
Hitch Hiker: a remote binding model with priority based
data aggregation for wireless sensor networks

Gowri Sankar Ramachandran, Wilfried
Daniels, José Proença, Sam Michiels,
Wouter Joosen, and Danny Hughes

iMinds-DistriNet, KU Leuven,
3001 Leuven, Belgium.

gowrir@cs.kuleuven.be

Barry Porter
School of Computing and Communications

Lancaster University,
Bailrigg, Lancaster LA1 4YW,

United Kingdom.
b.f.porter@lancaster.ac.uk

ABSTRACT
The aggregation of network traffic has been shown to en-
hance the performance of wireless sensor networks. By re-
ducing the number of packets that are transmitted, energy
consumption, collisions and congestion are minimised. How-
ever, current data aggregation schemes restrict developers
to a specific network structure or cannot handle multi-hop
data aggregation. In this paper, we propose Hitch Hiker, a
remote component binding model that provides support for
multi-hop data aggregation. Hitch Hiker uses component
meta-data to discover remote component bindings and to
construct a multi-hop overlay network within the free pay-
load space of existing traffic flows. This overlay network
provides end-to-end routing of low-priority traffic while us-
ing only a small fraction of the energy of standard commu-
nication. We have developed a prototype implementation of
Hitch Hiker for the LooCI component model. Our evalua-
tion shows that Hitch Hiker consumes minimal resources and
that using Hitch Hiker to deliver low-priority traffic reduces
energy consumption by up to 15%.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
Wireless Sensor Networks; Components; Aggregation

1. INTRODUCTION
Wireless Sensor Networks (WSN) must operate for long

periods on limited power supplies and research has shown
that wireless communication is the primary source of en-
ergy consumption in WSN [15]. It is therefore critical to
minimise radio transmissions. Data aggregation has been
widely applied to tackle this problem [8, 9]. By combining
multiple messages addressed to a common destination into
a single datagram, transmissions are reduced and energy is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CBSE’15, May 4–8, 2015, Montréal, QC, Canada.
Copyright c© 2015 ACM 978-1-4503-3471-6/15/05 ...$15.00.
http://dx.doi.org/10.1145/2737166.2737179.

conserved. Furthermore, less frequent transmissions result
in fewer collisions and therefore retransmissions. This can
significantly lower WSN power consumption.

This paper focuses on data aggregation, which is achieved
through the efficient merging of application traffic flows,
rather than algebraic in-network aggregation [12]. Contem-
porary approaches to lossless data aggregation may be clas-
sified as either application dependent or application indepen-
dent [5]. Application dependent approaches [6,8,12] support
the creation of optimal network-wide data aggregation struc-
tures, but restrict the topology of the distributed applica-
tion. In contrast, application independent approaches [1, 8]
embed generic aggregation functionality in the underlying
network stack, but do not consider application requirements,
and therefore do not achieve optimal performance.

A new approach is needed that allows developers to build
custom application communication structures, while provid-
ing support for efficient data aggregation. To tackle this
problem, this paper introduces the Hitch Hiker component
binding model, with support for multi-hop data aggregation
based on priority information associated with bindings.

Hitch Hiker extends binding models to distinguish be-
tween high- and low-priority bindings. The Hitch Hiker
binding model allows developers to specify high-priority re-
mote bindings that generate radio transmissions, or low-
priority remote bindings which communicate exclusively us-
ing the data aggregation overlay and therefore result in no
additional transmissions. Using component meta-data, Hitch
Hiker constructs a multi-hop Hitch Hiker overlay network
from the free payload space of high-priority bindings. Low-
priority bindings use the Hitch Hiker overlay network, and
therefore avoids additional radio transmissions between re-
mote components. By routing low-priority traffic over this
data aggregation overlay, Hitch Hiker significantly reduces
energy consumption. Furthermore, low-priority bindings pro-
vide developers with a low cost, lightweight and easy to use
approach for data aggregation. To the best of our knowl-
edge, Hitch Hiker is the first component binding model that
provides support for data aggregation.

A prototype of Hitch Hiker has been implemented for the
LooCI component model [7] running on the Contiki OS [4]
and for the OMNeT++ [17] simulator. Our evaluation shows
that: (i.) the resource consumption of Hitch Hiker is minimal
and (ii.) by using Hitch Hiker to transmit low-priority traffic,
energy consumption is significantly reduced.

