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a b s t r a c t 

Surgical tool detection is attracting increasing attention from the medical image analysis community. The 

goal generally is not to precisely locate tools in images, but rather to indicate which tools are being 

used by the surgeon at each instant. The main motivation for annotating tool usage is to design effi- 

cient solutions for surgical workflow analysis, with potential applications in report generation, surgical 

training and even real-time decision support. Most existing tool annotation algorithms focus on laparo- 

scopic surgeries. However, with 19 million interventions per year, the most common surgical procedure 

in the world is cataract surgery. The CATARACTS challenge was organized in 2017 to evaluate tool anno- 

tation algorithms in the specific context of cataract surgery. It relies on more than nine hours of videos, 

from 50 cataract surgeries, in which the presence of 21 surgical tools was manually annotated by two 

experts. With 14 participating teams, this challenge can be considered a success. As might be expected, 
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2 https://grand-challenge.org/All _ Challenges . 
3 http://www.kaggle.com/c/diabetic-retinopathy-detection . 
4 https://idrid.grand-challenge.org . 
5 https://optima.meduniwien.ac.at/research/challenges . 
6 https://retouch.grand-challenge.org . 
. Introduction 

Video recording is a unique solution to collect information

bout a surgery. Combined with computer vision and machine

earning, it allows a wide range of applications, including auto-

atic report generation, surgical skill evaluation and training, sur-

ical workflow optimization, as well as warning and recommenda-

ion generation. Key indicators of what the surgeon is doing at any

iven time are the surgical tools that he or she is using. There-

ore, several tool detection techniques have been presented in re-

ent years ( Bouget et al., 2017 ). The Challenge on Automatic Tool

nnotation for cataRACT Surgery (CATARACTS) 1 was organized in

017 to evaluate the relevance of these techniques and novel ones

n the context of cataract surgery. This paper introduces the results

nd main conclusions of the CATARACTS challenge. 

A cataract is an opacification of the crystalline lens, a bicon-

ex eye structure located behind the iris. Normally transparent,

his lens helps to focus light onto the retina and provides accom-

odation. Cataract develops with aging, general disease, congeni-

al disorder or injury, and leads to a decrease in vision. Symptoms

nclude cloudy or blurred vision, faded colors, glare, poor night vi-

ion and double vision. This is the most common cause of vision

oss and blindness in the world: according to the World Health Or-

anization, the number of cataract blind people will reach 40 mil-

ion in 2025 ( Wang et al., 2016 ). When vision loss interferes with

veryday activities, cataract surgery is recommended ( Kessel et al.,

016 ). This is the most frequently performed surgical procedure in

any economically developed countries ( Erie, 2014; Wang et al.,

016 ). Its purpose is to remove the crystalline lens and replace it

ith an artificial intraocular lens (IOL). Physiologically, the crys-

alline lens is contained in a bag, which is connected to the cil-

ary body by a zonule. Until the early 1960s, the lens was removed

ith its bag in a so called “intracapsular” extraction, using cryoex-

raction for a better hold of the lens ( Krwawicz, 1961 ): this re-

uired a 180 ° incision around the cornea ( Olson, 2018 ). Later, it

as replaced with “extracapsular” lens removal: the capsular bag

s left inside the eye, allowing the IOL to be implanted in it. The

dvent of phacoemulsification definitely revolutionized the surgery

n terms of safety, efficacy and reproducibility. Thanks to an ul-

rasonic handpiece, the crystalline lens is fragmented into small

ieces, which can be removed by suction through a small incision

 Kelman, 1967 ). Introduced in 1967, this technique started emerg-

ng in routine practice in the 1980s and improved over time to

equire less ultrasound energy and smaller incision size (about

.8–2.2 mm today). The IOL, initially made of rigid polymethyl-

ethacrylate, also required tremendous evolution in biomaterials

o allow insertion through a small incision, hence the develop-

ent of foldable IOLs made of silicone and then of hydrophilic or

ydrophobic acrylics ( Seward, 1997 ). The result of a smaller inci-

ion is less astigmatism with faster recovery and decrease of post-

perative complications ( Riaz et al., 2006 ). Recent technological

dvances include femtosecond laser-assisted surgery, which auto-

ates the process of crystalline lens fragmentation ( Popovic et al.,

016 ), and premium IOLs: toric optics for astigmatism correction,
1 https://cataracts.grand-challenge.org . 
ed on deep learning. This paper thoroughly evaluates these solutions: in

nnotations are compared to that of human interpretations. Next, lessons

lysis of these solutions are discussed. We expect that they will guide the

itoring tools in the near future. 

© 2018 Elsevier B.V. All rights reserved.

ultifocal and extended depth of focus IOLs for presbyopia correc-

ion ( de Silva et al., 2016; Cochener et al., 2018 ). 

Because of its frequency, cataract surgery is the first surgery

hat eye surgeons need to master ( Kaplowitz et al., 2018 ): this is

ne major motivation for developing computer-aided decision tools

or cataract surgery. One way to help surgeons during their training

eriod is to analyze their surgical workflow ( Charrière et al., 2017 ).

hrough comparisons with more experienced surgeons, postoper-

tively, it may help self-evaluation. Surgical workflow analysis is

lso useful for workflow optimization: by analyzing the workflow

f several surgeries, and their outcome, lessons can be learnt and

est practices can be identified. The same principle can be applied

ntraoperatively: warnings and recommendations can be generated

utomatically whenever an unusual or suboptimal workflow pat-

ern is detected. Surgical workflow optimization and recommenda-

ion generation can be useful for cataract surgery, after a new tech-

ological evolution or for training. It is probably even more use-

ul for rare surgeries, where training data is more difficult to col-

ect. So instead of analyzing the surgical workflow directly, which

s specific to each surgery, we propose to focus on tool usage anal-

sis instead: because tools used in cataract surgeries are similar to

hose used in other surgeries, tool usage annotation algorithms can

e easily transferred to other surgeries. 

In recent years, the number of medical image analysis chal-

enges has exploded. According to Grand-Challenge, 2 which lists

hose challenges and hosts some of them, two challenges were or-

anized per year in 2007 and 2008; their number progressively in-

reased to 15 per year in 2012 and 2013; more than 20 challenges

re now organized every year. The first challenge organized in the

ontext of ophthalmology was the Retinopathy Online Challenge

n 2009 ( Niemeijer et al., 2010 ): the goal was to detect signs of

iabetic retinopathy in fundus photographs. Two other challenges

ere organized on the same topic: the Diabetic Retinopathy De-

ection challenge in 2015 3 and the IDRiD challenge in 2018. 4 The

etection and segmentation of retinal anomalies in optical coher-

nce tomography images was the topic of three other challenges:

he Retinal Cyst Segmentation Challenge in 2015, 5 RETOUCH 

6 and

OCC 

7 in 2017. However, CATARACTS is the only challenge re-

ated to ophthalmic surgery and ophthalmic video analysis. Outside

he scope of ophthalmology, three other challenges about surgery

ideo analysis have been organized: EndoVis in 2015 and 2017

 Bernal et al., 2017 ), 8 and M2CAI in 2016 ( Twinanda et al., 2016 ). 9 

lthough those three challenges are related to digestive surgery,

hey share similarities with CATARACTS. In particular, M2CAI had a

ub-challenge on tool detection and both editions of EndoVis had

 sub-challenge on tool segmentation. What makes tool detection

articularly challenging in CATARACTS, compared to EndoVis and

2CAI, probably is the large range of tools that must be recog-
7 https://rocc.grand-challenge.org . 
8 https://endovis.grand-challenge.org . 
9 http://camma.u-strasbg.fr/m2cai2016 . 

https://cataracts.grand-challenge.org
https://grand-challenge.org/All_Challenges
http://www.kaggle.com/c/diabetic-retinopathy-detection
https://idrid.grand-challenge.org
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nized. The reason is that digestive surgeries addressed in EndoVis

and M2CAI rely on robotic arms with a standardized set of tools,

whereas eye surgeons operate manually and can therefore chose

from a wide selection of tools from several manufacturers. 

The remainder of the paper is organized as follows.

Section 2 reviews the recent literature about surgical tool analysis.

The setup of the CATARACTS challenge is described in Section 3 .

Competing solutions are presented in Section 4 . Results are

reported in Section 5 . The paper ends with a discussion and

conclusions in Section 6 . 

2. Review of surgical tool analysis 

Over the past decades, surgical tool analysis mostly relied on

external markers attached to the tools. This includes shape markers

( Casals et al., 1996 ), color markers ( Ko et al., 2005 ), optical markers

( Krupa et al., 2003 ), acoustic markers ( Chmarra et al., 2007 ) and

RFID systems ( Miyawaki et al., 2009 ). With the progress of com-

puter vision, solutions for vision-based and marker-less tool anal-

ysis have emerged. Bouget et al. (2017) thoroughly reviewed the

literature of this domain until 2015; recent trends are discussed

hereafter. 

