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Abstract— The use of specialized accelerator circuits is a feasi-
ble solution to address performance and energy issues in embed-
ded systems. This paper extends a previous field-programmable
gate array-based approach that automatically generates pipelined
customized loop accelerators (CLAs) from runtime instruction
traces. Despite efficient acceleration, the approach suffered from
high area and resource requirements when offloading a large
number of kernels from the target application. This paper
addresses this by enhancing the CLA with dynamic partial
reconfiguration (DPR) support. Each kernel to accelerate is
implemented as a variant of a reconfigurable area of the CLA
which hosts all functional units and configuration memory.
Evaluation of the proposed system is performed on a Virtex-
7 device. We show, for a set of 21 kernels, that when comparing
two CLAs capable of accelerating the same subset of kernels,
the one which benefits from DPR can be up to 4.3× smaller.
Resorting to DPR allows for the implementation of CLAs which
support numerous kernels without a significant decrease in
operating frequency and does not affect the initiation intervals
at which kernels are scheduled. Finally, the area required by a
CLA instance can be further reduced by increasing the IIs of
the scheduled kernels.

Index Terms— Binary acceleration, coprocessor, dynamic par-
tial reconfiguration (DPR), field-programmable gate array
(FPGA), loop accelerator, modulo scheduling, very long
instruction word (VLIW).

I. INTRODUCTION

COMPLEX embedded applications contain both
control-oriented and data-processing sections. Unlike

applications executing on desktop or server machines, which
benefit from powerful hardware, applications running on
embedded devices may be limited to processors that favor
power efficiency. Meeting performance demands under these
conditions may be difficult, and resorting to a more powerful
central processor may make energy consumption goals
unreachable.
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An alternative is to resort to hardware/software codesign,
building a system which benefits from specialized hardware in
order to execute the most demanding portions of applications,
thereby maximizing performance while minimizing energy
consumption. However, developing HW/SW systems is gen-
erally a slow and error-prone process, which requires specific
expertise. First, there is the detection and selection of critical
regions of code. This may require lengthy profiling and may
not be straightforward. Second, a software modification step is
required to interface the application with the custom hardware
peripherals to be designed. Finally, the selected kernels can
benefit greatly from a fully custom hardware design, but
hardware design is a slow and error-prone process, which
requires specific expertise. Also, the interface between the host
processor and accelerator circuits and the architecture of the
latter have repercussions on performance, how the software
needs to be modified, and on future revisions to both hardware
and software.

To address this, considerable research exists on automated
generation of specialized hardware targeting computationally
intensive portions of applications, avoiding manual design,
and/or system integration [1]–[6]. However, given that embed-
ded systems are required to perform not one but a multitude
of tasks, this hardware needs to either have some degree
of programmability or several different tailored circuits are
required. Regardless, as the number of tasks to execute
increases, so does the amount of circuit logic. Designers must,
therefore, also address the area efficiency of custom hardware
via resource reutilization as much as possible [7], [8].

In the previous work, we addressed mostly the issue
of custom hardware generation [9], with a customized loop
accelerator (CLA) design based on a single row of functional
units (FUs) whose interconnectivity was tailored to execute a
set of loop traces extracted from a target application. In order
to minimize the achievable initiation intervals (IIs), execution
on the CLA is pipelined and resources are instantiated as
needed by modulo scheduling. However, the higher the number
of loops supported, the more likely it is that the required
implementation area increases, that instantiated resources are
underutilized, and that operating frequency decreases. That is,
as reconfiguration capabilities increased, circuit specialization
decreased.

The work presented in this paper aims to mitigate this by
augmenting the same CLA architecture with dynamic partial
reconfiguration (DPR). The CLA presented here is divided into
a static area, containing logic which does not significantly
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scale with the number of configurations supported, and a
partially reconfigurable (PR), area containing logic which
without DPR scales significantly and negatively impacts the
design’s performance and applicability.

For a set of N loop control and dataflow graphs (CDFGs),
the approach enables the generation of N or fewer partial
bitstreams to configure the PR region. That is, each circuit
configuration of the CLA supports one or more loop CDFGs,
as opposed to a single circuit supporting the whole set.
Implementing one circuit per CDFG maximizes specialization
and, therefore, clock frequency, and minimizes resource usage.
However, it introduces the need for frequent DPR, increasing
overhead. By choosing which CDFGs (from the target set)
a single partial bitstream should implement, we can balance
overhead and circuit specialization to find better solutions.
However, this is not addressed in this paper. We present the
maximum area savings and explain what is required to explore
the design space in order to minimize overhead.