The remainder of this paper is structured as follows. Sec-
tion 2 reviews related work. Section 3 introduces the Hitch

Hiker binding model. Section 4 introduces and evaluates
prototype implementations of Hitch Hiker. Finally, Sec-
tion 5 concludes this paper.

2. RELATED WORK
Section 2.1 discusses work in the area of data aggregation.

Section 2.2 discusses component and binding models.

2.1 Data Aggregation Schemes
He et al. [5] describe two classes of data aggregation ap-

proach: Application Dependent Data Aggregation (ADDA),
which requires knowledge of application-level traffic flows
and Application Independent Data Aggregation (AIDA) which
performs aggregation in a generic fashion without application-
specific information. We discuss both classes of aggregation
in Section 2.1.1 and Section 2.1.2, respectively.

2.1.1 Application Dependent Data Aggregation
ADDA approaches use network-wide application informa-

tion to optimise the manner in which information is collected
and routed across the network. These efforts focus upon the
network and application layers of the communication stack.

At the Network Layer, Intanagonwiwat et al. introduce
Directed Diffusion [8], which provides data-centric routing,
in-network caching and aggregation. At the Application
Layer, Madden et al. contribute the Tiny AGgregation
(TAG) [12] service, which allows users to specify SQL-like
queries, which are multicast to relevant sensor nodes using a
tree that is rooted at the base-station. Network-flow based
data aggregation protocols [9, 19] take an orthogonal ap-
proach, modelling the sensor network as a graph and, based
upon application-level traffic flows, calculating and config-
uring an optimal aggregation structure. Network-flow based
approaches offer efficient calculation of an optimal data ag-
gregation structure, for static networks where network-wide
data flows are known, but these approaches are unsuitable
for dynamic networks which support runtime reconfigura-
tion. It can be seen that contemporary approaches are
either inherently static as in network flow models [8], or
otherwise restrict developers to a single application inter-
action model [12] or routing topology [9, 19]. In contrast,
application-independent approaches provide a more generic
aggregation approach, discussed below in Section 2.1.2.

2.1.2 Application Independent Data Aggregation
AIDA schemes provide a one size fits all approach to data

aggregation that is independent of application requirements.
These approaches typically operate at the network and data
link layer. At the Network Layer, well known approaches to
aggregation include the Shortest Path Tree (SPT), wherein
a single, network-wide aggregation tree is centrally calcu-
lated and configured and the Greedy Incremental Tree (GIT)
which approximates a shortest path tree, but is constructed
in an incremental and decentralised fashion [10]. However,
such approaches are poorly suited to WSN scenarios where
energy resources are unevenly distributed. At the Data Link
Layer, He et al. contribute AIDA [5], which takes advantage
of queuing delay and the broadcast nature of wireless me-
dia to implement application independent data aggregation.
AIDA aggregates multiple packets into single frames prior
to transmission, resulting in significant savings in terms of
energy and latency. While AIDA uses data from the net-
work layer, it treats the application layer as a black box and

therefore cannot exploit patterns in application traffic flows.
Furthermore, as AIDA operates at the data link layer, it is
unable to perform multi-hop data aggregation.

2.2 Remote Component Binding Models
Hitch Hiker combines aggregation with a lightweight re-

mote binding model. In this section, we review component
binding models and discuss opportunities for aggregation.
Contemporary remote binding models typically offer either
event-based or Remote Procedure Call (RPC) semantics.
RPC-based binding models allow remote functionality to be
called using the same semantics as local procedures, thus
lowering the overhead on component developers. RPC-based
models are request-reply and therefore bidirectional in na-
ture. In a WSN context, May et al. [13] contribute RPC
calls with support for unicast and anycast, wherein exactly
one neighbouring node responds to the call. Where compo-
nent models support remote reconfiguration, bindings may
be modified at runtime.

Event-based binding models provide simple unidirectional
communication between software modules. Event-based ap-
proaches are attractive in resource-constrained scenarios, as
they are lightweight and do not cause software modules to
block while waiting for responses as in RPC. The LooCI
binding model [7] provides unreliable event-based binding
using a decentralised publish-subscribe event bus communi-
cation medium. LooCI bindings may be remotely modified
at runtime in order to enact reconfiguration.

Considering opportunities for cross-layer optimisation, all
of the binding models discussed above [7,18] provide explicit
meta-data that can be used to determine traffic flows and
therefore optimise aggregation functionality. Despite this
opportunity, current component models typically treat the
network layer and below as a black box, resulting in subop-
timal communication. In the following section, we describe
the Hitch Hiker binding model.