2.1. Clinical applications 

In terms of applications, it should be noted that most solutions

were developed to monitor endoscopic videos for minimally inva-

sive surgeries, with or without robotic assistance ( Sarikaya et al.,

2017; Ross et al., 2018; Wesierski and Jezierska, 2018; Du et al.,

2018; Allan et al., 2018 ). Other imaging modalities include: 

• microscopy, for neurosurgery ( Leppänen et al., 2018 ), retinal

surgery ( Alsheakhali et al., 2016b; Rieke et al., 2016a; Kur-

mann et al., 2017; Laina et al., 2017 ) and cataract surgery

( Al Hajj et al., 2017a ), 
• OCT, Gessert et al. (2018) , for ophthalmic microsurgery ( Zhou

et al., 2017; Keller et al., 2018 ), 
• X-rays, for endovascular surgery ( Chang et al., 2016 ) and face

surgery ( Kügler et al., 2018 ), 
• ultrasound ( Rathinam et al., 2017 ), for intraplacental interven-

tions ( García-Peraza-Herrera et al., 2016 ), 
• and RBGD, for orthopedic surgery ( Lee et al., 2017b ). 

2.2. Computer vision tasks 

In terms of computer vision tasks, multiple problems have been

addressed in the recent literature. These tasks can be categorized

according the precision of the desired outputs. The finest task is

tool segmentation ( Bodenstedt et al., 2016 Feb-Mar; García-Peraza-

Herrera et al., 2016; 2017; Attia et al., 2017; Lee et al., 2017b;

Zhou et al., 2017; Ross et al., 2018; Su et al., 2018 ). This includes

multi-label tool segmentation for articulated tools ( Laina et al.,

2017 ): each tool part is associated with one label. A coarser task is

tool detection or localization ( Chang et al., 2016; Leppänen et al.,

2018 ): the goal typically is to detect the tool tip ( Furtado et al.,

2016; Chen et al., 2017; Czajkowska et al., 2018 ) or the tool edges

( Agustinos and Voros, 2015; Chen et al., 2017 ). For articulated in-

struments, the goal is also to detect the tool parts ( Wesierski and

Jezierska, 2017 Aug-Sep; 2018 ) or the articulations between them

( Laina et al., 2017; Du et al., 2018 ). For flexible instruments, the

goal is also to detect the tool centerline ( Chang et al., 2016 ). Tool

detection generally is an intermediate step for tool tracking, the

process of monitoring tool location over time ( Du et al., 2016;

Rieke et al., 2016a; Lee et al., 2017b; Zhao et al., 2017; Czajkowska

et al., 2018; Ryu et al., 2018; Keller et al., 2018 ), and pose esti-

mation, the process of inferring a 2-D pose ( Rieke et al., 2016b;
urmann et al., 2017; Alsheakhali et al., 2016b; Du et al., 2018;

esierski and Jezierska, 2018 ) or a 3-D pose ( Allan et al., 2018;

essert et al., 2018 ) based on the location of tool elements. Tasks

ssociated with tool detection also include velocity estimation

 Marban et al., 2017 ) and instrument state recognition ( Sahu et al.,

016a ). All the above tasks are directly useful to the surgeon: they

an be used for improved visualization, through augmented or

ixed reality ( Frikha et al., 2016 Nov-Dec; Bodenstedt et al., 2016

eb-Mar; Lee et al., 2017b; 2017a ). 

Finally, the coarsest task is tool presence detection: the goal

s to determine which tools are present or active in each frame

f the surgical video ( Sahu et al., 2017; Primus et al., 2016; Hu

t al., 2017; Sarikaya et al., 2017; Twinanda et al., 2017; Wang

t al., 2017; Al Hajj et al., 2017a; Jin et al., 2018 ). This is the task

ddressed in this paper. Unlike finer tasks, the usefulness of this

ask is indirect: it is mainly used to analyze the surgical workflow

 Twinanda et al., 2017 ). 

.3. Computer vision algorithms 

Various computer vision algorithms have been proposed to ad-

ress these tasks. Until early 2017, tool detection relied heavily

n handcrafted features, including Gabor filters ( Czajkowska et al.,

018 ), Frangi filters ( Agustinos and Voros, 2015; Chang et al.,

016 ), color-based features ( Primus et al., 2016; Rieke et al.,

016a ), histograms of oriented gradients ( Rieke et al., 2016a; Cza-

kowska et al., 2018 ), SIFT features ( Du et al., 2016 ), ORB features

 Primus et al., 2016 ) and local binary patterns ( Sahu et al., 2016a ).

or tool segmentation, similar features have been extracted within

uperpixels ( Bodenstedt et al., 2016 Feb-Mar ). These features were

rocessed either by a machine learning algorithm, such as a sup-

ort vector machine ( Primus et al., 2016; Wesierski and Jezierska,

018 ), a random forest ( Bodenstedt et al., 2016 Feb-Mar; Rieke

t al., 2016a; 2016b ) or AdaBoost ( Sahu et al., 2016a ), or by a para-

etric model, such as a generalized Hough transform ( Du et al.,

016; Frikha et al., 2016 Nov-Dec; Czajkowska et al., 2018 ) or a

-spline model ( Chang et al., 2016 ). Note that template matching

echniques have also been used to deal with articulated instru-

ents ( Ye et al., 2016; Wesierski and Jezierska, 2018 ). 

Since 2017, most tool analysis solutions rely on deep learn-

ng. For tool detection, convolutional neural networks (CNNs)

ere used to recognize images patches containing tool pixels

 Alsheakhali et al., 2016a; Chen et al., 2017; Zhao et al., 2017 ). The

se of region proposal networks was also investigated ( Sarikaya

t al., 2017; Jin et al., 2018 ). Several CNN architectures were ex-

erimented for tool segmentation: fully convolutional networks

 García-Peraza-Herrera et al., 2016; Zhou et al., 2017 ), U-net

 Ross et al., 2018 ) or custom encoder/decoder CNN architectures

 García-Peraza-Herrera et al., 2017; Attia et al., 2017; Laina et al.,

017 ). The use of generative adversarial networks was proposed

o train or pre-train segmentation CNNs: a tool segmentation CNN

 Ross et al., 2018 ) and a specular highlight segmentation and re-

oval CNN ( Funke et al., 2018 ). For pose estimation, regression

NNs were proposed ( Du et al., 2018; Gessert et al., 2018; Kü-

ler et al., 2018 ), which eliminates the need to explicitly localize

ools as an intermediate step. Note that multi-task CNNs have been

esigned: Laina et al. (2017) jointly segments the tools and de-

ects the joints between tool parts, Kurmann et al. (2017) jointly

ecognizes the tools and detects the joints between tool parts,

u et al. (2018) jointly detects the joints between tool parts and

stimates 2-D poses, Jin et al. (2018) and Hu et al. (2017) jointly

etermines tool presence and tool localization. To take time infor-

ation into account, proposed solutions sometimes took advantage

f the optical flow ( Czajkowska et al., 2018 ) or relied on temporal

ltering techniques, such as a Ryu et al. (2018) or a recurrent neu-

al network (RNN) ( Attia et al., 2017; Marban et al., 2017 ). This is



H. Al Hajj, M. Lamard and P.-H. Conze et al. / Medical Image Analysis 52 (2019) 24–41 27 

t  

2  

t  

o

2

 

(  

e  

2  

p  

f  

(  

e  

u  

l  

(  

e  

p  

d  

d  

i  

a  

a  

c  

J  

t  

s  

e

3

3

 

fi  

b  

s  

f  

2  

a  

S  

(  

a  

L  

w  

M  

T  

w  

o  

m  

t

3

 

a  

e  

(  

p  

l  

s

Fig. 1. Surgical tools annotated in videos. 
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ypically useful for tool tracking ( Chen et al., 2017; Marban et al.,

017; Ryu et al., 2018; Czajkowska et al., 2018 ), but it was also used

o speed up tool segmentation ( García-Peraza-Herrera et al., 2016 )

r to improve tool presence detection ( Al Hajj et al., 2017a ). 

