
Towards automated load testing through the
user interface⋆

Bruno Teixeira and José Creissac Campos[0000−0001−9163−580X]

University of Minho & INESC TEC, Braga, Portugal
jose.campos@di.uminho.pt

Abstract. Slight variations in user interface response times can signifi-
cantly impact the user experience provided by an interface. Load testing
is used to evaluate how an application behaves under increasing loads.
For interactive applications, load testing can be done by directly calling
services at the business logic or through the user interface. In modern
web applications, there is a considerable amount of control logic on the
browser side. The impact of this logic on applications’ behaviour is only
fully considered if the tests are done through the user interface. Capture
reply tools are used for this, but their use can become costly. Lever-
aging an existing model-based testing tool, we propose an approach to
automate load testing done through the user interface.

Keywords: Model-based testing, load testing, capture and replay

1 Introduction

Software testing [9] aims to increase confidence in the quality of a piece of soft-
ware. Load testing is a particular type of software testing, which aims at testing
a system’s response under varying load conditions by simulating multiple users
accessing the application concurrently.

Load testing can be split into API and UI (User Interface) load testing.
API load testing is done by directly calling the services at the business layer
level. This avoids the complexity, and work load, of automating the interaction
with the application’s user interface. Although strategies can be used to create
combinations of different types of request, side stepping the UI risks making
the tests less representative of actual use. Tests that ignore the user interface
do not take into account the control logic programmed into the browser. This
logic can range from dialogue control, which can help mask or exacerbate delays

⋆ This work is financed by National Funds through the Portuguese funding agency,
FCT - Fundação para a Ciência e a Tecnologia, within project UIDB/50014/2020.

Author’s version of the paper published in Human-Computer Interaction, vol-
ume 14143 of Lecture Notes in Computer Science, pages 514-522. Springer. 2023.
The final version is available at Springer via: http://dx.doi.org/10.1007/978-3-031-
42283-6 28.



in the access to back-end services, to the full business logic of the application,
depending on the type of web application under test. In any case, the impact
of, at least, part of the application logic on performance is not assessed. This
is relevant because small variations in user interface response times can have a
huge impact on their user experience [4].

UI load testing addresses this by interacting with the browser to simulate user
interaction. This type of test is expensive to setup, usually requiring a capture
phase where use behaviour is recorded for later replay during testing.

In this paper, we present an approach to automate UI load testing of web
applications. This work is part of an ongoing effort to explore the use of model-
based testing to automate the testing of user interfaces.

2 Background

Load tests are non-functional tests, aimed at determining how well a system
performs under high work loads. In the web applications’ context, load testing
involves the use of tools to simulate the execution of the application when sub-
jected to a specific workload, and the analysis of measurements according to
predefined benchmarks. These benchmarks cover metrics such as the number of
virtual users, throughput, errors per second, response time, latency and bytes
per second [6]. The goal is to identify performance bottlenecks in order to prevent
end-users from encountering any problems during peak load.

The need to automate the testing process is essentially due to the need to
repeat the same tests, as well as the need to increase test coverage. Model-based
testing (MBT) [13] is a black-box testing technique that supports the automation
of software testing, from test generation to test results’ analysis [12,1]. This
method compares the state and behaviour of a product (the system under test –
SUT) with an abstract model (the oracle) that represents the behaviour of the
SUT. Discovery of system errors is achieved by comparing the results of the tests
in the SUT with the predictions of the oracle, in order to detect inconsistencies
between both. MBT’s main limitations are connected to the need to develop and
maintain the oracle, and the potential for an explosion of test cases during the
generation process. We chose to explore MBT due to its potential to automate
the testing process from a model of the SUT.

Several authors have explored the application of MBT techniques to Graph-
ical User Interfaces (GUI) (examples include [7,8,10], but see also [11] for a
review). It should be noted, however that the focus has been product quality,
much more than quality in use (cf. the ISO/IEC 25010 standard [5]). This is
to be expected, since the oracle typically captures functional requirements of
the SUT. An example of folding usage considerations into an MBT process is
presented in [2]. The paper is part on an ongoing effort to explore how MBT can
be used to automate the testing of user interfaces. In the context of this effort
we have developed the TOM tool [10]. Here we look at how the tool might be
used to perform UI load testing.