3. THE HITCH HIKER BINDING MODEL
This section describes the design of the Hitch Hiker com-

ponent binding model and its associated network stack. Sec-
tion 3.1 introduces prioritised bindings. Section 3.2 de-
scribes how route information is extracted from bindings.
Section 3.3 describes the Hitch Hiker stack.

3.1 Prioritised Bindings
Figure 1 shows a part of the smart building case study,

used in our evaluation. Here, a temperature component, de-
ployed on sensor node N1, samples temperature data once
every 30s and sends the data to the comfort level compo-
nent. The comfort level component on N2, analyses sensor
data, and sends the result to a manager located on N3 ev-
ery 30s. These three components communicate via standard
bindings, depicted as . For the remainder of this paper,
we refer the standard bindings as high-priority bindings.

Hitch Hiker then introduces the concept of low-priority
bindings, depicted as in Figure 1. Low-priority bind-
ings are used by non-critical applications, the definition of
which is left to the developer. The use of a low-priority
binding indicates that the developer is willing to trade com-
munication performance for energy efficiency. Low-priority
bindings are realised in Hitch Hiker by routing messages via
the data aggregation overlay network, referred to as Hitch
Hiker overlay network. In our example, a node health moni-

Temperature
periodicity=30s

Node Health
Monitor

Manager Node Health
Alert

Comfort Level
periodicity=30s

N1 N2 N3

Figure 1: Application view of a deployed application.

tor component deployed on N1 is connected to a node health
alert component deployed on N3 via a low-priority binding.

High-Priority Bindings Hitch Hiker extends the LooCI
binding model described in [7]. Conceptually, a LooCI bind-
ing is a connection between a source and a destination com-
ponent, with an associated event type and a reference to the
network link (which is potentially a multi-hop route) that
connects the nodes hosting the two components.

Definition 1 (Binding). A binding is a tuple b = 〈Cs,
Cd,Type,Link〉, where Cs is the source component, Cd is the
destination component, Type is the type of the events sent
through the binding, and Link is the remote connection be-
tween the nodes where the binding is deployed, defined below.

Definition 2 (Remote Connection). A remote con-
nection is a tuple ` = 〈Ns, Nd, MTU ,Bw ,D〉 describing the
communication channel between two network nodes, where
Ns is the source node, Nd is the destination node, MTU is
the maximum transmission unit between Ns and Nd, Bw is
the bandwidth of the remote connection, and D is the ex-
pected delay of the remote connection.

A LooCI binding is realised as an outgoing binding entry
on the sending node and an incoming binding entry on the
receiving node, which is established by issuing bindTo and
bindFrom calls to the sender and receiver, respectively. These
bindings are created at runtime and stored in a binding table
that is used to dispatch events. High-priority component
binding’s communication is mediated by the transmission of
events using the network stack of the host operating system.

Low-Priority Bindings Hitch Hiker introduces the con-
cept of a low-priority binding, depicted as in Figure 1.
In our example, a node health monitor component gath-
ers the local node status such as battery level and radio
link quality, and transmits this data to a node health alert
component running on a server. We selected node health
monitoring as an example of a low-priority application be-
cause this functionality is typically less important than the
core WSN mission of gathering environmental data. How-
ever, it should be noted that developers are free to de-
fine which components are high-priority and low-priority
in their application context. In our example (Figure 1),
the low-priority binding connecting the node health monitor
to the node health alert component is formally represented
as 〈Node Health Monitor,Node Health Alert, Status, `status〉,
where Status is an event type with node status information
and `status is the remote connection of the overlay network.

High-priority and low-priority bindings have the same arte-
facts: a source component, destination component, event
type (Definition 1) and a remote connection (Definition 2).
Low-priority bindings are realised in LooCI by adding a sep-
arate set of binding tables to each node.

The overlay routes necessary to support low-priority bind-
ings are established reactively, as it required to support low-
priority bindings. As with all data aggregation approaches,

low-priority bindings can only be established where sufficient
high-priority traffic exists to support them.