.4. Tool presence detection pipeline 

Nowadays, tool presence detection algorithms also rely on CNNs

 Al Hajj et al., 2017b; Hu et al., 2017; Kurmann et al., 2017; Sahu

t al., 2017; Twinanda et al., 2017 ) or CNN ensembles ( Wang et al.,

017 ). These CNNs accept full video frames as input and com-

ute a probability of presence for each surgical tool in the input

rame. These CNNs are generally trained through transfer learning

 Yosinski et al., 2014; Litjens et al., 2017 ): image classification mod-

ls, typically pre-trained on ImageNet, 10 are fine-tuned on individ-

al frames extracted from training videos. This strategy was fol-

owed by the winners of the M2CAI tool detection sub-challenge

 Raju et al., 2016; Sahu et al., 2016b; Twinanda et al., 2017; Zia

t al., 2016 ). Once CNNs are trained, their predictions can be im-

roved using a temporal model. In the simplest scenario, each pre-

iction signal are smoothed by a usual temporal filter (e.g. a me-

ian filter) to compensate for short-term occlusion or image qual-

ty problems. Whenever long-term relationships between events

re important, a RNN can be used instead ( Yao et al., 2015; Don-

hue et al., 2017 ). CNN+RNN models have thus been used for surgi-

al workflow analysis in endoscopy videos ( Twinanda et al., 2017;

in et al., 2016; Bodenstedt et al., 2017 ). Given the correlation be-

ween surgical workflow and tool usage, such an approach also

eems relevant for tool usage annotation in surgery videos ( Mishra

t al., 2017; Al Hajj et al., 2018 ). 

. Challenge description 

.1. Video collection 

The challenge relies on a dataset of 50 videos of phacoemulsi-

cation cataract surgeries performed in Brest University Hospital

etween January 22, 2015 and September 10, 2015. Reasons for

urgery included age-related cataract, traumatic cataract and re-

ractive errors. Patients were 61 years old on average (minimum:

3, maximum: 83, standard deviation: 10). There were 38 females

nd 12 males. Informed consent was obtained from all patients.

urgeries were performed by three surgeons: a renowned expert

48 surgeries), a one-year experienced surgeon (1 surgery) and

n intern (1 surgery). Surgeries were performed under an OPMI

umera T microscope (Carl Zeiss Meditec, Jena, Germany). Videos

ere recorded with a 180I camera (Toshiba, Tokyo, Japan) and a

ediCap USB200 recorder (MediCapture, Plymouth Meeting, USA).

he frame definition was 1920x1080 pixels and the frame rate

as approximately 30 frames per second. Videos had a duration

f 10 min and 56 s on average (minimum: 6 min 23 s, maxi-

um: 40 min 34 s, standard deviation: 6 min 5 s). In total, more

han nine hours of surgery have been video recorded. 

.2. Training and test set separation 

The dataset was divided evenly into a training set (25 videos)

nd a test set (25 videos). Division was made in such a way that

ach tool appears in the same number of videos from both sets

plus or minus one). No validation dataset was provided: partici-

ants were given the responsibility to divide the training set into a

earning subset and a validation subset. Ground truth was collected

imilarly for training and test videos, as described hereafter. 
10 http://www.image-net.org . 

t  

b  

i  
.3. Tool usage annotation 

All surgical tools visible in microscope videos were first enu-

erated and labeled by the surgeons: a list of 21 tools was ob-

ained (see Fig 1 ). Then, the usage of each tool in videos was

nnotated independently by two non-clinical experts. A tool was

onsidered to be in use whenever it was in contact with the eye-

all. Therefore, a timestamp was recorded by both experts when-

ver one tool came into contact with the eyeball, and also when it

topped touching the eyeball. Up to three tools may be used simul-

aneously: two by the surgeon (one per hand) and sometimes one

y an assistant. Annotations were performed at the frame level, us-

ng a web interface connected to an SQL database. Finally, annota-

http://www.image-net.org
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Table 1 

Statistics about tool usage annotation in the CATARACTS dataset. The first two columns indicate inter-rater agreement (Cohen’s kappa) 

before and after adjudication; the largest changes are in bold. The last column indicates the prevalence of each tool in the training 

subset, ignoring the frames where experts disagree about the usage of that tool, even after adjudication. 

Tool Agreement before adjudication Agreement after adjudication % of training frames in use 

Biomarker 0.835 0.835 0.0168% 

Charleux cannula 0.949 0.963 1.79% 

Hydrodissection cannula 0.868 0.982 2.43% 

Rycroft cannula 0.882 0.919 3.18% 

Viscoelastic cannula 0.860 0.975 2.54% 

Cotton 0.947 0.947 0.751% 

Capsulorhexis cystotome 0.994 0.995 4.42% 

Bonn forceps 0.793 0.798 1.10% 

Capsulorhexis forceps 0.836 0.849 1.62% 

Troutman forceps 0.764 0.764 0.258% 

Needle holder 0.630 0.630 0.0817% 

Irrigation/aspiration handpiece 0.995 0.995 14.2% 

Phacoemulsifier handpiece 0.996 0.997 15.3% 

Vitrectomy handpiece 0.998 0.998 2.76% 

Implant injector 0.980 0.980 1.41% 

Primary incision knife 0.959 0.961 0.700% 

Secondary incision knife 0.846 0.852 0.522% 

Micromanipulator 0.990 0.995 17.6% 

Suture needle 0.893 0.893 0.219% 

Mendez ring 0.941 0.953 0.100% 

Vannas scissors 0.823 0.823 0.0443% 
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tions from both experts were adjudicated: whenever expert 1 an-

notated that tool A was being used, while expert 2 annotated that

tool B was being used instead of A, experts watched the video to-

gether and jointly determined the actual tool usage. However, the

precise timing of tool/eyeball contacts was not adjudicated. There-

fore, a probabilistic reference standard was obtained: 

• 0: both experts agree that the tool is not being used, 
• 1: both experts agree that the tool is being used, 
• 0.5: experts disagree. 

Inter-rater agreement, before and after adjudication, is reported

in Table 1 . A chord diagram 

11 illustrating the co-occurrence of tools

in training video frames is reported in Fig. 2 . 

3.4. Performance evaluation of a submission 

Tool usage predictions submitted by a participant for test videos

were evaluated as follows. A figure of merit was first computed

for each tool label T : the annotation performance for tool T was

defined as the area A ( T ) under the receiver-operating characteris-

tic (ROC) curve (see Fig. 5 ). This curve was obtained by varying a

cutoff on the confidence level for tool T provided by the partici-

pant for each frame in the test set. Frames associated with a dis-

agreement between experts (reference standard = 0.5 for tool T )

were ignored when computing the ROC curve. Then, a global fig-

ure of merit was defined: it was simply defined as the mean A ( T )

value over all tool labels T . The evaluation script was made publicly

available at the beginning of the challenge. 

3.5. Rules of the challenge 

Training videos, with their tool usage annotations, as well as

test videos, without their annotations, were released on April 1,

2017. The challenge has been open for submissions during eight

months, from April 1, 2017 to November 30, 2017. In order to stim-

ulate competition and to explore more solutions, participants were

allowed to submit multiple solutions throughout this period. How-

ever, two restrictions were imposed on re-submissions: 
11 http://mkweb.bcgsc.ca/tableviewer/ . 

t  

e  

t  
1. Each submission was required to be substantially different from

the previous ones. Typically, a first submission may consist of a

CNN only, a second one may consist of an ensemble of CNNs,

and third one may include a temporal sequencer. However,

submitting the same algorithm with different meta-parameters

was not allowed. This rule was fixed to minimize the risk of

influencing the solution’s behavior with test data. To allow ver-

ification of this rule by the organizers, a technical report was

required for each submission and re-submission. 

2. Technical reports and performance scores were immediately

published on the challenge website and no re-submission was

evaluated for a week. This rule was fixed to balance the

inequities between teams submitting multiple solutions and

those submitting only once: the latter can benefit from expe-

rience gained by the former. 

For each team, the solution with maximal performance among

ll submissions (if more than one) was retained to compile the fi-

al team ranking. Two submissions were excluded from the estab-

ishment of this ranking by virtue of the one week waiting rule:

he scheduled evaluation date occurred after the challenge closing

ate. However, they are discussed in the following section anyway.

olutions submitted by the organizers (LaTIM) are not included in

he team ranking, but are also discussed in this paper. 

. Competing solutions 

Fourteen teams competed in this challenge. Their solutions, as

ell as the organizers’ solution, are described hereafter. To allow

omparisons between these solutions, key elements are reported

n Tables 2–6 . 

.1. VGG fine-tuning 

The VGG fine-tuning solution uses a CNN with weights pre-

rained on the ImageNet dataset. The base network is VGG-16

 Simonyan and Zisserman, 2015 ). The last fully connected layer,

amely ‘fc8’, was changed to have twenty-one output neurons,

ach representing the likelihood that one tool is being used by

he surgeon in the input image. The last two fully connected lay-

rs, namely ‘fc7’ and ‘fc8’, were fine-tuned using the CATARACTS

raining dataset. The CNN processes images with 288 × 288 pixels.

http://mkweb.bcgsc.ca/tableviewer/
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Fig. 2. Chord diagram illustrating tool co-occurrence in training video frames. This figure shows, for instance, that the phacoemulsifier handpiece is used in 74,0 0 0 frames 

and that, in 78,5% of these frames, it is used in conjunction with the micromanipulator. 
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(  
t was trained using a stochastic gradient descent with a learning

ate of 0.001 and a momentum of 0.9. The mini-batch size was set

o 48 and the number of epochs to 80. A weighted loss function

as used: a weight of one was assigned to label 0 (tool not being

sed) and a weight of thirty was assigned to label 1 (tool in use).

o random distortions are applied to input images during training

nd inference. 