As our experimental evaluation demonstrates, resorting to
DPR in this context has two main advantages relative to the
implementation in [9]: 1) the total area required by the CLA is
smaller by relying on DPR to switch between configurations,
instead of using multiplexer-based logic and 2) we can avoid
decreases in operating frequency, since circuit complexity is
minimized. In addition, the motivation to implement this sys-
tem also came from the notion that an architecture with DPR-
based reconfiguration capabilities is an important step toward
developing a system capable of runtime self-reconfiguration.
This paper is organized as follows. Section II summarizes
related work; Section III explains the general approach, as well
as the system architecture and compilation flow; Section IV
presents the CLA architecture, including which components
are contained in the PR region and the respective advantages;
Section V contains experimental results and discussion; and
Section VI presents some final considerations.

II. RELATED WORK

In [6], an approach that translates binary into a modulo
scheduled configuration for a heterogeneous coarse grain
reconfigurable array (CGRA) is presented. The approach tar-
gets inner loops detected by monitoring the instruction stream
for backward branches. The scheduling itself is performed in
software. The CGRA is tightly integrated with the host proces-
sor, exchanging data through the latter’s register file. Up to
two memory units, logic operations, and integer arithmetic
are supported. Relative to an 8-issue very long instruction
word (VLIW) processor, which requires 17 490 lookup tables
(LUTs) on a Virtex-6 field programmable gate array (FPGA),
a CGRA instance with 16 FUs and a crossbar type interconnect
is 1.3× smaller and achieves a mean speedup of 2× for 11 test
cases.

The ρ-VEX processor is a reconfigurable VLIW architec-
ture, in the sense that it is configurable at instantiation time
in terms of number and type of units, and issue width [5].
In addition, custom instructions can be added by manually
writing the respective hardware description. The compila-
tion tools are then capable of targeting these custom units.

Using a Virtex-6 FPGA, an 4-issue ρ-VEX instance requires
3274 flip–flops (FFs), 19119 LUTs, and operates at 150MHz.
For the six application kernels used, speedups range between
1.38× and 3.63× versus a MicroBlaze operating at the same
frequency, and the average speedup is 2.72× versus a MicroB-
laze operating at 200 MHz.

Like the work presented here, [4] CDFG merges into a
single accelerator circuit. For the target CDFGs, the approach
searches for the most common shortest subsequence of nodes.
This sequence is then used to specify the architecture of a
column of heterogeneous FUs which is repeated to create a
2-D array of homogeneous columns. However, in order to
attempt to increase the flexibility of the generated circuit,
additional hardware is then added to increase programmability
so that future CDFGs can be mapped postproduction. For a
target technology of 65 nm, the generated instances are about
2.2× larger than fully specialized accelerators.

The BERET approach, presented in [1], focuses on sub-
graph execution. A compile-time step detects large repeating
instruction traces (i.e., loops), generates their CDFG repre-
sentations, and extracts subgraphs which can be executed
by BERET. The approach targets ARM processors, tightly
coupling the BERET coprocessor to the processor’s pipeline.
BERET itself is composed of a set of subgraph execution
units, each containing heterogeneous FUs. Memory access is
possible via the shared L1 cache. The host processor is stalled
while the targeted subgraphs are executed. When compared to
an ARM1176, a single-issue in-order processor operating at
800 MHz, BERET achieves average energy savings of 35%
for a set of 12 benchmarks, while requiring 5× less area than
the ARM1176, for 65-nm technology.

Another system based on VLIW customization is presented
in [10]. The approach implements a runtime translation of
MIPS-based binary code into VLIW code during an initial
translation pass. The free issue slots on the target VLIW
are used to transparently instrument the code for profiling.
Sequences of basic blocks with up to 256 instructions are then
detected, and processed by a second translation pass which
accelerates them by reimplementing the code to take advantage
of loop pipelining. The binary translation and monitoring
modules have been designed in C and implemented via high-
level synthesis. For a target technology of 65 nm, an operating
frequency of 250 MHz, and 10 kernels from the MediaBench
suite [11], the loop pipelining step provides an average speed
up of 3× over the VLIW code generated during the first
pass. Performing the pipelining step with a dedicated hardware
module is also 5.5× faster than a software implementation
and 11× more energy efficient. The proposed system requires
approximately twice the area of a standalone 4-issue VLIW.