3.2 Component Probe Extracts Network Data
The component probe extracts data from the high-priority

application to create the remote connections of the Hitch
Hiker network. It intercepts binding acknowledgment mes-
sages containing the source component Cs, the source node
Ns, the destination node Nd, and the binding event type
Type, and builds a remote connection for the Hitch Hiker
network. Recall that a remote connection is formally a tuple
〈Ns, Nd,MTU ,Bw ,D〉 (Definition 2). The MTU is calcu-
lated based on the event type, which has an associated pay-
load size. Hitch Hiker extracts periodicity information by
querying source components for their periodicity property
using the standard LooCI API. Hitch Hiker distinguishes
between periodic and non-periodic components: the former
send values at a fixed rate (e.g., a temperature reading every
10 s), and the latter exhibit unpredictable behaviour (e.g.,
an alert generated when a window is opened).

Formally, we write Π(C) to denote the periodicity of a
component C, defined below, which returns the special sym-
bol ⊥ when C is non-periodic.

Π(C) =

{
r if C is periodic with rate r;
⊥ otherwise.

Based upon the information intercepted in the binding ac-
knowledgment—the source component Cs, the source node
Ns, the destination node Nd, and the event type Type—
and the periodicity Π(Cs), the probe calculates the remote
connection for the Hitch Hiker network as follows.

1. Get the payload size ps associated with the Type.

2. Get the MTU m of the remote connection between the
source (Ns) and destination (Nd).

3. Define hd to be the size of the headers used by the
data-link, network and transport layers of the host pro-
tocol stack.

4. Define MTUHH to be the unused payload size, calcu-
lated as m− ps − hd .

5. If Π(Cs) = ⊥ then return the remote connection
〈Ns, Nd,MTUHH ,⊥,⊥〉,

otherwise return the remote connection
〈Ns , Nd , MTUHH , MTUHH /Π(Cs) , Π(Cs)〉.

3.3 Hitch Hiker Network Stack
Figure 2 shows the Hitch Hiker network stack for a single

embedded sensor node. The Hitch Hiker protocol stack is
composed of two protocols, the Hitch Virtual Medium Ac-
cess Control (MAC) protocol (Section 3.3.1) and the Hiker
routing protocol (Section 3.3.2).

Comfort
Level ProbeRuntime

Hitch Hiker Bindings

IPv6 Hiker

CX-MAC Hitch

802.15.4

set binding

intercept

intercept

w
i
r
e
H
H
T
o
/
w
i
r
e
H
H
F
r
o
m

5. Application

4. Transport

3. Network

2. Data-link

1. Physical

Sensor Node N2

Network
Manager

wireTo

wireFrom

wire ack.

a
d
d
H
H
R
o
u
t
e

Low priority traffic
High priority traffic

Figure 2: Architecture view over the node N2.

3.3.1 Hitch Virtual MAC Protocol
Hitch is a virtual MAC protocol that manages and pro-

vides access to Hitch Hiker overlay links.

Link Data Structures: Hitch manages the set of vir-
tual data links that are available on each sensor node. Each
virtual data link maps to a remote overlay connection (Def-
inition 2) that is composed of: a destination address, MTU,
delay and bandwidth. Virtual links are created by the probe.
A First In First Out (FIFO) queue is maintained per link
where packets are buffered until they can be aggregated with
high-priority traffic and dispatched. If the buffer reaches its
capacity, the oldest frame in the queue is discarded, result-
ing in packet loss. Hitch is a best-effort protocol, which pro-
vides no reliability guarantees. Where reliability is required,
it should be implemented by the transport layer.

Aggregation: The Hitch protocol intercepts outgoing pack-
ets as they are passed to the host MAC protocol. If the
virtual link queue associated with the destination of an in-
tercepted packet is not empty, the available payload size is
filled with packets from the queue, until either the available
payload space is exhausted or the buffer is empty. The mod-
ified packet is then returned to the host MAC protocol to
be transmitted.

Disaggregation: The Hitch protocol intercepts incoming
frames in the host MAC protocol, and disaggregates all en-
capsulated Hitch packets. The disaggregated packets are
then passed to the network layer.

3.3.2 Hiker Overlay Network Protocol
Hiker is a multi-hop overlay routing protocol that operates

efficiently with the Hitch data link protocol.

Route Data Structures: Hiker maintains a minimalist
routing table on each node. This routing table begins empty,
and routes are reactively configured by the network manager
to support low-priority bindings. Each route is comprised
of a remote destination, the virtual link that represents the
next hop on the route to this address and a route-MTU
which denotes the maximum packet size that can traverse
the complete route.