.2. LCCV-Cataract 

The LCCV-Cataract solution relies on an Inception-v3 CNN

 Szegedy et al., 2016 ) pre-trained on ImageNet. The major dif-

erence with other solutions is that a multi-class classifier was

rained (each image has exactly one label) , rather than a multi-

abel classifier (each image may have zero, one or multiple labels) .

wenty-two mutually exclusive classes were defined: each of the
rst 21 classes predicts the usage of one tool and the 22 nd class

redicts the absence of tool usage. For compatibility reasons, all

ideo frames associated with multiple tools in the CATARACTS

ataset were ignored during training. The CNN processes images

ith 299 × 299 pixels. It was fine-tuned with a learning rate of

.01 for several thousand iterations with cross-entropy loss. Dur-

ng inference, the purpose of the 22 nd class it to lower the prob-

bility of the other 21 classes when no tool appears to be in use.

o random distortions are applied to input images during training

nd inference. 

.3. AUGSQZNT 

The AUGSQZNT solution extends SqueezeNet, a lightweight CNN

 Iandola et al., 2016 ) with weights pre-trained on ImageNet. The



30 H. Al Hajj, M. Lamard and P.-H. Conze et al. / Medical Image Analysis 52 (2019) 24–41 

Table 2 

Training data and validation selection in the competing solutions. 

Team Training data selection Validation set 

DResSys 6 frames per second 3 videos 

LaTIM 30 frames per second 2 videos 

CUMV 6 frames per second 5 videos 

TROLIS frequent tools (3 CNNs): torn frame removal, adaptive frame selection based on pixel differences 3 videos 

rare tools (5 CNNs): 420 0 negative frames (including 120 0 test frames), 250 0 positive frames 

CatResNet 3 frames per second 3 videos 

TUMCTNet 0.8 frames per seconds 3 videos 

CDenseNet 5 frames per second for frequent tools, 10 frames per second for rare tools 1/3 frames 

RToolNet 5 frames per second, after removing 60% of frames without tools 5 videos 

ZIB-Res-TS 6 frames per second, with labelset-based sampling ( Sahu et al., 2017 ) 4 videos 

MIL + resnet 15 frames per second 1/5 frames 

CRACKER 15 frames per second 1/5 frames 

SurgiToolNet 15 frames per second 2 videos 

AUGSQZNT 10 frames per second 5 videos + selected frames 

with rare tools in 3 videos 

LCCV-Cataract 24 frames per second 1/5 frames 

VGG fine-tuning 15 frames per second 5 videos 

Table 3 

Geometrical data augmentation in the competing solutions. 

Team Random hor. flipping Random cropping Random scaling Random rotation Random shifting 

DResSys � � 

LaTIM � � � � 

CUMV � 

TROLIS � � � � 

CatResNet � � 

TUMCTNet � � � � 

CDenseNet � � 

RToolNet � � � 

ZIB-Res-TS � � � � 

MIL + resnet � � � � 

CRACKER � � � � 

SurgiToolNet � 

AUGSQZNT � � 

LCCV-Cataract 

VGG fine-tuning 
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p  
proposed architecture starts with three blocks of convolutional lay-

ers and then splits into three parts: one part for the ‘cannula’

set of labels, one part for the ‘forceps’ set and one part for the

rest. The ‘forceps’ split of the network uses softmax activations

while the other two use sigmoid activations. For validation, 5 com-

plete videos and selected frames containing approximately 20%

of frames labelled biomarker, needle holder, vitrectomy handpiece

and Vannas scissors from 3 videos were kept aside from training.

This was to ensure that each label has approximately 15–20% rep-

resentation in the validation set. The frames were extracted at 10

frames per second although for rare classes, the frames were dupli-

cated up to 50 times after extraction. Afterwards, all frames were

augmented using vertical and horizontal flipping and randomly

cropping 70%. The CNN was trained using a binary cross entropy

loss function with a 80:10:10 weight ratio assigned to each net-

work split. The Adam optimizer ( Kingma and Ba, 2015 ) was used

with a learning schedule starting with the learning rate of 0.01 and

subsequently dividing by 10 after every 3 epochs with no improve-

ment in validation loss. During inference, 5-fold test time augmen-

tation is performed by taking the center, top left, top right, bottom

right and bottom left patches from each frame in the test dataset.

The predictions are averaged across the 5 patches for each frame. 

4.4. SurgiToolNet 

The SurgiToolNet solution is a deep learning network based

on DenseNet-161 ( Huang et al., 2017 ). The DenseNet-161 model

was pre-trained on ImageNet to accelerate the training process.

To use the DenseNet-161 network as a multi-label classifier, a Eu-
lidean loss layer was plugged into the end of the network to com-

ute the sum of squares of differences between the predicted out-

ut and the ground truth input. The CNN processes images with

24 × 224 pixels. It was fine-tuned using stochastic gradient de-

cent with a momentum of 0.9. The initial learning rate was set to

.001, and was divided by 10 after 50,000 iterations. In the deploy-

ent process, a binary classification layer was added at the end

f this network: this layer is used to threshold the outputs of the

ully connected layer and classify them into binary labels ∈ {0, 1},

ndicating whether or not each tool is being used by the surgeon

n the current frame. 

.5. CRACKER 

CRACKER uses a frame-wise tool detector, based on a ResNet-

4 ( He et al., 2016 ) pre-trained on ImageNet, followed by field

nowledge-based temporal filtering. The optimizer is the SGDR

 Loshchilov and Hutter, 2017 ) and the loss function is the categor-

cal cross entropy log loss. 

Frame-wise tool detector: The model was fine-tuned with a 1:2

ubsample of the CATARACTS dataset rescaled to 128 × 128 pix-

ls. First, the top of the network was trained for a fixed number

f epochs. Then, the learning rate was reduced by 1/3 at each 1/3

f the network depth. Finally, the entire network was trained until

he cross entropy log loss stagnated in the validation set. Test pre-

ictions are the result of the average of the model’s output over 4

ifferent test-time augmented versions of the frames. 

Knowledge-based temporal filtering: First, the temporally sorted

redictions are median-filtered with a sliding filter of size 11. For
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Table 4 

Convolutional neural networks used in the competing solutions. 

team SqueezeNet VGG-16 Inception-v3 Inception-v4 ResNet-34 ResNet-50 ResNet-101 ResNet-152 DenseNet-161 DenseNet-169 NASNet-A Image size Pre-training 

( Iandola et al., 2016 ) ( Simonyan and Zisserman, 2015 ) ( Szegedy et al., 2016 ) ( Szegedy et al., 2017 ) ( He et al., 2016 ) ( He et al., 2016 ) ( He et al., 2016 ) ( He et al., 2016 ) ( Huang et al., 2017 ) ( Huang et al., 2017 ) ( Zoph et al., 2018 ) 

DResSys 1 1 2 540 × 960 ( ×
2), 270 × 480, 

337 × 600 

ImageNet 

LaTIM 1 331 × 331 ImageNet 

CUMV 1 1 224 × 224 ImageNet 

TROLIS 4 256 × 256 ( ×
3), 512 × 512 

ImageNet 

CatResNet 1 224 × 224 ImageNet 

TUMCTNet 3 640 × 360 ( ×
3) 

ImageNet 

CDenseNet 1 540 × 960 no 

RToolNet 1 540 × 960 ImageNet 

ZIB-Res-TS 1 480 × 270 ImageNet 

MIL + resnet 1 1 256 × 256 

(early training 

stages: 

128 × 128) 

ImageNet 

CRACKER 1 128 × 128 ImageNet 

SurgiToolNet 1 224 × 224 ImageNet 

AUGSQZNT 1 360 × 640 ImageNet 

LCCV-Cataract 1 299 × 299 ImageNet 

VGG fine-tuning 1 288 × 288 ImageNet 
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Table 5 

Post-processing techniques in the competing solutions. 

Team Test data augmentation Temporal smoothing 

DResSys Markov random field 

LaTIM LSTM ( ×3), median filter 

CUMV 

TROLIS average filter 

CatResNet 

TUMCTNet center cropping weighted average filter 

CDenseNet average filter 

RToolNet 

ZIB-Res-TS linear smoothing 

( Sahu et al., 2017 ) 

MIL + resnet rolling trimmed mean 

CRACKER 4 versions of frame median filter, zeroing 

of impossible predictions 

SurgiToolNet 

AUGSQZNT 5 crops of frame 

LCCV-Cataract 

VGG fine-tuning 
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the irrigation/aspiration handpiece, phacoemulsifier handpiece and

implant injector, the filter size was set to 101 instead. All signals

are then processed based on the surgical procedure: (1) the irriga-

tion/aspiration and vitrectomy handpieces (IA, V, respectively) usu-

ally proceed the phacoemulsifier because the latter is used for lens

destruction; (2) the implant injector can never come before IA or

V pieces since the implant can only be injected into the eye once

the damaged lens has been removed and (3) the Rycroft cannula

should not come before IA or V since it is used for refilling the

lens in the end of the surgery. With that in mind, the first occur-

rence of probability IA > 0.5 or probability V > 0.5 is used for zeroing

erroneous predictions of the above-mentioned tools. 