In our own previous work [9], an offline trace detection
method is used to extract MicroBlaze instruction sequences
which represent frequent loop paths capable of crossing con-
trol flow boundaries [12]. A postcompilation flow generates a
custom CLA instance capable of supporting all desired loop
traces. Acceleration is achieved by modulo scheduling the
loops, and resource requirements are minimized by tailoring
the instance to contain only the required FUs and connectivity.
For each accelerated loop, execution proceeds by executing the
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Fig. 1. System architecture overview.

steps of the respective modulo schedule, which are contained
in a local configuration memory. Thus, the CLA instance
scales in size with the number of loops supported, leading to
underutilization of resources, decrease in operating frequency,
or even placement or routing failures. Despite this, an average
geometric speedup of 3.61× was achieved for 24 CLAs
supporting a between one and three loops, and the respective
area was 1.11× that of the host MicroBlaze processor.

III. GENERAL APPROACH

The approach we present is based on the automated gener-
ation of a specialized hardware instance capable of executing
selected portions of an application without software modifi-
cation or manual hardware design. Avoiding modifications to
application code alleviates development effort and eliminates
the need to maintain different code versions of the same
application when deploying onto several targets. We also
avoid modifications to the binary that would prevent binary
portability, so that the augmented binary generated by our flow
is compatible with a nonaccelerated MicroBlaze-based system.

Our system relies on offline detection of critical portions
of the application, in the form of megablocks [12]. These
are single-entry multiple-exit instruction traces constructed by
detecting repeating instruction sequences, i.e., binary trace
loops. Each megablock can be expressed as a CDFG, from
which latent instruction level parallelism and loop pipelining
potential can be exploited by generating custom accelera-
tor instances. In order to support the acceleration of many
CDFGs without decreasing circuit specialization and increas-
ing resource requirements prohibitively, and as a step toward
a system capable of autonomous runtime self-adaptivity,
the CLA is capable of DPR. Sections III-A to III-C describe
the system architecture, the compilation flow which generates
an instance of the system, and the CLA design.

A. System Architecture

The system architecture is shown in Fig. 1. It consists of
a single MicroBlaze processor, one CLA instance, a local
block RAM (BRAM) containing application code, data, and

Fig. 2. Flow for generation of MicroBlaze-based system with CLA instance.

automatically generated communication routines (CRs) used to
invoke the CLA. The accelerator makes use of both memory
ports of the local data memory, which is shared with the
MicroBlaze through the auxiliary local memory bus Mux mod-
ules. The processor and CLA communicate via fast simplex
link point-to-point connections. The external memory is used
only to store partial bitstreams. The partial reconfiguration of
the CLA is performed via the FPGA’s internal configuration
access port (ICAP) primitive, which is fed by a direct memory
access (DMA) module.

At runtime, the injector monitors the instruction address bus
of the MicroBlaze. If an address corresponding to the start
of one of the supported megablocks is detected, the injector
replaces the fetched instruction with an unconditional branch
to the address containing the respective CR, which was auto-
matically generated and added to the application code. This
routine sends operands from the register file of the processor
to the CLA, calls a function which drives the DPR step (by
configuring the DMA with the start address and amount of
data to fetch), waits for CLA execution to complete, and
returns to the address at which the injector intervened. Since
megablocks may contain multiple exits, the last iteration is
executed through software, so that the correct branch can be
taken.

The execution of the application is thus accelerated,
by pipelining loop iterations on the CLA and exploiting
the latent instruction-level and data-parallelism present in the
binary code.

B. Tool Flow

Fig. 2 shows the flow from target application to the
accelerator-augmented system. The application binary (ELF
file) is simulated and profiled in the megablock Extractor [13].
The resulting output is a set of all detected repeating instruc-
tion patterns and respective CDFGs. Currently, a manual selec-
tion step is used to discard runtime loops which correspond to
undesirable portions of the application (e.g., printf routines
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Listing 1. Generated C source file with one CR and call to DPR function.

and startup subroutines) and to select frequently executed
loops.

The CDFGs are then processed by the modulo scheduler.
The outputs are HDL parameters for the static side of the CLA,
and for all generated configurations of the reconfigurable area,
each of which contains the FUs, connections and configuration
words to execute one or more CDFGs at the target IIs.