Routing: When an incoming Hiker packet is received, the
destination field of the packet is checked. If the destination
is the local sensor node, it is passed to the transport layer.
If the destination matches a known route, it is transmit-
ted on the appropriate link using the transmit(frame,link)
method of Hitch. Otherwise, the packet is discarded.

Definition 3 (Route). A route is a multi-hop remote
connection (Definition 2) obtained by composing a non-empty
sequence of remote connections, such that for every consec-
utive ` and `′ the destination node of ` matches the source
node of `′. Given a sequence of n remote connections:
〈Ns,1, Nd,1,MTU 1, Bw1, D1〉, . . . , 〈Ns,n, Nd,n,MTUn, Bwn, Dn〉
its composition yields the route 〈Ns, Nd,MTU , Bw,D〉, where

Ns = Ns,1

Nd = Nd,n

MTU = minni=1 MTU i

Bw = minni=1 Bwi
D =

∑n
i=1 Di.

Route Discovery Hitch Hiker provides efficient centralised
route creation. Hiker assumes that a single LooCI network
manager is running for the entire network. This network
manager enacts all management and reconfiguration. This
information is exploited to create the Hitch Hiker overlay
network as follows:

1. Overlay links are discovered based upon extended bind-
ing acknowledgements. This information is provided
by the component probe as described in Section 3.2.

2. The network manager assembles discovered overlay links
to form a network graph, wherein each link is labelled
with its associated delay, MTU and bandwidth.

3. When the user requests the establishment of a low-
priority binding b:

(a) The graph is pruned to remove all links which
have an insufficient MTU to support the specified
data type.

(b) The Dijkstra algorithm is used to calculate the
shortest path between the source and destination,
using either delay or bandwidth as the link cost.
Our evaluation uses delay as the link cost.

(c) The network manager configures the shortest path
overlay route, or responds with an exception where
no overlay route is possible.

(d) Finally, the network manager configures the route
required by the low-priority binding b, by sending
route-creation messages to all involved nodes.

Manager

N0

Comfort
Level [30s]

Control
N1

Temp.
Sensor [30s]

Fan Relay
N2

Light
Sensor [30s]

Light Relay
N3

Contact
Switch

Alarm
N4

x25

Node Health Alert
N0

Node Health Monitor

N1 . . .Nn

Figure 3: Component bindings of the smart building application (left) and for the monitoring application (right).

300 240 180 120 60

0

100

200

250

Periodicity of the low-priority packets (seconds)

L
a
te

n
cy

(s
ec

o
n
d
s)

Smart building

Standard binding

One-hop aggregation

Hitch Hiker

300 240 180 120 60

80

90

100

Periodicity of the low-priority packets (seconds)

E
n
er

g
y

co
n
su

m
p
ti

o
n

(K
il
o
jo

u
le

s/
d
ay

)

Smart building

Standard binding

One-hop Aggregation

Hitch Hiker

Figure 4: Latency (left) and the energy consumption (right) of the node health monitoring application overlaid on the smart building
with Hitch Hiker, one hop aggregation and standard bindings.

4. IMPLEMENTATION AND EVALUATION
We have developed prototypes of Hitch Hiker for the OM-

NeT++ simulator [17] and the Zigduino mote [11].
OMNeT++ settings: The physical layer is a CC2420 IEEE

802.15.4 radio [16]. We use B-MAC [14] as a representative
Low Power Listening (LPL) protocol.

Zigduino configuration: Zigduino is an Arduino-compatible
mote based on the ATmega128RFA1 [2], which offers a 16 MHz
MCU, 16 KB of RAM, 128 KB of Flash and an IEEE 802.15.4
radio. We use ContikiOS v2.6, Contiki X-MAC (CX-MAC) [3]
and LooCI v2.0 [7] extended with Hitch Hiker. The param-
eterisation of CX-MAC uses the default Contiki values.

We compare Hitch Hiker against (i.) transmission of stan-
dard messages (referred to as Standard binding) and (ii.) an
optimally configured one-hop data aggregation scheme using
an optimal aggregation buffer size of 3 (referred to as One-
hop aggregation). Values reported below represent averages
taken over one week.