4.6. MIL + resnet 

The main contribution of the MIL+resnet solution is the de-

coupling of the initial task into a binary tool detection stage fol-

lowed by a 21-class classification to determine the tools present

on each given frame. The binary tool detection model is based

on the Multiple-Instance Learning (MIL) framework ( Quellec et al.,

2017a ). The MIL assumption was interpreted in this context as fol-

lows: image patches are considered as instances, a patch contain-

ing (part of) a tool is considered as a positive instance, and a patch

with no signs of tool presence is considered as a negative instance.

Accordingly, a given image is considered as a bag containing in-

stances. The sole presence of a positive instance is enough to de-

clare the associated bag as containing a tool, whereas in order for

a frame/bag to be declared as not containing tools, it must be com-

posed only of negative instances. 

In this stage, a standard CNN architecture was employed,

namely the Inception-v3 network, with initial weights pre-trained

on the ImageNet dataset. In order to deal with patches, the ar-

chitecture was modified to perform patch-level classification given

the full input image. The deeper layers of the Inception-v3 net-

work were discarded, since the receptive field of each layer grows

as the network gets deeper. By discarding deeper layers of the net-

work, the receptive field of the output layer can be effectively re-

duced. The predicted patch labels must then be combined to pro-

duce an image-level prediction. In order to follow the standard MIL

assumption, patch predictions are merged into a single prediction

by means of a max-pooling function. 

The binary tool detector was trained on a binarized tool/no-tool

version of the provided ground-truth. The resulting model was ap-

plied on the test set to retain frames that contained tools. The

predictions on test set were temporally smoothed with a trimmed

mean filter to add some robustness. Afterwards, a ResNet CNN was
rained only on tool-containing frames, in order to learn to classify

hich were the present tools. This second stage was considered as

 standard 21-class multi-label classification problem. Finally, the

rained model was applied only to test frames that had been pre-

icted as containing tools to decide which tools were present at

ach moment on the videos from the test set. 

.7. ZIB-Res-TS 

The framework of the ZIB-Res-TS comprises of three main

arts: stratification of the data, a classification model and temporal

moothing as a post-processing step. Since multiple tools can be

isible in an image and tool co-occurrence frequency varies within

he dataset, label-set sampling ( Sahu et al., 2017 ) was applied to

he data to reduce the bias caused by highly frequent tool co-

ccurrences. This approach relies on stratified sampling based on

he co-occurrences of tools as disjoint classes. The model consists

f ResNet-50 which was pre-trained on ImageNet and fine-tuned

n the CATARACTS dataset by adding a global average pooling and

 fully connected layer on top. The task was formulated as a multi-

abel classification problem with 22 output units, including a no-

ool class (i.e. background) as described by Sahu et al. (2016b) . The

etwork was trained using an Adam optimizer with a learning rate

f 0.001 for 25 epochs. Assuming that tool usage transitions are

mooth, linear temporal smoothing ( Sahu et al., 2017 ) with a win-

ow of five frames is applied during inference in order to reduce

alse positives by suppressing stand alone detections. 

.8. RToolNet 

RToolNet is a fine-tuned 50-layer residual network. After pre-

raining on ImageNet, the first 31 convolutional layers were frozen

nd only the remainder of the network was fine-tuned on the

ATARACTS dataset using a decaying learning rate schedule. Fur-

hermore, the approach makes heavy use of data augmentation

o alleviate the strong correlation that is natural between video

rames. The network was trained using a stochastic gradient de-

cent with an initial learning rate of 0.05 and a momentum of 0.9.

n the second submission, a weighted loss function was introduced

hich places more emphasis on training examples from underrep-

esented classes. This improved results slightly but also made the

raining more sensitive to inherent randomness, such as the choice

f initial weights or training example order. We assume this to be

he reason for the strong performance decrease observed for one

ool between both submissions and note that this problem could

e mitigated using an ensemble of networks trained with different

andom seeds. 

.9. CDenseNet 

CDenseNet is based on DenseNet-169, and the last fully con-

ected layer consists of 21 units for predicting the probability of

he corresponding tool usage. To overcome the imbalance of the

ataset, besides extracting 6 frames per second, more images were

xtracted for the rare tools, and a weighted binary softmargin loss

unction was adopted after converting all ‘0’ labels in ground truth

o ‘ −1’. By this way, better performance was obtained for the rare

ools, such as biomarker and Vannas scissors. To train the network,

 stochastic gradient descent was used with a decreasing learn-

ng rate, initialized to 0.05, and a momentum of 0.9. Unlike other

olutions, the CNN was not pre-trained on ImageNet: all weights

ere initialized randomly following a Gaussian distribution. Effi-

ient DenseNet implementation ( Pleiss et al., 2017 ) in PyTorch was

sed for accelerating the training procedure and improving the pa-

ameter utilization. 
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.10. TUMCTNet 

In the TUMCTNet solution, Inception-v4 was suitably modified

nd fine-tuned by introducing independent sigmoids as predictors

or tool usage and by increasing the input size to 640 × 360 pixels

o maintain the aspect ratio of the surgical video. To handle im-

alance within multi-label settings, the co-occurrence of tools was

onsidered for selecting the samples used for training: the label-

et stratification proposed by Sahu et al. (2017) was used, which

esulted in 46 label-sets. In addition to balancing the data-set, such

n approach also exploits the relationship between tools during

he surgery. During the training of the network, data-augmentation

ncluding limited random rotation ( ± 10 °), horizontal flipping, ran-

om scaling and center-cropping was used. Training relied on a

tochastic gradient descent with a learning rate of 0.001 and a

omentum of 0.9. To improve temporal consistency of the results,

emporal weighted averaging is performed during inference. An en-

emble of two independently trained models is also employed to

mprove predictions. 

.11. CatResNet 

The CatResNet model uses the 152-layer ResNet architecture for

ulti-label frame classification. The network was initialized with

eights pre-trained on the ImageNet dataset and was further fine-

uned using the CATARACTS training videos (22 videos for training

nd 3 for validation). The videos were sub-sampled at 3 frames

er second and half of the frames that do not feature any tool

ere discarded to match the frequency of the most common tool

lass, although the classes were not balanced further. The out-

ut of the network is a fully connected layer with 21 nodes with

igmoid activations and it was initialized with a Gaussian distri-

ution with mean 0 and standard deviation 0.01 to be trained

rom scratch. During training, the input frames were re-shaped to

24 × 224 pixels and a random horizontal flip and random rota-

ion within 25 ° with mirror padding was performed to augment

he data. The network was trained using stochastic gradient de-

cent with a mini-batch of 8, a learning rate of 0.0 0 01 and a mo-

entum of 0.9 for a total of 10,0 0 0 iterations. For the first submis-

ion of this model, the predictions rely on the current frame alone

nd do not incorporate information from any other previous or fol-

owing frame. A second submission was made which incorporates

emporal smoothing as a post-processing step on the CNN predic-

ions using a centered moving average kernel of size 5, however it

oes not achieve significantly better results. 

.12. TROLIS 

The TROLIS solution differs from the competitors in two ma-

or aspects: (i) a classical computer vision algorithm is used to de-

ect the biomarker (the rarest tool), and (ii) separate neural net-

orks are trained for the rare tools and the rest. The training set

as pruned first: the frames with video artifacts (tearing) were

iscarded, each 3 frames were averaged, and pixel-wise similar

rames were discarded. The tool categories were split into two: six

are tools and the remaining (regular) tools. For the regular tool

dentification, the average output of two Resnet-50 networks on

rames resized to 256 × 256 pixels and one Resnet-50 network on

rames resized to 512 × 512 pixels was used. These networks were

ptimized using stochastic gradient descents. For the rare tools, a

ew dataset was created: it consists of 30 0 0 (respectively 2500)

rames with (respectively without) rare tool labels. In addition to

hese frames from the training set, 1200 frames from the test set,

btained by performing a forward pass using the three Resnet-50

etworks, were used as negative samples. One of the networks was

ne-tuned on this new dataset, and its output is used for rare tool
dentification. For the rarest tool (biomarker) detection, a classi-

al computer vision algorithm is applied: it works by finding black

lobs (tip of the marker) and white blobs (bulk of the marker) in

ach frame. It is assumed that the Mendez ring only appears in

ideos where the biomarker is present. Similarly, it is assumed that

he needle holder only appears in videos with suture needle. More-

ver, the first and last 0.5% frames of every test video is clipped.

inally, predictions are time averaged with a window of 45 frames.

