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ABSTRACT
MATLAB is a high-level language used in various scienti�c and
engineering �elds. Deployment of well-tested MATLAB code to pro-
duction would be highly desirable, but in practice a number of ob-
stacles prevent this, notably performance and portability. Although
MATLAB-to-C compilers exist, the performance of the generated
C code may not be su�cient and thus it is important to research al-
ternatives, such as CPU parallelism, GPGPU computing and FPGAs.
OpenCL is an API and programming language that allows target-
ing these devices, hence the motivation for MATLAB-to-OpenCL
compilation. In this paper, we describe our recent e�orts on of-
�oading code to OpenCL devices in the context of our MATLAB to
C/OpenCL compiler.
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1 INTRODUCTION
MATLAB [4] is a matrix-oriented high-level programming lan-
guage used in various scienti�c and engineering �elds. However,
deployment of MATLAB programs is hampered by portability and
performance concerns, as a compatible runtime is required. Mul-
tiple projects have a�empted to solve this problem by compiling
MATLAB code to lower-level languages, such as C, but in some
cases the resulting code may still not achieve the required perfor-
mance levels. When this happens, exploring alternatives, such as
GPGPU computations, may be helpful.

We have extended MATISSE [1], a MATLAB compiler framework,
to generate C and OpenCL code [2]. �is paper brie�y presents our
most recent enhancements to the OpenCL generator. Speci�cally,
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Figure 1: Overall architecture of theMATISSE OpenCL back-
end.

we brie�y show the programming model adopted, the architecture
of the compiler, code generator and the most important optimiza-
tions.

�ere are other approaches to compile MATLAB to parallel lan-
guages, such as Mix10 [3] and MEGHA [5]. However, this is, to our
knowledge, the �rst Matlab-to-OpenCL compiler, so we are able to
target multiple devices with a single backend.

2 OUR APPROACH
�e MATISSE C compiler is able to deal with a representative subset
of MATLAB. �e OpenCL backend processes sections identi�ed
with custom directives and aggressively a�empts to parallelize code
within those sections. Operations that can not be o�oaded (such
as memory allocations) are still executed sequentially.

Figure 1 presents the overall architecture of the compiler. MA-
TISSE builds a custom IR for the MATLAB code, performs type
inference, applies a set of transformation passes, and then gener-
ates code based on this IR.

Figure 2 shows a MATLAB function that computes the sum of
two vectors. MATISSE identi�es the %!parallel directive, embed-
ded in a comment that is ignored by other MATLAB-compatible
tools, and a�empts to o�oad as many computations as possible to
OpenCL.

We believe that our model is a good compromise between ease
of use, �exibility and compatibility with multiple coding styles.
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% ! p a r a l l e l
function y = v e c t o r a d d (A , B )

y = A + B ;
end

Figure 2: An annotated MATLAB function that performs
vector addition.

kernel void v e c t o r a d d 1 1 (
global double ∗ A , global double ∗ B ,
global double ∗ y , uint N 1 )

{
. . .
g l o b a l i d 0 1 = ge t g l oba l i d ( 0U ) ;
i f ( g l o b a l i d 0 1 < N 1 ){

in t i = g l o b a l i d 0 1 + 1 ;
y [ i − 1 ] = A[ i − 1 ] + B [ i − 1 ] ;

}
}

Figure 3: Automatically generated OpenCL code to compute
the sum of two vectors, abridged for brevity.

3 OPENCL CODE GENERATION
�e MATISSE OpenCL backend includes two code generators: one
for C host code and another for o�oaded OpenCL code. �e host
generator adds support for OpenCL APIs to the sequential C code
generator, and the OpenCL generator extends the C generator in
order to generate OpenCL kernel code. �e OpenCL backend is built
on top of the MATISSE C backend [6] and reuses nearly all of its
infrastructure, while recognizing additional directives, extracting
code within the parallel regions and generating OpenCL code.

�e OpenCL backend �rst runs the same transformations/opti-
mizations as the C backend. In addition to transforming ine�cient
MATLAB code pa�erns (such as matrix resizes in loops) into more
e�cient equivalents, this has the additional e�ect of normalizing
the code. Because of this, the OpenCL backend has to recognize
fewer pa�erns. We have also introduced several OpenCL-speci�c
optimizations to deal with data transfers. MATISSE identi�es sev-
eral cases where these transfers are unnecessary and eliminates
them. We can also generate code that takes advantage of Shared
Virtual Memory (SVM), using heuristics to determine its pro�tabil-
ity.

Figure 3 shows part of the the automatically generated kernel
code. In this example, the number of elements to add was imported
explicitly because it can di�er from the global size (e.g., if the
number of loop iterations is not a multiple of the desired local size).

4 EVALUATION
We are evaluating the compiler with MATLAB code from well-
known benchmark repositories. We compared our generated par-
allel code with the sequential equivalent for the 6 benchmarks
from [2] and a complex product computation using element-wise

computations. We used a computer running Windows 10 64-bits
with GCC 4.9.2, with an AMD A10-7850K APU (4.10 GHz) with 8
GB of RAM and a discrete AMD Radeon R9 280X GPU with 3GB of
GDDR5 RAM. We were able to achieve a speedup 11× (geometric
mean). 4 out of 7 benchmarks had speedups, with the Monte Carlo
Option Pricing benchmark achieving a speedup of 1432×.

We also evaluated 2 larger benchmarks (Disparity and Tracking)
from the San Diego Vision Benchmark Suite [7] running on the
same computer. On these benchmarks, achieving speedups is more
challenging, due to the lack of heuristics to determine when to
o�oad the code. However, when the user manually indicates which
sections to parallelize, we are able to achieve speedups of 31% and
10% for Disparity and Tracking, respectively.

5 CONCLUSIONS
�is paper brie�y presented our approach to generate OpenCL
code from MATLAB. We implemented a prototype based on the
MATISSE compiler framework, and developed a number of op-
timizations to improve performance. Ongoing work is focused
on targeting additional OpenCL-compatible devices (such as FP-
GAs), develop device-speci�c optimizations, expand the supported
MATLAB subset and research heuristics to determine which code
sections to o�oad.

An online demonstration of the tool can be found at h�p://specs.
fe.up.pt/tools/matisse/.
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