4.1 Case Study Applications
Smart Building Application The smart building appli-
cation reduces energy consumption by sensing environmen-
tal conditions and controlling relevant appliances (left part
of Figure 3). Sensor nodes (N2, N3 and N4) monitor: tem-
perature, light and if a window is open or closed every 30s.
Sensor data is transmitted to a comfort level calculator run-
ning on the cluster-head sensor node (N1) and forwarded to
a manager running on a server (N0), every 30s. This man-
ager issues commands to a control component on the cluster-
heads (N1), which activates or deactivates relay switches on
nodes N2 to N4 to control: lighting, ventilation and a win-
dow alarm. This application is realised using high-priority
bindings. The payload size of sensor data is 4 B, the payload
size of comfort data is 12 B and the size of relay commands
is 4 B. In terms of network topology, the scenario covers 25
offices. Each office contains three sensor nodes and a cluster-

head node. Sensor nodes communicate with cluster heads,
which in turn communicate with a single server for manage-
ment of comfort level. This approximates a 101-node tree,
rooted at the server.

Node Health Monitoring Application The node health
monitoring application (right part of Figure 3) is a low-
priority application. This component monitors battery level,
memory use and the radio link quality. The application con-
sists of a health monitor component that runs on all sensor
nodes (N1 to Nn) and sends node health information to an
alert component running on the server node (N0). Node
health monitoring is overlaid on the smart building applica-
tion using low-priority bindings. The payload size of node
health monitor data is 18 B.

4.2 OMNET++ Simulation Results
Figure 4 shows the results of our simulation. The sampling

frequency of the node health monitoring application was set
to 10% to 50% of the base application frequency. The y-axis
shows the power consumption of low-priority Hitch Hiker
bindings, standard bindings and one-hop data aggregation.

Latency As expected, the node health monitoring appli-
cation exhibited a higher latency when using low-priority
bindings than with standard bindings due to packets wait-
ing for aggregation at each hop. However, the latency of
low-priority bindings is lower than the one-hop aggregation
scheme due to the exploitation of multi-hop routes.

Energy The results shown in Figure 4 confirm the expected
savings when using Hitch Hiker to route low-priority traffic.
Energy consumption is reduced by up to 15% in the smart
building scenario. The energy consumption of Hitch Hiker
is also lower than that of one-hop data aggregation.

4.3 Zigduino/Contiki Implementation Results
This section reports the performance timings of route con-

figuration and message transmission as well as energy con-

sumption and memory overhead for the Contiki/Zigduino
implementation.

Route Creation: Hitch Hiker requires approximately 86ms
to configure a single low-priority binding. Each additional
hop that must be configured adds 30 ms to the configura-
tion overhead. Route configuration is thus lightweight; cre-
ating all of the Hitch Hiker bindings required for the smart
building takes less than 3 s. However, this generates four
transmissions per Hitch Hiker binding, which costs 36.5 mJ.

Message Transmission: Enqueueing, dequeueing and en-
capsulating a single Hitch Hiker packet within a host frame
requires on average of 12.27 mJ, while a standard frame trans-
mission using CX-MAC requires 21.41 mJ, a saving of 57.4%
compared to standard transmission.

Memory: The implementation of Hitch Hiker adds 3%
of ROM and 8% of RAM to the LooCI component model.
Each routing table entry uses an additional 6 B of memory.
We believe that this low overhead is reasonable in light of
the energy savings reported in Section 4.2.

5. CONCLUSIONS
This paper introduced Hitch Hiker, a novel remote bind-

ing model for WSN which supports prioritised bindings and
multi-hop data aggregation. This model provides develop-
ers with a low-effort mechanism to manage data aggregation.
To the best of our knowledge, Hitch Hiker is the first com-
ponent binding model to embed data aggregation support.

Simulation shows that using Hitch Hiker to route low-
priority traffic consumes less energy (up to 15%) than ex-
plicit transmissions or one-hop data aggregation. Our pro-
totype implementation for the Zigduino mote [11] validates
that Hitch Hiker consumes minimal memory and that aggre-
gation costs a small fraction of the energy that is required
for a standard radio transmission.

As a future work, we will extend Hitch Hiker to support
decentralised route discovery and provide Quality-of-Service
guarantees for Hitch Hiker bindings.

6. ACKNOWLEDGEMENTS
This research is partially supported by the Portuguese

FCT grant BPD/91908/2012, and by the Research Fund,
KU Leuven, the IWT and iMinds (a research institute founded
by the Flemish government). The research is conducted in
the context of the following projects: ICON-COMACOD,
IOF-TRANSITION and GOA-ADDIS.

7. REFERENCES
[1] T. Aonishi, T. Matsuda, S. Mikami, H. Kawaguchi,

C. Ohta, and M. Yoshimoto. Impact of aggregation
efficiency on git routing for wireless sensor networks.
In Int. Conf. on Parallel Processing Workshops, pages
8 pp.–158, Aug. 2006.