.13. CUMV 

The CUMV solution relies on an ensemble of two CNNs with

eights pre-trained on ImageNet: ResNet-101 and DenseNet-169.

ach network takes as input a single frame from the surgical video,

esized to 224 × 224 pixels, and outputs label predictions for the

urrent frame. Both networks are trained independently with a

tochastic gradient descent, using the cross-entropy loss. The learn-

ng rate was set to 0.001 for 60 0 0 iterations and then to 0.0 0 01 for

0 0 0 iterations. During inference, a gate function ( Hu et al., 2017 )

s used to combine the results of these two networks, which cal-

ulates the inner product of the normalized prediction confidences

or each kind of tool. 

.14. DResSys 

DResSys, developed at D-Wave, uses an ensemble of deep CNN

etworks to make predictions on individual video frames and then

mooths these predictions across frames with a Markov random

eld. To extract video frames for training of the CNN ensemble,

ll frames within videos containing the rare tools (e.g. biomarker,

annas scissors) were used, but in parts of the video with the most

ommon tools, frames were sampled at a rate of only 6 frames/sec.

urther, 40,0 0 0 frames were randomly selected at uniform rate

rom amongst training frames that have no tools. This process pro-

ided a total of ∼ 10 0,0 0 0 training images. 

Frame-level predictors: In the first two submissions a single 50-

ayer Residual Network was trained and in subsequent submissions

nception-v4 and NASNet-A ( Zoph et al., 2018 ) were trained in ad-

ition to ResNet. All parameters were initialized from pre-trained

mageNet models. Images of 540 × 960 pixels are used for ResNet-

0 and Inception-v4, but since NASNet-A is a much larger net-

ork requiring much greater GPU memory, 270 × 480 images are

sed for this model. The final submission also uses one additional

ASNet-A architecture with a larger image size of 337 × 600 pix-

ls at input. The training data was augmented by randomly hori-

ontally flipping and cropping images. All networks were trained

ith the Adam optimizer using a sigmoid cross-entropy loss ex-

ept for the 337 × 600-pixel NASNet-A model that used a weighted

igmoid cross entropy loss. Training ran for at most 13 epochs with

 batch size of 4. The learning rate for each network was chosen

sing cross validation. The prediction probability of each trained

rame-level CNN is aggregated using a weighted geometric mean

n which the weights were set using a grid search over the valida-

ion set. 

Temporal smoothing: Several smoothing approaches were ex-

lored to capture the dependence of tool labels across consecu-

ive frames. The first submissions were based on a simple median

ltering method and the last submission includes a Markov ran-

om field (MRF) model. The MRF model provides a probability dis-

ribution across the time-dependent label space. Assume that y y y =
 y 1 , y 2 , . . . , y T } represents the binary label vector for a given tool

here y t = 1 / 0 indicates the presence/absence of the tool in the t th 

rame. The proposed MRF model has a chain-like structure and de-

nes a conditional probability distribution p( y y y | x x x ) ∼ exp 

(
−E( y y y ;x x x ) 

)

or the label vector y y y given the video x x x using an energy function
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Fig. 3. Timeline of solution evaluation — the gray vertical line indicates the chal- 

lenge closing date. Evaluation dates and submission dates sometimes differed in 

virtue of the one week waiting rule. 
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E( y y y ;x x x ) given by 

E( y y y ;x x x ) = 

T ∑ 

t=1 

a (s t ) y t + 

w 

2 

T ∑ 

t=1 

∑ 

n ∈ N(t) 

y t y n , (1)

where N(t) = { t − 19 , t − 17 , . . . , t + 19 } represents the set of

neighboring nodes for the t th frame, and provides long-range tem-

poral connectivity. In Eq. (1) , a ( s t ) is the bias for the t th frame’s

label which is computed by shifting and scaling the output of the

ensemble frame-level prediction score s t at frame t . The scalar cou-

pling parameter w in Eq. (1) enforces label agreement between

neighboring frames. The w parameter and the shift and scale pa-

rameters of the linear map a ( s t ) were all set by a grid search and

are shared for all the 21 tool categories. The MRF model, p( y y y | x x x ) ,

represents the joint probability distribution for all the labels in the

temporal domain for a tool. Given this model, the marginal distri-

bution p(y t = 1 | x x x ) is computed using a mean-field approximation

( Jordan et al., 1999 ) and the resultant marginal probability is used

as the prediction score for the t th frame. Lastly, in order to process

videos efficiently, the MRF model is formed in smaller segments of

length ∼ 20,0 0 0 frames. 

4.15. LaTIM (organizers) 

The LaTIM solution relies on an ensemble of CNNs, whose out-

puts are processed by an ensemble of RNNs. Convolutional and re-

current networks are trained sequentially using a novel boosting

technique ( Al Hajj et al., 2018 ). In a first submission, the CNN en-

semble consists of one Inception-v4, one Inception-ResNet-v2 and

one o_O network ( Quellec et al., 2017b ); the RNN ensemble con-

sists of one LSTM ( Hochreiter and Schmidhuber, 1997 ) and one

GRU ( Cho et al., 2014 ) network. In a second submission, a sin-

gle CNN is used: NASNet-A. A different ensemble of RNNs, con-

sisting of three LSTMs, is obtained. All networks are trained us-

ing the root mean square propagation algorithm. One major differ-

ence between both submissions is that RNNs are bidirectional in

the first submission and unidirectional in the second, thus allow-

ing online video analysis. Another difference is that a median filter

is applied to each prediction signal in the second submission, for

short-term temporal smoothing, whereas the RNNs are only used

for long-term temporal analysis by design. 

5. Results 

A total of 27 submissions from 14 teams was received during

the challenge period. Additionally, the organizers (LaTIM) submit-

ted two solutions. A timeline of all these submissions is reported

in Fig. 3 . In order to establish a team ranking, the solution with

maximal average AUC from each team was retained. Note that two

solutions were evaluated after the challenge period, in virtue of the

one week waiting rule: they were not used to establish the team

ranking (see Section 3.5 ). The leaderboard is reported in Table 7 ,

together with the average AUCs and the detailed per-tool AUCs

published on the CATARACTS website. This table also reports 95%

confidence intervals (CIs) on the average AUCs, which were com-

puted as follows: (1) CIs on the per-tool AUCs were computed us-

ing DeLong’s method ( DeLong et al., 1988 ), (2) their radii were

then combined using the root mean square, assuming indepen-

dence between tools. Each CI was used for a single comparison:

is the corresponding solution significantly better than the follow-

ing solution in the ranking? Results of this test are also reported

in Table 7 . 

Per-tool AUCs are summarized in Fig. 4 using boxplots. Fig. 4 (a)

summarizes the performance of each solution: it appears that

some solutions can detect all tools equally well while others fail

for a few tools in particular. Fig. 4 (b) summarizes how well each
f these tools is detected by competing solutions: it appears that

he Charleux cannula, the biomarker, the suture needle, the needle

older and the viscoelastic cannula are particularly challenging. On

he contrary, the phacoemulsifier handpiece and the capsulorhexis

ystotome are detected well by all solutions. ROC curves for simple

nd challenging tools are reported in Fig. 5 . 

For a deeper understanding of how each of these solutions an-

lyze surgery videos, typical examples of temporal prediction sig-

als are given in Fig. 6 . One can easily notice which solutions in-

lude temporal smoothing techniques as post-processing steps (see

able 5 ). Another observation we can make is that the occurrence

f false alarms is highly correlated in these signals: this is particu-

arly clear in Fig. 6 (b). 

Given the very good classification performance achieved by the

op-raking solutions, we wondered whether or not they achieved

uman-level performance. To answer this question, we evaluated

he competing solutions against the annotations of one expert only,

efore adjudication (see Fig. 7 ). We observed that the other hu-

an grader is always better than all competing solutions, in the

ense that his sensitivity/specificity pair is above all ROC curves.

 single exception was observed: for cotton usage detection, the

ResSys algorithm is slightly better than the first human grader

see Fig. 7 (c)). To evaluate the cost of using automatic annotations

ather than manual annotations, we computed the relative speci-

city decrease at equal sensitivity: results are reported in Table 8 . 

. Discussion and conclusions 

We have presented the results of CATARACTS, the challenge

n automatic tool annotation for cataract surgery. Given the high

umber of participants (14), we believe this challenge was a suc-

ess. It is a unique opportunity to learn lessons that will guide the

esign of efficient surgery monitoring tools in the near future. 

First, lessons can be learnt from the challenges noted by par-

icipants. All of them pointed out that the distribution of tools is

ighly unequal (see Fig. 2 ) and that tools in the same category are

ften visually similar to one another (cannulae, forceps, etc.). These

roblems motivated the use of data resampling strategies, to deal

ith class imbalance, and the design of adequate cost functions. It

as also noted that video tearing artifacts appear at regular time

ntervals in videos. This problem motivated the use of time filter-

ng techniques. Other properties of cataract surgery videos would

robably have been listed as challenges in the pre-deep learning
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Table 6 

Strategies for class imbalance in the competing solutions. 

