terms—Programming by Demonstration, Agile Robotic
Systems, Industry 4.0, IMU

I. INTRODUCTION

The current industrial environment is characterized by rapid
changes in the market requirements and customers’ demands,
leading to products being increasingly customized and with
reduced life-cycles [1]. The combination of these factors
makes it imperative for the manufacturing companies to be
able to constantly and rapidly adapt the manufacturing oper-
ations and their inherent complexity, forcing them to make
a technological leap and to invest in innovation, knowledge,
and integration of new technologies to stay competitive in the
globalized market [2].

In this regard, industrial robots can be a key technology
to help manufacturing companies overcome these challenges.
The proof of this is their positioning in the context of industry
4.0, where the development of production systems endowed by
robotic systems that can complete tasks autonomously while
at the same time guaranteeing security, flexibility, versatility,
and collaboration, occupy a prominent position taking into

account technological advantage [3]. Likewise, in the era
of digitization, where the interconnection of all the relevant
components for production is upheld as a way of providing
the much desired increase in flexibility and throughput of the
production system, robotic systems are also seen as smart
objects that allow the production management system to sense
and act in real-time.

However, and despite the effort of both the scientific and
industrial communities to provide proper interfaces to eas-
ily and rapidly perform the programming of these robotic
systems, they still present limitations when more complex
trajectories, like for painting, polishing or flaming, need to
be programmed. Many times, in these industrial applications,
human craftsmanship needs to be precisely imitated and the
available commercial robot programming solutions, based on
highly advanced teach pendants and simulation software, fall
short to deliver, affecting the large-scale adoption of industrial
robots in many industrial sectors [4], [5].

This paper aims to answer these challenges by providing
an advanced robot programming by demonstration system
capable of capturing, in a fast and intuitive way, the know-how
accumulated by specialized technicians and optimized during
several years of experience. The system presented is based
on previous research work, endowed with a complementary
component based on an IMU sensor, to deal with the 6D
Marker occlusions during the teaching of complex trajectories.
This paper showcases these scientific developments on a
specific industrial painting application, however, the results
can similarly apply to other use case scenarios in different
industrial sectors.

Bearing these ideas in mind, the remainder of the paper is
organized as follows: after this introductory section, Section II
presents the state-of-art which focuses on intuitive interfaces
for industrial robot programming. Section III presents the
developed robot programming by demonstration system that is
able to tolerate short periods of occlusion of the 6D Marker.
Section IV presents the results and respective discussion.
Finally, in Section V both the conclusions and future work
are presented.
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II. RELATED WORK

Considering industrial robots themselves, one of their most
limiting characteristics, and that prevents their widespread ap-
plication into different industrial sectors, is their programming
procedure that still today requires long periods of time and
that is only accessible to highly specialized users, despite
the effort on the contrary. Over the last decade, and in the
scientific community, there has been some effort to overcome
this limitation, namely through semi-automatic programming
based on CAD models [6], speech and gesture recognition [7],
[8], and tracking of the human hand [9]. Regarding program-
ming based CAD models, this is, in fact, a major stream with
extensive examples of application in the industry. Here, the
user interacts with a simulation software in order to define
the robot paths. Although their undoubted advantages, these
software’s are usually somewhat complex and not accessible
to operators without any robotics expertise. Moreover, they
do not allow the operator to demonstrate the task, but rather
provides a simplified way to define robot paths.

Considering the speech and gesture recognition approach,
this is another extensively covered method. Nevertheless, this
is in fact more an intuitive communication tool with the
industrial robot, rather than a programming tool, since in such
solution the robot must be pre-programmed with the primitives
that correspond to each human gesture. Finally, in the tracking
of the human hand approach, the human hand movement is
normally captured by tracking a data glove endowed with
tactile sensors for grasp recognition. Here, the movement of
the human hand can be acquired but the apparatus lacks the
robustness to be applied at industrial environments.