[2] Atmel Corporation. ATmega128RFA1 datasheet, 2012.

[3] M. Buettner, G. V. Yee, E. Anderson, and R. Han.
X-MAC: A short preamble MAC protocol for
duty-cycled wireless sensor networks. In 4th Int. Conf.
on Embedded Networked Sensor Systems, pages
307–320, 2006.

[4] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a
lightweight and flexible operating system for tiny

networked sensors. In 29th Annual IEEE Int. Conf. on
Local Computer Networks, pages 455–462, Nov 2004.

[5] T. He, B. M. Blum, J. A. Stankovic, and
T. Abdelzaher. Aida: Adaptive
application-independent data aggregation in wireless
sensor networks. ACM Transactions on Embedded
Computing Systems, pages 426–457, May 2004.

[6] W. Heinzelman, A. Chandrakasan, and
H. Balakrishnan. Energy-efficient communication
protocol for wireless microsensor networks. In 33rd
Annual Hawaii Int. Conf. on System Sciences, page 10
pp., Jan 2000.

[7] D. Hughes, K. Thoelen, J. Maerien, N. Matthys,
J. Del Cid, W. Horre, C. Huygens, S. Michiels, and
W. Joosen. Looci: The loosely-coupled component
infrastructure. In IEEE Symposium on Network
Computing and Applications, pages 236–243, 2012.

[8] C. Intanagonwiwat, R. Govindan, D. Estfin,
J. Heidemann, and F. Silva. Directed diffusion for
wireless sensor networking. IEEE/ACM Transactions
on Networking, 11:2–16, 2003.

[9] K. Kalpakis, K. Dasgupta, and P. Namjoshi. Efficient
algorithms for maximum lifetime data gathering and
aggregation in wireless sensor networks. Computer
Networks, 42(6):697 – 716, 2003.

[10] B. Krishnamachari, D. Estrin, and S. Wicker. The
impact of data aggregation in wireless sensor
networks. In 22nd Int. Conf. on Distributed
Computing Systems Workshops, pages 575–578, 2002.

[11] Logos Electromechanical. Zigduino Manual, 4 2014.
Rev. 2.

[12] S. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. Tag: A tiny aggregation service for ad-hoc
sensor networks. SIGOPS Oper. Syst. Rev., pages
131–146, 2002.

[13] T. D. May, S. H. Dunning, G. A. Dowding, and J. O.
Hallstrom. An RPC design for wireless sensor
networks. Int. Journal of Pervasive Computing and
Communications, 2(4):384–397, 2007.

[14] J. Polastre, J. Hill, and D. Culler. Versatile low power
media access for wireless sensor networks. In 2nd Int.
Conf. on Embedded Networked Sensor Systems,
SenSys ’04, pages 95–107. ACM, 2004.

[15] V. Raghunathan, C. Schurgers, S. Park, M. Srivastava,
and B. Shaw. Energy-aware wireless microsensor
networks. In IEEE Signal Processing Magazine, pages
40–50, 2002.

[16] Texas Instruments. CC2420 datasheet, 2014.

[17] A. Varga. OMNeT++. In K. Wehrle, M. Günes, and
J. Gross, editors, Modeling and Tools for Network
Simulation, pages 35–59. Springer Berlin Heidelberg,
2010.

[18] T. von Eicken, D. E. Culler, S. C. Goldstein, and
K. E. Schauser. Active messages: A mechanism for
integrated communication and computation. In 19th
Annual Int. Symposium on Computer Architecture,
pages 256–266, 1992.

[19] Y. Xue, Y. Cui, and K. Nahrstedt. Maximizing
lifetime for data aggregation in wireless sensor
networks. Mob. Netw. Appl., 10(6):853–864, Dec. 2005.

	Introduction
	Related Work
	Data Aggregation Schemes
	Application Dependent Data Aggregation
	Application Independent Data Aggregation

	Remote Component Binding Models

	The Hitch Hiker Binding Model
	Prioritised Bindings
	Component Probe Extracts Network Data
	Hitch Hiker Network Stack
	Hitch Virtual MAC Protocol
	Hiker Overlay Network Protocol

	Implementation and Evaluation
	Case Study Applications
	OMNET++ Simulation Results
	Zigduino/Contiki Implementation Results

	Conclusions
	Acknowledgements
	References