Team Resampling Weighted loss Boosting Rare tool detector Co-occurrence analysis 

DResSys � 

LaTIM � � 

CUMV 

TROLIS � � 

CatResNet 

TUMCTNet � � 

CDenseNet � � 

RToolNet � 

ZIB-Res-TS � � � 

MIL + resnet � 

CRACKER � 

SurgiToolNet 

AUGSQZNT � 

LCCV-Cataract � 

VGG fine-tuning � 

Fig. 4. Boxplots of AUC scores grouped per team or per tool. Each box is drawn around the region between the first and third quartiles, with a horizontal line at the median 

value. Whiskers extend from the ends of each box to the most distant value which lies within 1.5 times the interquartile range. Black discs indicate outliers. 
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ra: uneven illumination, zoom level variations, partial tool occlu-

ion (only the tool tip is visible), and motion and out-of-focus blur.

owever, none of them were noted by participants: these prob-

ems are indeed handled well by CNNs coupled with adequate data

ugmentation strategies. On the other hand, other specificities of

he CATARACTS dataset were exploited by participants to their ad-

antage. First, tool usage generally does not change between con-

ecutive frames. This factor also motivated the use of time fil-

ering techniques. Second, tool usage usually follows precedence

ules (e.g. phacoemulsification precedes implant injection) and the

arest tools are generally used in pairs to manage special events:

leeding (the suture needle and the needle holder), asymmetri-

al implant management (the biomarker and the Mendez ring),

tc. These specificities motivated the use of (ad-hoc or general-

urpose) temporal sequencers. However, the use of these temporal

equencers was to be used with caution, due to one specific chal-

enge: tools in the same category are sometimes interchangeable.

n particular, all forceps may be used to hold the suture needle, not

nly the ‘needle holder’. In fact, one of the team that used recur-

ent neural networks (TROLIS) noted a performance increase after

emoving it. 

The above-mentioned properties of the dataset and of the task

t hand guided the design of the proposed solutions. Overall, most

eams took the following steps to train their solutions: (1) se-

ecting training frames in training videos, (2) downsampling these

rames, (3) performing data augmentation, (4) selecting one or sev-
ral CNNs pre-trained on ImageNet, (5) fine-tuning these CNNs on

he selected video frames, through the minimization of a multi-

abel cost function, (6) optionally training a multi-CNN aggrega-

ion function and (7) optionally training a temporal sequencer.

electing training frames (i.e. ignoring available training samples)

nd yet performing data augmentation (i.e. generating new train-

ng samples) may seem counter-intuitive. However, in many solu-

ions, the decision to discard training frames was motivated by the

eed to balance classes. As for the general inference strategy, it

an be summarized as follows: (1) resizing each test frame, (2) op-

ionally performing data augmentation, (3) processing the resized

rame with each CNN, (4) optionally aggregating the CNN predic-

ions and (5) optionally running a temporal filter and/or sequencer.

n other words, most participants followed the state-of-the-art ap-

roach for multi-label video sequencing using deep learning. It

hould be noted that no team designed a problem-specific CNN:

ll solutions relied on CNNs from the literature, with modifications

n the final layers only. Beyond these general points, several lessons

an be learnt by analyzing the differences between solutions. First,

he following factors seem to positively impact the team ranking: 

1. keeping full videos aside for validation, as illustrated in Table 2 ,

2. using data augmentation techniques, as illustrated in Table 3 , 

3. using the latest generation of CNNs, in particular their deepest

versions, as illustrated in Table 4 , 

4. using multiple CNNs and/or RNNs, as illustrated in Table 4 , 
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Table 7 

Areas under the ROC curve (AUCs) for the retained solution of each team. To compare consecutive solutions in the ranking, 95% confidence intervals (CIs) on the average AUCs are included. CNN ensemble methods are indicated 

by an asterisk. 

Team DResSys ∗ LaTIM CUMV ∗ TROLIS ∗ CatResNet TUMCTNet ∗ CDenseNet RToolNet ZIB-Res-TS MIL + resnet ∗ CRACKER SurgiToolNet AUGSQZNT LCCV-Cataract VGG fine-tuning 

Rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

biomarker 0.9988 0.9847 0.9857 0.9026 0.9752 0.8511 0.9825 0.5797 0.9212 0.8018 0.8114 0.8690 0.9701 0.6983 0.5590 

Charleux cannula 0.9892 0.9836 0.9735 0.9448 0.9490 0.8366 0.8603 0.8771 0.7846 0.8166 0.7814 0.7257 0.6867 0.6724 0.5359 

hydrodissection cannula 0.9959 0.9873 0.9847 0.9840 0.9811 0.9570 0.9754 0.9717 0.9842 0.9704 0.9679 0.9091 0.9422 0.8743 0.9524 

Rycroft cannula 0.9980 0.9946 0.9951 0.9924 0.9810 0.9907 0.9891 0.9908 0.9956 0.9791 0.9682 0.9709 0.9432 0.8391 0.6078 

viscoelastic cannula 0.9865 0.9822 0.9776 0.9822 0.9423 0.9732 0.9349 0.9545 0.9506 0.9253 0.9120 0.9533 0.8248 0.7353 0.8588 

cotton 0.9999 0.9986 0.9890 0.9842 0.9816 0.9854 0.9503 0.9759 0.9821 0.9702 0.9869 0.7213 0.9220 0.8893 0.7044 

capsulorhexis cystotome 0.9999 0.9998 0.9987 0.9989 0.9976 0.9968 0.9966 0.9976 0.9933 0.9953 0.9911 0.9450 0.9832 0.9151 0.9609 

Bonn forceps 0.9972 0.9949 0.9893 0.9942 0.9852 0.9825 0.9454 0.9726 0.9794 0.9574 0.9529 0.8934 0.9300 0.8188 0.8234 

capsulorhexis forceps 0.9993 0.9981 0.9890 0.9845 0.9821 0.9879 0.9700 0.9888 0.9869 0.9759 0.9761 0.9779 0.9486 0.8774 0.8399 

Troutman forceps 0.9898 0.9974 0.9917 0.9689 0.9752 0.9803 0.9237 0.9656 0.9827 0.9108 0.9020 0.9017 0.8744 0.7963 0.4826 

needle holder 0.9945 0.9936 0.9846 0.9839 0.9500 0.9415 0.8859 0.9709 0.9395 0.8893 0.8853 0.9909 0.8990 0.6011 0.4929 

irrigation/aspiration handpiece 0.9988 0.9989 0.9977 0.9976 0.9950 0.9947 0.9926 0.9913 0.9968 0.9925 0.9915 0.9279 0.9745 0.9019 0.9486 

phacoemulsifier handpiece 0.9998 0.9998 0.9990 0.9993 0.9966 0.9969 0.9963 0.9971 0.9994 0.9966 0.9927 0.9526 0.9854 0.9006 0.9712 

vitrectomy handpiece 0.9993 0.9719 0.9943 0.9960 0.9852 0.9924 0.9550 0.9932 0.9726 0.9778 0.9804 0.9958 0.8552 0.9244 0.1725 

implant injector 0.9984 0.9939 0.9906 0.9935 0.9828 0.9852 0.9326 0.9644 0.9739 0.9486 0.9590 0.9172 0.9354 0.9108 0.8384 

primary incision knife 0.9999 0.9965 0.9972 0.9933 0.9858 0.9961 0.9779 0.9848 0.9939 0.9801 0.9824 0.9674 0.9471 0.9195 0.8060 

secondary incision knife 0.9997 0.9994 0.9995 0.9984 0.9984 0.9983 0.9911 0.9978 0.9995 0.9936 0.9889 0.9458 0.9632 0.9251 0.8917 

micromanipulator 0.9989 0.9978 0.9940 0.9980 0.9897 0.9967 0.9886 0.9912 0.9917 0.9784 0.9710 0.9923 0.9815 0.6452 0.8706 

suture needle 0.9987 0.9990 0.9861 0.9915 0.9320 0.9920 0.9420 0.9796 0.9920 0.9295 0.9284 0.7543 0.9383 0.7301 0.5810 

Mendez ring 1.0 0 0 0 0.9980 0.9999 0.9994 0.9966 0.9959 0.9629 0.9814 0.6317 0.9979 0.9986 0.9999 0.7952 0.9886 0.5064 

Vannas scissors 0.9972 0.9842 0.9657 0.9182 0.9533 0.9705 0.9625 0.9673 0.9855 0.9893 0.9876 0.9925 0.6841 0.7579 0.4246 

Score (average AUC) 0.9971 0.9931 0.9897 0.9812 0.9769 0.9715 0.9579 0.9568 0.9541 0.9513 0.9484 0.9192 0.9040 0.8248 0.7061 

Lower bound of CI 0.9962 0.9923 0.9871 0.9737 0.9739 0.9653 0.9515 0.9481 0.9489 0.9433 0.9419 0.9004 0.8938 0.8123 0.6953 

Upper bound of CI 0.9981 0.9938 0.9916 0.9887 0.9799 0.9777 0.9643 0.9656 0.9592 0.9592 0.9549 0.9381 0.9142 0.8374 0.7169 

Better than the next ranked? yes yes yes no yes yes no no no no yes no yes yes n/a 
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Fig. 5. Receiver-operating characteristic (ROC) curves. To save space, ROC curves are reported for three tools only: one frequent and well-detected tool (the phacoemulsifier 

handpiece) and two challenging tools (the biomarker and the Charleux cannula). Detecting the biomarker is challenging because there are few training samples. Detecting 

the Charleux cannula is challenging because this tool resembles the Rycroft cannula (in terms of shape and function). 