Specifically, in the tracking based methodologies, a key part
in their integration is the ability to reliably track a moving
body, typically a human operator’s hand. The aforementioned
type of sensors (vision-based and wearable) achieve promising
results [10] [11]. However, errors are intrinsically present in
the form of occlusions, i.e. obstruction of the vision source. In
these instants, there is no motion tracking taking place. Some
new approaches aim to compensate these potential time gaps,
where the main system in charge of the motion tracking fails,
using deep learning [12] and robot reinforcement learning [13].
Nonetheless, its applications are still limited to the recognition
of a relatively small array of gestures. Our proposed fail-safe
method is based on the introduction of an IMU, which can
introduce important redundancy into the system, allowing the
pose estimation of the moving body even when the primary
system fails during short intervals of time.

III. ROBOT PROGRAMMING BY DEMONSTRATION SYSTEM

The programming by demonstration system presented in
this article is based on previous research work presented by
Marcos Ferreira et al. [14], which is called the 6D Mimic
system. This solution ultimately delivers the possibility of
transferring human expertise to industrial robots. It proposes a
new mean for human motion tracking based on an innovative
6D Marker together with a collection of routines that allows
a real-time interface with the robot. With this technology, the

goal of allowing a human to program an industrial manipulator
with a complete abstraction of programming concepts has been
achieved. In addition, the process happens while the operator
is kept in his zone of comfort: doing the everyday tasks and
putting his highly specialized skills into work. This 6D Marker
needs to be attached to the operator’s tool, allowing the expert
to teach by demonstration the operation to the industrial robot,
that is then tracked by a stereoscopic vision system, patented
by the University of Porto and licensed to FLUPOL company
[15]. Both components are managed directly by the 6D Mimic
software package. However, and despite the innovative solu-
tion presented by the authors, many times, coating, painting,
and similar operations are executed over complex geometry,
where exists high probability of the 6D Marker to be occluded,
and in such cases making it impossible the usage of this
programming by demonstration system to completely capture
the human motion. To overcome this system limitation, this
article proposes the addition of a new tracking system based
on IMU that compensates for temporary occlusion of the 6D
Marker during the programming by demonstration procedure.
For this purpose, it was necessary to develop new hardware
and software modules for the control and for the integration
of the various subsystems.

A. Laboratory Set-up

The laboratory set-up is depicted in Fig. 1 and is constituted
by the following main components:
• an ABB IRB 2600 industrial manipulator and its

controller. This robot is equipped with an automatic Spray
Gun, an AirPro from GRACO, which is actuated by
solenoid valves and the coating paint is injected through
a pressurized vase. These two valves are actuated by the
ABB controller directly.

• automatic rotating table, with an incorporated PLC
module. It allows the operator to always be painting on
the same position, and just use a pedal for the table to
rotate the part. The rotating mechanism is placed in the
center of the table and is actuated through an induction
motor. To ensure that the table rotates exactly 90º, a mag-
netic sensor and 4 plates were strategically placed under
the top. This is controlled by an adjustable frequency
AC drive connected to a Programmable Logic Controller
(PLC). The PLC is in charge of dealing with the signals
coming from the pedal, the manual coating spray gun
on/off switch, the magnetic sensor and the signals from
the ABB controller. In addition, it sends signals regarding
the switch and the pedal to the SincroBox, which will be
further introduced, to inform when the operator acts each
one of these. The PLC is an M-DUINO 42+ PLC from
Industrial Shields.