The bitstream for the base system (i.e., all modules and
peripherals, plus the static region of the accelerator) is gener-
ated first. Afterward, each synthesized version of the PR region
imports the base system to generate all partial bitstreams.
All bitstreams are placed into an MFS file system, which is
a lightweight Xilinx proprietary file system, for which a C
library is provided. Each partial bitstream file is generated as a
binary-only file (i.e., with no header information), and written
to the board’s flash memory prior to programing the FPGA.
The current implementation does not automatically allocate a
specific area of the FPGA to use as the PR region. In the future,
this could be done based on the largest resource requirements
observed in the synthesis reports of each possible configuration
(the PR region must be specified before the map stage).

For each CDFG supported a CR is also generated, and
an address table configures the injector with each routine’s
position in memory. The CRs are placed into the program
code by recompilation using a custom linker script, which also
positions the functions related to DPR in specific locations.
The code shown in Listing 1 is an excerpt of the output
produced by the CR generation step. Each CDFG corresponds
to a _opcodes array of 32 bit values which encode MicroBlaze
instructions.

In the previous work [9], nearly all CR instructions were
single-cycle reads/writes from and to the CLA. In the cases
where no iterations were executed on the CLA despite its
invocation, the contents of the MicroBlaze’s register file and
the stack would not suffer any modification upon return
to software. If any iterations were performed on the CLA,
the contents of the register file would match those produced

Fig. 3. Simplified architecture for one synthetic instance of the CLA
(reconfigurable region delimited by dotted line).

by software-only execution, and the stack would not be altered
in any way.

However, the routines in this implementation include the
call to the reconfiguration function, doPR, and to all child
functions therein. As a result, the contents of the MicroB-
laze’s register file and stack do suffer unwanted modifications
whether the CLA executes or not. As an initial approach,
this implementation resorts to saving the entire register file
to memory and recovering it after the partial reconfiguration
function executes.

The _wrapCaller auxiliary function is placed at a specific
address by the linker script. The function’s i input argument
is set during the CR and determines which partial bitstream
will configure the CLA. The doPR function copies the partial
bitstreams from flash to DDR (at startup) and drives the
DMA engine which feeds the ICAP. When called, it checks if
the CLA’s reconfigurable area is already configured with the
desired partial bitstream. If this is the case, the CR resumes
normally. Otherwise, the reconfiguration routine writes the
partial bitstream to the reconfigurable area of the CLA through
the ICAP peripheral. The C function used to control the ICAP
is custom written, to attempt to reduce overhead. By having
the partial reconfiguration take place as part of the CR the
transparency of the approach is not compromised.

IV. PARTIALLY RECONFIGURABLE CUSTOMIZED

LOOP ACCELERATOR

A simplified model of the accelerator is shown in Fig. 3.
Its structure is very similar to the version presented in [9],
with modifications to deal with the segmentation into static
and reconfigurable portions. There is only one row of FUs,
customized by the modulo scheduler based on the set of
megablocks to accelerate. The CLA supports all 32-bit integer
and single-precision floating-point arithmetic, including divi-
sions by nonconstant dividers. All FUs are fully pipelined,
with the exception of the nonconstant integer division unit.
The load/store units are capable of performing byte-addressed
operations to arbitrary memory locations since the accelerated
traces also implement the address generation operations. When
accelerating a megablock, the accelerator executes an arbitrary
number of iterations each time it is called. The execution
returns to software as a result of evaluating the respective
termination conditions (i.e., branch instructions).

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on May 05,2023 at 09:26:32 UTC from IEEE Xplore.  Restrictions apply. 



120 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 1, JANUARY 2019

The modulo scheduler usually generates accelerator
instances capable of executing the target CDFGs at their
respective minimum II. If this is not possible, generally due
to a large number of memory access operations, the II is
increased until the CDFG is scheduled. This virtually does not
occur, as the only resource limitation in this approach is the
two memory ports (all other FUs are instantiated as needed).

A. Static Region

The static region contains the components whose resource
requirements we predicted would not scale noticeably or at
all with the number of supported CDFGs. This includes the
input and the (omitted) output registers, which contain values
exchanged directly with the register file of MicroBlaze. Since
the data memory is a two-port BRAM shared between the CLA
and the processor, all instances have only two memory access
modules which are also placed into the static side. Although
the number of registers in the register pool and the connections
between them vary per instance, the pool was kept in the static
region, because we estimated that the amount of resources
it requires would not increase severely with the number of
supported CDFGs; its size is largely determined by the CDFG
which requires the most registers overall.