Table 8 

Relative specificity decrease, compared to the expert, at 

the same sensitivity. The relative specificity decrease is 

computed for all 21 tools and the average ( ± the stan- 

dard error) is reported. 

Reference Expert 1 Expert 2 

DResSys 2.93 ± 0.84 1.91 ± 0.72 

LaTIM 8.37 ± 2.33 5.58 ± 2.05 

CUMV 13.52 ± 2.91 7.53 ± 2.18 

TROLIS 19.02 ± 3.84 7.10 ± 2.09 

CatResNet 24.74 ± 3.71 13.24 ± 2.81 

TUMCTNet 26.15 ± 5.36 16.24 ± 5.32 

CDenseNet 41.06 ± 5.55 22.78 ± 5.41 

RToolNet 43.61 ± 7.02 26.39 ± 6.66 

ZIB-Res-TS 27.97 ± 5.16 18.55 ± 5.08 

MIL + resnet 41.36 ± 5.44 24.94 ± 5.25 

CRACKER 34.31 ± 4.63 21.88 ± 4.45 

SurgiToolNet 67.95 ± 6.95 40.59 ± 9.16 

AUGSQZNT 66.13 ± 5.83 42.25 ± 7.61 

LCCV-Cataract 68.91 ± 5.38 50.86 ± 5.44 

VGG fine-tuning 70.00 ± 3.36 59.51 ± 4.08 
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5. using temporal smoothing techniques, as illustrated in

Table 5 and Fig. 6 . 

In fact, the winning team (DResSys) combined these five fac-

ors. The third lesson seems particularly important: solutions based

n the recent NASNet-A architecture achieved top-ranking perfor-

ance. On the other hand, the following factors do not seem to in-

uence the team ranking: the number of selected training frames

see Table 2 ), the type of data augmentation (random cropping ver-

us random affine transformations — see Table 3 ), the CNN’s input

mage size (the CNN’s default input size versus a larger size — see

able 4 ) or the use of test-time data augmentation (see Table 5 ).

e observed that most methodological variations investigated by

 single team were unsuccessful. Modeling the tool annotation

ask as a multi-class classification problem (LCCV-Cataract), rather

han a multi-label one, was inefficient when more than two tools

re used at the same time, which occurs frequently (see Fig. 2 ).

hresholding predictions as a post-processing step (SurgiToolNet),

lthough important for use in production, decreased the solution’s

erit, evaluated by the area under the ROC curve (see Figs. 5 and

 ). The use of a very simple classifier for rare but distinct tools like

he biomarker (TROLIS) led to a very specific classifier (see Fig. 5 (b)

nd 6 (d)). However, like in the previous example, the use of binary

redictions negatively impacted the score. Finally, we note that the

ost sophisticated solutions (MIL+resnet for instance) did not nec-
ssarily rank high, unless the general training procedure and the

ve success rules mentioned above were followed (like DResSys). 

Compared to most medical image analysis challenges, one of

ATARACTS’ novelties was to offer participants the ability to sub-

it multiple solutions over a long period of time (8 months).

bout half of the teams took advantage of this possibility dur-

ng the last three months of that period (see Fig. 3 ). Several

ypes of improvements were evaluated: improving data augmen-

ation (tested by TUMCTNet between submissions 1 and 2 —

oted “TUMCTNet 1 → 2”), selecting training images differently

DResSys 1 → 2, TROLIS 1 → 2, TUMCTNet 4 → 5 and MIL+resnet

 → 2), replacing one CNN with another (LaTIM 1 → 2 and TUMCT-

et 1 → 2), adding one or several CNNs (DResSys 2 → 3 & 3 → 4,

ROLIS 1 → 2 and TUMCTNet 2 → 3 & 3 → 4 & 5 → 6), chang-

ng the input size of CNNs (TUMCTNet 4 → 5), redefining train-

ng images (DResSys 1 → 2, TROLIS 1 → 2, TUMCTNet 4 → 5 and

IL+resnet 1 → 2), redefining the loss function (DResSys 3 → 4,

UMCTNet 3 → 4, RToolNet 1 → 2, LCCV-Cataract 1 → 2), adding

 temporal sequencer (DResSys 1 → 2, CatResNet 1 → 2, TUMCT-

et 2 → 3 and MIL+resnet 1 → 2) and replacing this temporal se-

uencer with another (DResSys 2 → 3). The timeline in Fig. 3 re-

eals that consecutive submissions almost always led to a perfor-

ance increase; the only exception was the last submission from

he TUMCTNet team, although the decrease was minor. Increas-

ng performance over time can be explained by the fact that par-

icipants progressively increased the complexity of their solution.

t also indicates that participants progressively gained experience

anipulating the training set and reading other teams’ reports.

n the down side, allowing multiple submissions introduced one

nforeseen training bias: a few teams redefined their validation

ubset after detailed performance scores in the test set (per-tool

UC) revealed that some of the surgical tools did not appear in

heir training subset. On one hand, it helped correcting a care-

ess mistake that could have been avoided by frequency count-

ng in the training set. On the other hand, it can be regarded as

raining on the test set. These submissions were accepted any-

ay as they also included methodological novelties. As noted

y other challenge organizers, challenge design is a delicate task

 Maier-Hein et al., 2018 ). 

This benchmarking study has one major limitation: solutions

ere only compared in terms of classification performance, while

ther aspects are also important. For instance, the ability to an-

lyze tool usage in real-time is of particular interest for the de-

ign of intraoperative decision support tools. Some participants
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Fig. 6. Typical examples of temporal prediction signals. Predictions for the micromanipulator, the Rycroft cannula and the secondary incision knife are from a typical surgery 

(test video 6). Predictions for the biomarker are from a more complex surgery (test video 13). 

 

 

 

 

 

 

 

 

 

 

 

f  

s  

a  

l  

p  

i  

o  

n  

e

 

o  
(the AUGSQZNT team in particular) decided to design a lightweight

solution that would run in real-time with limited hardware, which

explains in part a lower ranking compared to those whose did not

have that goal in mind. Given the setup of the challenge, it was

not possible to compare computation times under identical condi-

tions, so we did not analyze computational aspects in depth. A few

lessons can be learnt anyway. First, computation times reported

by most participants indicate that their solution can process sev-

eral frames per seconds using one GPU, which would be enough

in many applications. Second, it should be noted that most solu-

tions allow online video analysis, in the sense that they don’t need
uture information for inference. Of course, solutions relying on a

ymmetrical time filter (see Table 5 ) would infer predictions with

 delay equal to the filter radius. However, this delay is usually

ess than a second, which would also be acceptable in many ap-

lications. Another aspect that would need further analysis is the

ndependence on the acquisition hardware: to assess the generality

f the proposed solutions, it would be useful to evaluate them on

ew datasets acquired with different microscopes, different cam-

ras and/or different recorders. 

As a final remark, we note that the classification performance

f the proposed solutions is lower than that of a human expert
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Fig. 7. Receiver-operating characteristic (ROC) curves using the annotations of a single human grader, before adjudication, as reference standard. To save space, ROC curves 

are reported for two tools only. The sensitivity/specificity pair of the other expert is indicated by a red cross. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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see Fig. 7 ). However, the performance of top-ranking solutions is

ery close (see Table 8 ). Given the limited performance decrease,

n automated solution would clearly be a better option, especially

n the context of intraoperative decision support: assuming a hu-

an interpreter can annotate tool usage in real time, he or she

ould have to dedicate one hundred percent of his or her time to

hat task, which would be prohibitive in the long term. Besides, we

xpect the performance of automated solutions to improve further

hould contextual information be available. In particular, additional

ideo streams recording the surgical tray or the operating room in

eneral could be considered. In conclusion, the CATARACTS chal-

enge has demonstrated that the task of automated tool annotation

n cataract surgery videos has virtually been solved, which paves

he way for the introduction of innovative decision support tech-

ologies in the operating room, with benefits for both surgeons

nd patients. 
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