Fig. 1. The TOM framework

3 Design of the proposed approach

In order to support automated model-based load testing from the GUI, assuming
a model of the SUT is available, four requirements were identified: (Step 1)
generation of multiple similar tests from the model; (Step 2) automation of the
interaction with the browser; (Step 3) load simulation on the application by
running multiple tests concurrently; (Step 4) capture of performance metrics
and generation of reports for results’ analysis.

The TOM framework (see Figure 1) already provides initial solutions for the
first two steps. Its test cases generation component (TOM Generator) receives as
input a model of the application’s GUI (a state machine, represented in XML,
where states represent windows or pages of the interface), and generates exe-
cutable tests in Java using Selenium WebDriver (Step 1). Models are abstract
representations of the interface, that is, the state machine does not identify the
concrete elements of the implementation. TOM performs both the step of gen-
erating abstract tests over the model and refining them to concrete (executable)
ones. For this, it needs two additional inputs (a Mapping file and a Values file).

The Mapping file identifies which implementation elements correspond to
which logical (abstract) elements in the model. It consists of a JSON object
defining a mapping between the model and the elements present in the HTML
page. The Values file defines concrete values to be used when creating executable
tests. As mentioned above, interaction with the browser (Step 2) is achieved
through Selenium WebDrive, a remote control interface that enables program-
matic introspection and control of the browser.

The next step (Step 3) is to test the SUT. We divide this into two sub-steps:
a functional testing phase to guarantee that all test cases are successful, followed
by a load testing phase. A solution to run tests concurrently is needed as, in the



available version, TOM can only run tests sequentially. Apache JMeter1 is used
to achieve this. However, since the goal is to perform load tests through the ap-
plication’s UI, it is not possible to use the traditional HTTP Request component
that JMeter offers, as this type of component is used to make requests to the
application’s API. Thus, it was necessary to explore alternatives supporting the
execution of tests written using Selenium WebDriver. These are called samplers.
JMeter features several types of samplers, and after analysis, the option was to
use the JUnit Request sampler.

In the last step of the process (Step 4), it is necessary to evaluate and analyse
the results of the test cases’ execution. As the main goal is to analyse the effect of
load on the application, it is relevant to analyse performance metrics. However,
as mentioned above, there is a first testing phase where each test is executed
separately (to find possible failing tests). Besides supporting functional tests, this
guarantees that only non-failing tests are performed in the load testing phase in
order not to waste resources and time. This is relevant since load testing requires
a large amount of resources and computing power. After analysis of alternatives,
the Allure framework was adopted to present the results of the functional testing
phase. Regarding the analysis of the load testing phase, JMeter provides reports
on this aspect.

4 Implementation

The TOM framework is composed of three components: TOM Generator, TOM
Editor and TOM App. TOM Generator (see Figure 1) contains the core of
the TOM Framework. This component has a modular architecture to ensure
the adaptability of the framework and includes modules to read and translate
different types of models to their internal representation, as well as the modules
to generate, transform and execute the test cases. The TOM Editor (see Figure 3,
right) is a browser extension that is responsible for developing GUI models.
The editor supports capturing the user’s interaction and defining the system
model based on that interaction. The TOM App (see Figure 2) consists of the
presentation layer of the TOM Framework. It supports the process of generating
and executing test cases.

A number of changes had to be made to the existing TOM framework imple-
mentation in order to support the execution of load tests. These were done both
on the framework’s back-end (TOM Generator) and front-end (TOM App).

4.1 Back-end – TOM Generator

Two main changes were made in the back-end. One was the implementation
of the Headless Mode property, the other the implementation of an option to
generate random data.

Headless mode is a process of executing tests in browsers without displaying
the user interface. This means that the HTML page that is under test is not

1 https://jmeter.apache.org/



rendered on the screen (which should save time during test execution). This
mechanism helps run multiple concurrent tests in a single machine, or in remote
machines. Without it, multiple browser instances would have to be concurrently
opened and closed, which is likely to have a significant impact on the time
needed to run the tests. This mode is optional to cater for situations where
actually displaying the pages is considered relevant (for example, when the GUI’s
rendering times need to be considered). Implementing it, meant changes mostly
to the test cases generation process, which is responsible for converting abstract
tests into concrete test cases.