B. Dynamically Reconfigurable Region

The reconfigurable region contains all FUs required to
execute one or more CDFGs, and also implements the connec-
tions between them, inserting multiplexers where necessary.
Similarly, the configuration word memory contains only words
for that CDFGs set. The PR region is implemented essentially
in LUT, requiring nearly no FF.

In our implementation of the CLA without DPR support [9],
FUs were reutilized as much as possible between supported
configurations. However, one configuration may require a large
number of FUs, which go unused by the remaining CDFGs.
This has no effect on performance but leads to FUs being
underutilized, and to greater resource requirements. Also, since
more units exist, the width of the configuration word also
increases, leading to a larger configuration memory. Finally,
as more operations are scheduled onto an FU, multiplexer
complexity increases. These two aspects contribute especially
to higher resource requirements and longer synthesis times.

By placing these components in the reconfigurable region,
the input multiplexers are only as wide as required by the
chosen CDFG subset. Regarding FUs, the area required when
implementing a set of CDFGs will be determined by the largest
one of that set. This area is not necessarily as large as the
area required by a multiconfiguration instance supporting all
CDFGs. Also, by implementing each (or subsets of) CDFG(s)
as a single configuration, the same resources can be used to
implement different FUs between configurations.

The configuration memory was placed into this region
because it was observed that for a large number of config-
urations, the memory size increased considerably. Even for
a few configurations, the instruction word width (487 bits
on average for the 24 benchmarks in [9]) led to a large
number of LUTs being required to implement the memory as

Fig. 4. Simplified example of the generation of a CLA instance capable
of executing two CDFGs by reutilizing resources within the same circuit.
(a) Example CDFG #1. (b) Example CDFG #2. (c) Combined modulo
reservation table. (d) Respective CLA instance, showing multiplexers, register
pool, instantiated FUs and which operations of both CDFGs are scheduled on
each.

distributed RAM. By placing the configuration memory in the
reconfigurable partition, it only needs to contain the words
that implement the CDFGs of the respective configuration.
This is an efficient reutilization of LUTs, since the same
FPGA resources implement the memory which holds different
configuration words, depending on which partial bitstream has
been written to the reconfigurable area.

C. Example

Fig. 4 shows a CLA instance which supports the execution
of two CDFGs within the same circuit instance, i.e., within
the same partial bitstream, by reutilizing resources between
configurations via multiplexer logic. The II of the two CDFGs
is three, due to the dependence set by the exit node, bge (all
exits must be evaluated before a new iteration can begin).
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Backward connections are omitted but are implied via the
input and output registers with bold outlines [e.g., r3
in Fig. 4(a)]. In Fig. 4(c), the modulo reservation tables of both
schedules are combined, showing the three timesteps required
to execute all nodes, and demonstrating how resources are
reutilized within the same loop and between loops. Fig. 4(d)
shows the resulting instance. Inputs to FUs can be values from
the input registers (e.g., r3), values from the register pool,
or constants.

An increase in circuit complexity can already be seen,
even for this small example. For instance, the first input
of the leftmost add unit only requires inputs r4 and e for
CDFG #1, but a total width of five is generated. In addition,
the rightmost adder is not utilized at all for CDFG #2. Finally,
the instruction width is also affected, since it is determined
by the number of FUs and multiplexer widths. Scheduling
larger and/or more CDFGs exacerbates these effects, so we
attempt to avoid these issues resorting to DPR. For this
case, having each CDFG implemented as its own circuit
would result in two independent reservation tables, and two
distinct CLA instances, with reduced complexity relative
to Fig. 4(d).

V. EXPERIMENTAL RESULTS AND DISCUSSION

The main objective of our experimental evaluation was to
determine what area savings were possible by resorting to DPR
when deploying a CLA, while also evaluating other beneficial
or negative consequences of this strategy.

Software Setup: We relied on a set of 23 kernels, taken from
the Livermore Loops [14] set and from the TEXAS IMGLIB
function library [15]. All kernels were compiled together with
a software harness (used in [9]), generating a single binary for
all test cases. The harness allowed us to specify which kernels
to call, simplifying the evaluation of many different CLA
instances targeting different kernels. To validate execution the
harness compares CLA-computed results with reference data
generated during compilation, generates pseudorandom input
data for the kernels which are placed onto the heap, and also
retrieves execution times.

