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ABSTRACT   

Fiber probe structures composed of two physical microcavities were created using focused ion beam technology. These 
structures have a tip-like shape as they were milled in preciously etched tapered fiber tips. The microprobes are then 
characterized for temperature and refractive index sensing using a signal filtering technique to discriminate signals from 
distinct microcavities. Using fast Fourier transforms combined with band-pass filters, it is possible to reconstruct the 
spectra of each cavity independently and thus measure their individual spectral shifts. 
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1. INTRODUCTION 
Measuring temperature and refractive index is extremely important in many applications. Refractive index is rarely the 
final parameter to be measured but it is an important stepping stone in creating a bio-sensor1. After having a refractive 
index sensor, one can functionalize said sensor using layers of different materials to create specificity of binding to 
different chemical and biological species and thus obtain more complex sensing systems. The main problem with 
temperature and refractive index is that they are rarely independent quantities. Cross-sensitivity is always a problem to 
overcome when discriminating both quantities. 

Several types of fiber sensors have been employed for temperature and refractive index discrimination. Some examples 
are fiber Bragg gratings (FBGs)2,3, long period gratings (LPGs)4, a hybrid grating composed of a FBG and LPG5, Mach-
Zehnder interferometers6 and Fabry-Perot cavities7. The most common and simple way to compensate for temperature 
cross-sensitivity is to use two sensors, one for temperature only and one that measures refractive index (dependent on 
temperature)3. In most cases, this not only results in the need to read two sensors but also creates another issue: how 
accurate the temperature measurement is in regards to proximity of both sensors. When measuring in large volumes it 
may happen that measuring temperature and refractive index a few centimeters apart may have no real impact. This 
changes when a measurement is needed in a very small volume such as a droplet of blood or even a single cell or 
organism. That is what this work attempts to solve. The advantage here is the extremely small size of the fiber probes 
and the proximity of the temperature compensation structure and the refractive index sensing cavity. The fiber probe 
microcavities are milled with focused ion beam on tapered fiber tip structures. Two contiguous microcavities are created 
and characterized using a fast Fourier transform (FFT) method combined with signal filtering to achieve temperature and 
refractive index discrimination. 
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second cavity that is insensitive to refractive index and only sensitive to temperature, allowing for easy compensation. 
This second temperature sensor is also extremely well located as it is a silica cavity that is immediately besides the 
refractive index sensor cavity, thus avoiding proximity issues when compensating for temperature. 

This microprobe dual-cavity structure allows for temperature and refractive index discrimination in a tip structure with a 
diameter between 5 and 25 μm and a total length of 120 μm. Further optimization can lead to smaller structures and 
many potential applications exist. One very interesting application will be to functionalize the gap cavity with a bio-
indicator and measure in-vivo or in a blood droplet. 
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