• the 6D Mimic system, endowed by an IMU. The 6D
Mimic is mainly constituted by (1) an industrial PC
(NEUOSYS Nuvo-3005TB) where the machine vision
processing software is installed, (2) the Sincrobox, whose
main purpose is to be the central component of the system
making the communication bridge and synchronization
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between all the signals (e.g. the pedal and manual spray
gun switch signals) from the different hardware compo-
nents of the entire solution, (3) the Stereoscopic vision
system, constituted by two industrial cameras (Mako
G125C PoE), mounted on a fixed rail, and that are capable
of seeing the working field of the robotic arm, and finally
(4) the 6D Marker, that is attached to the manual coating
spray gun, as well as a simple switch to check whether
the operator is pulling the trigger or not. Also, inside
the 6D Marker, support for the IMU and the rest of the
electronics associated with it was added, which can be
seen in Fig. 2. This piece supports an Arduino Nano, a
TTL to RS232 Converter, and an IMU with 10 Degrees of
Freedom from Waveshare (MPU9255) set to its highest
possible bandwidth.

Fig. 1. System Hardware Architecture and its interconnections

The final solution’s hardware architecture is depicted in Fig.
3.

Fig. 2. CAD Representation and Real 6D Marker with Support

B. Software Architecture

The software architecture can be decomposed in the follow-
ing modules:
• the 6Dof tool pose tracking software, that is responsible

for tracking the 6D Marker, resorting to the stereoscopic
vision-based system, and compute its pose;

Fig. 3. System Hardware Architecture and its interconnections

• the IMU data acquisition, in charge of sending and re-
ceiving information from the IMU sub-system and collect
all the data in the appropriate memory buffer;

• the data analysis and processing , in which the results
of the 6D MIMIC are analyzed (in order to identify
occlusions and compensating with the IMU data in case
they occur), and processed into a 3D point time series
that characterize the final trajectory.

• the post-processor software, responsible to translate the
complete set of 3D points into robot programming lan-
guages. Currently, the following robot manufacturers are
supported: ABB, YASKAWA and KUKA.

In order to correctly utilize the data provided by the
IMU, a transformation between its coordinate frame and the
6D Marker reference frame was required. The model and
mounting of the IMU in the tool can provide several physical
constraints, leading to non-intuitive transformations. With that
in mind, it was possible to compute the homogeneous transfor-
mation between these frames, without any previous physical
information, using the Kabsch Algorithm [16].

By collecting sets of data points from both sources in
different, approximately orthogonal, positions along all 3 axis
of the world frame with varying orientations, the aforemen-
tioned algorithm computes the optimal rotation matrix between
the 2 sets of paired points. For the present application, this
procedure only needs to be executed once since the IMU frame
was fixed in relation to the 6D Marker frame (Figure 2).

The programming by demonstration procedure begins with
an operator performing the motion he wishes to replicate with
the tool. While this is taking place, a stereoscopic vision
system is tracking the motion of the operator manual tool
and recording it for post-processing, which corresponds to
the first module. This system provides the absolute pose (i.e.
position and orientation) of a luminous 6D marker (Figure 2)
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for any recorded instant, assuming it is correctly detected by
the cameras. Currently, this system is used in painting and
surface covering applications trough a spray-paint gun that
can handle a position error of up to 5 millimeters and an
angle error of around 1º. More information about this motion
tracking system can be found here [14].

During this process, the IMU is also providing accelerom-
eter and gyroscope data. This data is transmitted via I2C at a
frequency of 200 Hz and recorded. This represents the second
module.

When the operator finishes painting the part, the third
module is initiated, which means the data is analyzed and
processed. First, the resulting motion tracking is proofed in
order to detect potential faults that may have occurred. If, at
any time, a fault is detected, the corresponding IMU readings
are used in order to estimate the pose of the tool. The
accelerometer data is used to obtain the position trough double
integration and the orientation change between two time
instants is estimated using the gyroscope. Due to magnetic
disturbances in our workspace, it is not viable to utilize the
magnetometer data, as well as the built-in position estimation
that relies on it. In order to estimate the position of the tool,
first we calculate the expected acceleration a[i], based on the
last N non-occluded position measures, using Equations 1
and 2.

y(t)− y0 = v0 · t+ a0 ·
t2

2
+ aa ·

t3

6
(1)

a(t) = a0 + aa · (t− t0) (2)

Where y(t) is the measured position and a(t) is the ac-
celeration at instant t, y0, v0, a0 and aa are the position,
velocity, acceleration and jerk on the t−N position reading,
respectively. These equations represent continuous motion,
which we discretize in order to use the last N readings
to compute the values of v0, a0 and aa via Least Squares
Estimation.