Hardware Setup: The system architecture used is shown
in Fig. 1. All program code (including the application, harness
and partial reconfiguration functions) and data reside in local
memory. At boot time, the partial bitstreams are copied from
the nonvolatile flash to external memory. The ICAP module is
accessed by the MicroBlaze via an AXI (Advanced Extensible
Interface) bus. The target platform was a VC707 board,
containing a Virtex-7 xc7vx485 FPGA. The tools used for
synthesis and bitstream generation are from release 14.7 of
Xilinx’s ISE Design Suite, running on a machine with an
Intel i7-6700K 4-GHz CPU and 32 GB of RAM. In all
cases, the MicroBlaze contained a floating-point unit, integer
multiplier and divider, barrel shifter, pattern-compare, and
integer to/from float conversion operations.

Experimental Setup: With our set of kernels we generated
a number of CLA instances, which we categorized as small,
medium, or large, as shown in Table I. The eight small CLAs
implement between 2 and 3 kernels, four medium CLAs

TABLE I

KERNEL INFORMATION AND GROUPS FOR CLA TEST IMPLEMENTATIONS

TABLE II

AREAS DEFINED FOR PR REGION OF CLA INSTANCES

implement between 4 and 6, and the two large instances
implement 10 and 11 each. The kernels were grouped so that
similar workloads are found within the same application. Each
group (e.g., s1), was used to generate two CLAs tailored for
the execution of the respective kernels. All systems targeted
a frequency of 100 MHz, and all bitstream generation steps
(e.g., map, par) were ran with an effort flag of high3 where
applicable.

We first implemented each CLA without resorting to DPR.
More specifically, we generated only one partial bitstream.
These CLAs have, therefore, single-cycle reconfiguration
times when switching between execution of their supported
kernels. The DPR overhead is incurred only once when
the CLA is first invoked. This case is roughly equivalent
to non-DPR capable CLA, similar to the implementation
presented in [9], for the purposes of our comparison. These
instances are referred to with the prefix single-, e.g., single-s1.
We then implemented the same CLAs, this time generating one
partial bitstream per kernel supported, which we refer to with
the prefix multi.
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For both cases, we chose the smallest possible area to imple-
ment each CLA. Table II shows the seven different area sizes
we preconstructed for our experiment. The area for each case is
manually selected, as the scheduling process does not generate
a set of constraints that specify this area on a per-case basis.
This is mostly because we find that predicting the resources
required by the CLA’s reconfigurable area via synthesis alone
is inaccurate relative to the actual resources required after
placement and routing, especially in terms of how many slices
are required, due to how logic may be packed. Instead, we try
to generate the same CLA instance (e.g., single-s1) several
times, starting with the smallest possible area, until placement
is possible.

Two auxiliary area groups were also used: the first con-
strains the placement of all static CLA logic to the perimeter
of the reconfigurable region, and the second constrains BRAM
placement so that it overlaps with the reconfigurable area of
the CLA. The latter helps prevent long path delays between
the CLA’s memory access units and the BRAMs.

The following sections evaluate the results in terms of saved
area, the total required bitstream generation time, bitstream
storage space, and comment on the effects of both strategies
on execution time and overhead. Unless stated otherwise, all
kernels are scheduled at their minimum possible II for all
cases.

A. Area Savings With DPR

1) Single Partial Bitstream Implementations: In Table III(a),
the slice and LUT usage for the implementations resorting to
a single partial configuration are shown, along with the chosen
area size. Percentages shown are relative to the total number
of available resources of the respective type in the chosen area.
The average slice usage is 91%, and the average LUT usage is
79%. The number of FFs and digital signal processing unitss
(DSPs) used is omitted as they are much lower for all cases,
accounting for an average of 1.2% and 4.4%, respectively.

For the small set, despite the small number of supported
kernels per case, we notice that the required area to implement
the CLAs varies between sml1 and big1. Referring back to
Table I, we conclude that the main factor in determining the
CLA size for these implementations, more so than the number
of loop CDFGs supported, is the total number of CDFG nodes
(i.e., MicroBlaze instructions). A greater number of nodes
leads to more FUs and timesteps required to implement the
schedules, which leads to more and wider configuration words,
increasing the LUT usage since the configuration words are
implemented as distributed memory. We also see this effect in
single-m3, which requires a smaller area that the rest of the
medium set, due to its smaller sum total CDFG nodes.

