
Compiler Techniques for E�icient MATLAB to OpenCL Code
Generation

Luı́s Reis
Faculdade de Engenharia (FEUP)

Universidade do Porto, and
INESC-TEC

luis.cubal@fe.up.pt

João Bispo
Faculdade de Engenharia (FEUP)

Universidade do Porto, and
INESC-TEC

jbispo@fe.up.pt

João M. P. Cardoso
Faculdade de Engenharia (FEUP)

Universidade do Porto, and
INESC-TEC

jmpc@fe.up.pt

ABSTRACT
MATLAB is a high-level language used in various scienti�c and
engineering �elds. Deployment of well-tested MATLAB code to pro-
duction would be highly desirable, but in practice a number of ob-
stacles prevent this, notably performance and portability. Although
MATLAB-to-C compilers exist, the performance of the generated
C code may not be su�cient and thus it is important to research al-
ternatives, such as CPU parallelism, GPGPU computing and FPGAs.
OpenCL is an API and programming language that allows target-
ing these devices, hence the motivation for MATLAB-to-OpenCL
compilation. In this paper, we describe our recent e�orts on of-
�oading code to OpenCL devices in the context of our MATLAB to
C/OpenCL compiler.

CCS CONCEPTS
•Computingmethodologies→Parallel programming languages;
•So�ware and its engineering →Retargetable compilers;

KEYWORDS
Optimizing Compilers, MATLAB, OpenCL, GPGPU
ACM Reference format:
Luı́s Reis, João Bispo, and João M. P. Cardoso. 2017. Compiler Techniques
for E�cient MATLAB to OpenCL Code Generation. In Proceedings of IWOCL
’17, Toronto, Canada, May 16-18, 2017, 2 pages.
DOI: h�p://dx.doi.org/10.1145/3078155.3078186

1 INTRODUCTION
MATLAB [4] is a matrix-oriented high-level programming lan-
guage used in various scienti�c and engineering �elds. However,
deployment of MATLAB programs is hampered by portability and
performance concerns, as a compatible runtime is required. Mul-
tiple projects have a�empted to solve this problem by compiling
MATLAB code to lower-level languages, such as C, but in some
cases the resulting code may still not achieve the required perfor-
mance levels. When this happens, exploring alternatives, such as
GPGPU computations, may be helpful.

We have extended MATISSE [1], a MATLAB compiler framework,
to generate C and OpenCL code [2]. �is paper brie�y presents our
most recent enhancements to the OpenCL generator. Speci�cally,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IWOCL ’17, Toronto, Canada
© 2017 Copyright held by the owner/author(s). 978-1-4503-5214-7/17/05. . . $15.00
DOI: h�p://dx.doi.org/10.1145/3078155.3078186

Figure 1: Overall architecture of theMATISSE OpenCL back-
end.

we brie�y show the programming model adopted, the architecture
of the compiler, code generator and the most important optimiza-
tions.

�ere are other approaches to compile MATLAB to parallel lan-
guages, such as Mix10 [3] and MEGHA [5]. However, this is, to our
knowledge, the �rst Matlab-to-OpenCL compiler, so we are able to
target multiple devices with a single backend.

2 OUR APPROACH
�e MATISSE C compiler is able to deal with a representative subset
of MATLAB. �e OpenCL backend processes sections identi�ed
with custom directives and aggressively a�empts to parallelize code
within those sections. Operations that can not be o�oaded (such
as memory allocations) are still executed sequentially.

Figure 1 presents the overall architecture of the compiler. MA-
TISSE builds a custom IR for the MATLAB code, performs type
inference, applies a set of transformation passes, and then gener-
ates code based on this IR.

Figure 2 shows a MATLAB function that computes the sum of
two vectors. MATISSE identi�es the %!parallel directive, embed-
ded in a comment that is ignored by other MATLAB-compatible
tools, and a�empts to o�oad as many computations as possible to
OpenCL.

We believe that our model is a good compromise between ease
of use, �exibility and compatibility with multiple coding styles.

IWOCL ’17, May 16-18, 2017, Toronto, Canada L. Reis et al.