By comparing the expected acceleration a[i] to the accelera-
tion read by the IMU aread[i], we accurately calculate the IMU
offset for instant [i] (Equation 3). This value also compensates
gravity’s pull g, which is a constant factor.

offset = aread[i]− a[i] (3)

Where aread is the value of the acceleration read from the
IMU for instant i.

After calculating the offset value, the measured acceleration
from the IMU is rotated to the global frame and adjusted
according to a gain K (Equation 4). This value was calculated
offline, only once, from the difference between the velocity ob-
tained by differentiating the position readings and integrating
the acceleration readings. However, trough experimentation,
we verified that, if the absolute value of the expected acceler-
ation was too high, it was best to skip the offset calculation
for the instant we are analysing as the calculated value was
erroneous. When the previous condition is met, we simply

assume that the offset value for the instant is the same as for
the previous one.

aIMU = K ·Rglobal
body ·R

body
IMU · (aread − offset) (4)

Where the generic Ry
x is the rotation matrix from the x frame

to the y frame and aIMU is the measured acceleration given
by the IMU in the global frame.

The position of the moving body is then estimated, assuming
a constant acceleration model between two successive read-
ings, by using the measured and calculated values:

Y est[i] = Y est[i−1]+v0 · (i− i−1)+aIMU ·
(i− i−1)2

2
(5)

Where Y est[i] is the estimated position at instant i. Several
factors determine the accuracy of this estimation such as the
duration of the fault, the quality of the IMU (i.e. cost) and
the complexity of the recorded movements. However, taking
advantage of the fact that this final processing takes place
offline and the stereoscopic vision system provides an absolute
pose, the IMU based estimation can be corrected with the
divergence of the last estimated and the first absolute pose
readings after the fault. Therefore, we can update the estimated
position based on their previously calculated values and a
correction factor according to equation 6.

pose[i− k] = pose[i− k] + δ · Np− k
Np

(6)

Where δ is the correction factor based on the mentioned
divergence, pose is the estimated pose from the IMU data,
Np is the number of estimated points during the occlusion
and k = 1, 2, . . . , Np. This final correction allows for a robust
and very high accuracy estimation. The recorded tool path
is then converted into a 3D point time series, and stored
locally. Finally, this list of 3D points is then translated into
robotic programming language, using the developed post-
processor software module. It currently supports three different
robot manufacturer programming languages, but can easily be
extended in case of need.

IV. RESULTS

In this section the demonstration and testing scenario will be
characterized. Furthermore, the performance of the proposed
teaching by demonstration system against this scenario will
also be presented and discussed.

A. Demonstration Scenario Description

As previously stated, the data provided by the IMU is
constantly being recorded. However, it is only used in the
event of a fault in the main motion tracking system. A fault in
a vision based system is typically a byproduct of an occlusion
(Figure 4). In this sense, the motions to be analysed are a
linear motion along one axis and a two-dimensional circular
motion, both with a time interval where an occlusion of the
6D Marker occurs. These motions were chosen in order to
represent the possibility of attempting to recreate the painting
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of a complex part whose volume might eventually hide the
tool from the Field of View (FOV) of the cameras.

Fig. 4. Example of camera occlusion

B. Results Analysis and Discussion

As for the aforementioned first motion, it is possible to
observe the unprocessed position estimation on a single axis,
Y, in Figure 5. The position given by the main motion tracking
system consist of the blue dots and the red dots consist of
the IMU based position estimation. A discrepancy in the
final estimated point and the first measured point after the
occlusion is visible and represents an error of approximately
20 millimeters.