It is important to note that only the small set was generated
successfully for an operating frequency of 100 MHz, which
could not be achieved for the medium and large sets. This
was due to long paths from the input multiplexers, through
an FU (in some cases also the data memory), to the register
pool. As a result, these two sets were generated targeting a
frequency of 50 MHz. This, coupled with the low FF usage
in the PR area, suggests that the register pool should not have

been left on the static area. This was done since the amount
of registers required in the pool does not scale as noticeably
with the number of configurations as other aspects (e.g.,
multiplexer complexity) and was also an attempt at reducing
partial bitstream size. However, due to the way resources are
organized on FPGA, the end result is the underutilization of
FFs in the PR area.

When attempting to generate these two sets for a target fre-
quency of 100 MHz, the average achieved frequency possible
is 91 MHz for set medium and 78 MHz for set big. This is only
possible by increasing the size of the area used for single-m1,
-m2, and -m3 to the next size, relative to the size indicated
in Table III(a). In all cases, the critical path begins at either
the register pool or instruction memory, passes through the
FUs (often a 32-bit adder), ending at the multiplexers which
drive the accelerator’s output registers. Generating a 100-MHz
system was only possible for single-m3, with area big1, since
med2 does not allow for routing, as mentioned, despite the ade-
quate resource utilization for this area when targeting 50 MHz.
It is possible that larger areas or careful floorplanning would
improve the chances of achieving frequencies of 100 MHz for
the remaining cases, but what we aim to demonstrate is that
we may preserve both area and frequency through DPR.

Also, shown on the rightmost column of Table III(a) is the
total time required to generate the system, in minutes. This
accounts for synthesis time of the static side of the CLA, all
of the variants of the reconfigurable region (in this case, only
one), and the mapping, placing, and routing times.

2) Multiple Partial Bitstream Implementations: Table III(b)
shows the same information for the implementations resorting
to multiple partial bitstreams. Immediately, we see a decrease
in the required area size in virtually all cases, most noticeably
for the medium and large sets. For the small set, there are
three cases where area is not reduced: s3, s4, and s6.

For s4, the smallest possible area was already being used.
For s6, we see a reduction in the number of LUTs used, but
a smaller reduction in the number of slices. In this case, both
implemented kernels require floating-point FUs, which use
FFs (unlike most other units). Therefore, despite a decrease in
the configuration word memory size, each configuration still
requires approximately the same number of FFs, which in this
case is dictating the amount of slices. For s3, the reduction is
simply insufficient to fit in a smaller area.

Note that area savings would still be possible for all cases,
if the reserved area was individually specified. The potential
area reduction can be inferred from the reduction in slice usage
since there is approximately one slice per unit area of the
device. Given this, the average potential area reduction would
be of 1.42×, 1.61×, and 3.08×, for each set, respectively.

The required implementation time is shown in the rightmost
column for comparison with Table IV(a). Each variant of
the CLA’s reconfigurable area requires mapping, placing,
routing, and bitstream generation steps. Thus, the required time
increases with the number of configurations. The increases are
of 1.48×, 1.93×, and 2.43×, for each set, respectively. For
the big set, the resulting area has diminished more so than
the respective increase in required compilation time. Finally,
consider that all systems are successfully implemented at
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TABLE III

IMPLEMENTATIONS OF CUSTOMIZED LOOP ACCELERATORS SUPPORTING SEVERAL LOOP CDFGs RESORTING
TO (a) A SINGLE PARTIAL BITSTREAM AND TO (b) MULTIPLE PARTIAL BITSTREAMS

100 MHz (the more demanding timing closure also contributes
to longer implementation times).

3) Comparison With MicroBlaze: Table IV shows the aver-
age number of slices and LUTs required by the static and
reconfigurable areas of the CLA instances, descriminated by
the kernel groups, for both the single case and multicase.
Values are normalized to the requirements of the MicroBlaze
which were reported for each respective system. For reference,
the MicroBlaze requires an average of 1260 slices, 1772 LUTs,
and 2951 FFs. There is very little variation between instances.
Comparing the reconfigurable areas between Table IV(a) and
(b), we again observe the resource and area savings through
the use of multiple partial bitstreams. Also, although the
reconfigurable area of the CLA requires a much higher number
of LUTs than the MicroBlaze, the respective FPGA area
is much smaller. The placement restriction (absent for the
MicroBlaze) is most likely responsible for this behavior.