The other change was the implementation of an option to generate random
data. Originally, the TOM Generator allowed the filling of forms with the data
directly present in the Values file. This becomes a problem when performing load
tests, as we have to execute the same test multiple times. Repeatedly using the
same values will, in many cases, fail (consider the task of user registration). This
problem was solved by adding a property to the Mapping file that tells TOM
Generator to generate random data (based on the value provided). This prevents
exactly identical executable tests. The code needed to read the configuration
files was updated to process the new attributes added to the mapping file, in
particular, related to the generation of random values.

A new exporter was created to generate the load tests. This was done start-
ing from a generic test template in JMX (a JMeter format) to which the tests
are added. Routes to support access to the new functionalities were also imple-
mented.

4.2 Front-end – TOM App

A new version of the TOM framework front-end (the TOM App) was developed
to support the new functionalities. The UI of the application is divided in three
main tabs (see Figure 2): Projects, Generation Requests, and Generation Results.

The Projects tab contains all the functionalities for managing projects. Users
can view the list of their projects and add new projects. Additionally, users can
observe all the components that make up the project, such as the System Model,
the Mapping file and the Values file. Deleting the project and downloading it
are also available options.

The generation of test cases is available in the Generation Requests tab.
This process involves three phases. In the first phase, global configurations are
set, such as the URL for which the test cases will be generated, whether to use
headless mode, and the graph traversal algorithm to be used to generate test
cases. In the second phase, the project that will be used to generate the tests is
selected (the UI model, etc.). At this stage, the user may also visualise all the
configuration files that constitute the project. Finally, in the third phase, the
user is presented with all the information about the test generation request and
the option to execute it (which sends it to TOM Generator).

In the Generate results tab (see Figure 2) the results of previous test case
generation requests are presented. Regarding each result, it is possible to visu-
alise properties such as the number of tests generated and the time needed to



Fig. 2. TOM App: Generation Results

generate the tests, as well as download the corresponding files to run the tests
at a later date and in an appropriate setup, or open the test set. Opening a
particular test set provides access to the execution of the tests. This is done in
two phases as explained above.

5 Applying the framework

We now briefly describe two applications of the framework. The first is its ap-
plication to a preexisting e-commerce platform (Retail Marketplace) developed
in the scope of a MSc. curricular unit by the first author and colleagues.

The concrete functionality tested herein consists of the process of registering
a buyer. Users must initially navigate to the login form, where they find the
option ”register new user”. Then, they must chooses the option ”register as pur-
chaser”, and finally fill in the registration form on the platform (see Figure 3,
left). The model of the user interface was developed using the TOM Editor, which
partially automates the process using capture-replay. A test was generated to ex-
ercise the registration process. Originally, this test consisted of registering a user
with name “Bruno Teixeira” using the email “bruno@mail.com” and password
“1234”. This test passed successfully when run on its own (first stage of testing).
Load testing consisted of simulating 20 users performing the registration process
simultaneously. For testing purposes the test was run locally, and configured to
use headless mode. As required for load testing, random values were used for
the inputs. As can be seen at the top of Figure 4, from the 20 tests executed,
two failed. This failure may be related to a delay in receiving the reply from
the Retail Marketplace app, which meant that subsequent attempts to locate
elements in the interface failed. While this in itself is an indication of degraded



Fig. 3. The Retail Marketplace registration form (left) and TOM Editor (right) –
from [3]

performance (indeed performance degrades substantially with 18 threads), in the
future, the possibility of defining the pace of the interaction should be supported.

Another example of use is the application of the framework to the analysis
of the TOM app itself. This involved the creation of a model of the app. The
model consisted of 23 states, and 297 tests were generated (in 556ms). All tests
passed the first stage. For the second phase, 11 tests were selected for execution.
The tests were run on remote machines using the Google Cloud platform. Several
scenarios were attempted, with the goal of assessing the impact of headless mode
and the impact of performing the test through the UI versus direct back-end
API calls. It was possible to conclude that using headless mode provided some
level of improvement in terms of time required to run the tests, although not
as much as we were expecting – on average a time saving of 5.7%. The main
conclusion, however, was that the computing power required to perform realistic
tests (in terms of number of concurrent accesses) increases quite considerable
when running the test through the UI, even in headless mode. In an environment
with 32 virtual CPUs, each with 138 MB of RAM, it was not possible to run
the tests for 1500 threads in the UI case, while in the back-end API case it was
possible to reach more than 30000 threads. In the future, strategies to decreases
the resources demand of the framework should be researched.