Fig. 5. First motion - IMU data position estimation (red) and 6D Mimic
given position (blue)

The estimated set of points is then corrected according to
the procedure specified in Section III-B and can be observed in
Figure 6. The previous error has been nullified and scaled over
the remaining estimated points. Thanks to this correction, the
estimation’s accuracy becomes substantially higher since the
observable error is close to null and the estimated trajectory is
maintained. The impact of this process will be further analysed
in the following test.

The other motion that was chosen to be analyzed was
slightly more complex since it is described along 2 axis.
However, the concept is the same: at some point during the
movement of the tool, the 6D Marker was occluded. A possible

Fig. 6. First motion - Corrected estimation with offline processing and 6D
Mimic given position (blue)

scenario where this could occur is, for example, attempting
to paint the inside of a box. The unprocessed results can be
observed in Figure 7. During these tests, we used the Optitrack
system to establish a ground truth. This system tracks the
motion described by a set of reflective spheres, equipped in the
tool, using infrared cameras with precision of less than 1 mm.
The position given by the Optitrack system is represented by
the blue dots. Aftwerwards, we selected a time interval where
we ”simulated” occlusions in order to test the estimation. As
expected, since this movement is more complex, there is a
much more predominant error in the final point of estimation,
approximately 100 millimeters, corresponding the difference
between the green and blue points.

Fig. 7. Second motion - non-corrected IMU data position estimation (green),
corrected IMU data position estimation (red) and real position (blue)

However, despite the errors, the direction of motion during
the estimation process is more or less correct. Therefore, the
best possible estimation stems from minimizing the error while
maintaining the motion. The results of the correction applied
to the estimation during the offline processing phase, visible
as the red dots in Figure 7, showcase our attempt to reach that
goal.

In this second motion, the accuracy of the proposed esti-
mation process is clear. The IMU data produces a somewhat
reliable pose estimation, however, the trajectory it describes
is the main takeaway. By taking advantage of the offline
processing to apply a correction to the estimation it becomes
possible to achieve a highly accurate motion estimation during
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the occlusion period. By comparing the red and blue dots in
Figure 7, we can confirm the previous statement, observing an
error of 17 millimeters in the worst case.

In both tests, the occlusion had a duration of 1 second.
This time interval was selected based on the accuracy of the
estimated trajectory: since the IMU used was low-cost, the
readings are eventually overflowed with errors. However, the
optimal interval aims to be the maximum time span where
a very accurate trajectory estimation is still obtained. The
presented results demonstrate that the 1 second interval is a
significant amount of time where large shifts in trajectory and
position can take place, while maintaining the high quality of
the estimation.

V. CONCLUSIONS AND FUTURE WORK

This paper presented a programming by demonstration
system, capable of dealing with short-period occlusions of the
operators tool. The proposed system is based on a previous
research work, the 6D MIMIC system, that was endowed with
an IMU. The proposed solution was tested in a realistic use
case scenario, and the obtained results allows to conclude that
with the introduction of the IMU, the system’s robustness
increased significantly since it provided a way to deal with the
6D Marker occlusion. Despite using a low-cost IMU, with the
proposed system it was possible to achieve a robust and highly
accurate pose estimation of the operators tool by fusing both
sources of data (IMU and 6D Mimic), capable of maintaining
said accuracy during occlusions of up to 1 second. For future
work, the aim is to increase the duration in which it still
possible to rely solely on the IMU. This can be achieved by
adding some form of post-processing to the IMU readings
and/or using a higher quality IMU, albeit with higher cost.
Since we are only utilizing the IMU during occlusions, we
also plan to pursue the implementation of a Kalman Filter
which permanently fuses the information from both sensors.
However, for our use case, such a method was not necessary
since the 6D Mimic system already provided a sufficiently
accurate estimation which we don’t believe can be improved
using such a low-cost IMU. Moreover, the offline processing
section can be taken advantage of in different ways, namely
performing the correction trough other methods, which we will
consider in the future.
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