B. Effects of DPR on Performance

The set of applications kernels used in this paper is the same
set used in [9]. Therein, the CLA itself is further described,
and focus is given to the scheduling process, the achievable II
and number of instructions executed per clock cycle on a
per case basis, and resulting speedups. The instances of the
CLA presented so far were generated by scheduling the
same kernels at their minimum possible IIs, meaning that
the reported performance holds, despite the addition of DPR.
The only penalty incurred is the initial DPR overhead. The
time is required for each partial reconfiguration depends on
the partial bitstream size. However, if DPR is performed often
with small partial bitstreams, this may result in a greater total
overhead, relative to less frequent reconfiguration with larger
bitstreams.

The optimal solution (regarding minimization of overhead)
is therefore application dependent. It is necessary to consider
several aspects: 1) the number of instructions in each kernel;
2) how much of the application execution time the kernel
represents; 3) whether existing resources generated when
scheduling other kernels can be efficiently reutilized, or if,
this not being the case, it is preferable to generate an entirely
new variant for the reconfigurable area; and 4) the order in
which kernels execute. The latter two aspects are not mutually
exclusive, and the desired solution will vary by favoring either
area or performance. In addition, the time required for DPR
also depends on where in the device the area is located, as well
as on the device itself. We do not study these aspects for the
presented groups of kernels since both groups and the order
in which they execute are artificial. They were designed to
demonstrate the area saving potential.

C. Trading Performance for Further Area Savings

The fact that the minimum IIs were used for scheduling
means that performance was favored over resource usage.
However, reducing the amount of FUs or multiplexer com-
plexity may be possible by increasing the II. In terms of FUs,
the smallest possible set which supports a loop kernel is one
that contains one and only one FU of each type required
(e.g., no multiple addition units). It is not obvious, however,
for purposes of area and resource usage prediction, how this
translates into the complexity of the connectivity. For instance,
with only a single addition FU, all addition operations are
scheduled to it, meaning its input multiplexers may become
wider, as opposed to more addition FUs with less (or a single)
input choices. Increasing the II also tends to result in less
wide configuration words but also in more time steps on the
resulting schedule.
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TABLE IV

AVERAGE SLICE AND LUT USAGE FOR STATIC AND RECONFIGURABLE AREAS OF THE CLA, NORMALIZED TO MICROBLAZE PROCESSOR
FOR (a) SINGLE PARTIAL BITSTREAM AND (b) MULTIPLE PARTIAL BITSTREAMS

Fig. 5. Smallest area achieved per case, along with resulting performance
decrease, normalized to the each case’s implementation at its minimum II.

Therefore, although the impact on performance resulting
from increasing the II might be easy to predict, the exact
resource and area usage is not straightforward to predict
analytically. Therefore, in order to gain insight into the
potential area savings derived from increasing IIs, we created
various implementations of circuits from the single-small set.
We reimplemented each case, each one with a higher II,
stopping when the total area began to increase. We also
decreased the reserved area itself when possible (e.g., from
med1 to sml2) as the II increased, since doing so results in
lower slice usage.

Fig. 5 shows the maximum decrease in slice usage when
increasing each case’s II between 1 and 10 clock cycles,
as well as the respective performance decrease. Both are
normalized to the area and performance achieved by the corre-
sponding minimum II implementation. The average decrease
in performance is nearly twice the decrease in area, meaning
that opting for the minimum-II is the best strategy, assuming
their area usage is acceptable. The size of the register pool and
the configuration word length inhibits greater area reductions.
As improvements, the former should be relocated to the
reconfigurable area, and the later could benefit from more
efficient encoding.

VI. CONCLUSION

In this paper, we presented a DPR enhancement to an
existing CLA used for transparent binary acceleration in
embedded systems. By resorting to DPR, we can support
multiple loop kernels per CLA instance, while minimizing area
usage and maximizing operating frequency. As the number of
supported kernels increases, the benefits of resorting to this
strategy are more evident, with area savings reaching upward
of 1.61×. We also conclude that it would have been even more
beneficial to move additional CLA logic into its reconfigurable

area, as only LUTs are heavily used within the reserved
area.

We explored the case where each kernel is implemented
as an individual partial bitstream. The scheduler and CLA,
however, support the implementation of several kernels by
the same partial bitstream. This means further exploration
could be performed to find solutions that prevent reconfig-
uration overhead incurred by DPR without sacrificing its area
saving benefits. As the future work, we plan to explore this
mechanism, as well as a prefetching strategy that mitigates
the DPR overhead at least partially, since both the DMA
engine and the ICAP port can operate in parallel with the host
processor.
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