6 Conclusions and future work

We have described a model based approach to automate the load testing of web
applications that takes into consideration their user interface layer. The short
term goal has been to support the automated generation and execution of more
realistic load tests. Web application are increasingly using client side code and



Fig. 4. JMeter reports

testing the back-end APIs directly does not take into consideration this code.
However, creating UI load tests that interact with the application through the
user interface is time consuming. By using a model-based approach we were able
to considerably automate the process. One pending problem is the high level
of computational resources required to run the tests. What level of resources is
needed to run the approach effectively, and whether the resources requirements
can be decreased, will have to be further investigated.

The long term goal is to support the consideration of user experience criteria
when load testing web applications. Small differences in UI reaction time can
have a great impact on user experience. How the user interface uses the back-end
services can help mask or exacerbate delays created by the back-end. It can also
create delays in the user interface itself. This means that from a user experience



perspective, the impact of load on the application must be measured at the user
interface. In future work we plan to explore how the approach proposed herein
can be used to assess these aspects, and also how the approach compares to API
load testing for different classes of applications. Web applications with different
levels of logic on the client side (the browser) will be tested and the results
compared with tests run directly on their business logic APIs.

References

1. Busser, R.D., Blackburn, M.R., Nauman, A.M.: Automated model analysis and test
generation for flight guidance mode logic. In: 20th DASC. 20th Digital Avionics
Systems Conference (Cat. No. 01CH37219). vol. 2, pp. 9B3–1. IEEE (2001)

2. Campos, J., Fayollas, C., GonÃ§alves, M., Martinie, C., Navarre, D., Palanque, P.,
Pinto, M.: A ”more intelligent” test case generation approach through task models
manipulation. Proceedings of the ACM on Human Computer Interaction 1(EICS),
9:1–9:20 (Jun 2017). https://doi.org/10.1145/3095811

3. Gonçalves, M.J.R.: Model-based Testing of User Interfaces. Msc. dissertation, Es-
cola de Engenharia, Universidade do Minho (2017)

4. Gray, W.D., Boehm-Davis, D.A.: Milliseconds matter: an introduction to mi-
crostrategies and to their use in describing and predicting interactive be-
havior. Journal of experimental psychology. Applied 6(4), 322–335 (2000).
https://doi.org/10.1037//1076-898x.6.4.322

5. ISO/IEC: ISO/IEC 25010:2011 systems and software engineering – Systems and
software Quality Requirements and Evaluation (SQuaRE) – System and software
quality models. International Organization for Standardization (2011), https://
www.iso.org/standard/35733.html

6. Jain, R.: The Art of Computer Systems Performance Analysis. Wiley (1991)
7. Memon, A., Banerjee, I., Nagarajan, A.: GUI ripping: Reverse engineering of graph-

ical user interfaces for testing. In: 10th Working Conference on Reverse Engineer-
ing, 2003. WCRE 2003. Proceedings. pp. 260–269. Citeseer (2003)

8. Moreira, R.M., Paiva, A.C.: PBGT tool: an integrated modeling and testing en-
vironment for pattern-based gui testing. In: Proceedings of the 29th ACM/IEEE
international conference on Automated software engineering. pp. 863–866 (2014)

9. O’Regan, G.: Concise Guide to Software Testing. Springer (2019)
10. Pinto, M., Gonçalves, M., Masci, P., Campos, J.: TOM: a model-based gui testing

framework. In: Formal Aspects of Component Software. Lecture Notes in Computer
Science, vol. 10487, pp. 155–161. Springer (2017). https://doi.org/10.1007/978-3-
319-68034-7 9

11. Rodŕıguez-Valdés, O., Vos, T.E.J., Aho, P., Maŕın, B.: 30 years of automated gui
testing: A bibliometric analysis. In: Paiva, A.C.R., Cavalli, A.R., Ventura Martins,
P., Pérez-Castillo, R. (eds.) Quality of Information and Communications Technol-
ogy. pp. 473–488. Springer International Publishing, Cham (2021)

12. Rosaria, S., Robinson, H.: Applying models in your testing process. Information
and Software technology 42(12), 815–824 (2000)

13. Utting, M., Legeard, B.: Practical model-based testing: a tools approach. Elsevier
(2010)

https://doi.org/10.1145/3095811
https://doi.org/10.1037//1076-898x.6.4.322
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html
https://doi.org/10.1007/978-3-319-68034-7_9
https://doi.org/10.1007/978-3-319-68034-7_9

	Towards automated load testing through the user interface