% ! p a r a l l e l
function y = v e c t o r a d d (A , B)

y = A + B ;
end

Figure 2: An annotated MATLAB function that performs
vector addition.

kernel void v e c t o r a d d 1 1 (
global double ∗ A , global double ∗ B ,
global double ∗ y , uint N 1)

{
. . .
g l o b a l i d 0 1 = ge t g l oba l i d (0U) ;
i f (g l o b a l i d 0 1 < N 1){

in t i = g l o b a l i d 0 1 + 1 ;
y [i − 1] = A[i − 1] + B [i − 1] ;

}
}

Figure 3: Automatically generated OpenCL code to compute
the sum of two vectors, abridged for brevity.

3 OPENCL CODE GENERATION
�e MATISSE OpenCL backend includes two code generators: one
for C host code and another for o�oaded OpenCL code. �e host
generator adds support for OpenCL APIs to the sequential C code
generator, and the OpenCL generator extends the C generator in
order to generate OpenCL kernel code. �e OpenCL backend is built
on top of the MATISSE C backend [6] and reuses nearly all of its
infrastructure, while recognizing additional directives, extracting
code within the parallel regions and generating OpenCL code.

�e OpenCL backend �rst runs the same transformations/opti-
mizations as the C backend. In addition to transforming ine�cient
MATLAB code pa�erns (such as matrix resizes in loops) into more
e�cient equivalents, this has the additional e�ect of normalizing
the code. Because of this, the OpenCL backend has to recognize
fewer pa�erns. We have also introduced several OpenCL-speci�c
optimizations to deal with data transfers. MATISSE identi�es sev-
eral cases where these transfers are unnecessary and eliminates
them. We can also generate code that takes advantage of Shared
Virtual Memory (SVM), using heuristics to determine its pro�tabil-
ity.

Figure 3 shows part of the the automatically generated kernel
code. In this example, the number of elements to add was imported
explicitly because it can di�er from the global size (e.g., if the
number of loop iterations is not a multiple of the desired local size).

4 EVALUATION
We are evaluating the compiler with MATLAB code from well-
known benchmark repositories. We compared our generated par-
allel code with the sequential equivalent for the 6 benchmarks
from [2] and a complex product computation using element-wise

computations. We used a computer running Windows 10 64-bits
with GCC 4.9.2, with an AMD A10-7850K APU (4.10 GHz) with 8
GB of RAM and a discrete AMD Radeon R9 280X GPU with 3GB of
GDDR5 RAM. We were able to achieve a speedup 11× (geometric
mean). 4 out of 7 benchmarks had speedups, with the Monte Carlo
Option Pricing benchmark achieving a speedup of 1432×.

We also evaluated 2 larger benchmarks (Disparity and Tracking)
from the San Diego Vision Benchmark Suite [7] running on the
same computer. On these benchmarks, achieving speedups is more
challenging, due to the lack of heuristics to determine when to
o�oad the code. However, when the user manually indicates which
sections to parallelize, we are able to achieve speedups of 31% and
10% for Disparity and Tracking, respectively.

5 CONCLUSIONS
�is paper brie�y presented our approach to generate OpenCL
code from MATLAB. We implemented a prototype based on the
MATISSE compiler framework, and developed a number of op-
timizations to improve performance. Ongoing work is focused
on targeting additional OpenCL-compatible devices (such as FP-
GAs), develop device-speci�c optimizations, expand the supported
MATLAB subset and research heuristics to determine which code
sections to o�oad.

An online demonstration of the tool can be found at h�p://specs.
fe.up.pt/tools/matisse/.

6 ACKNOWLEDGMENTS
�is work has been partially supported by the TEC4Growth project,
”NORTE-01-0145-FEDER-000020”, �nanced by the North Portugal
Regional Operational Programme (NORTE 2020), under the POR-
TUGAL 2020 Partnership Agreement, and through the European
Regional Development Fund (ERDF). Reis and Bispo acknowledge
the support of the Portuguese Science Foundation (FCT), through
the grants PD/BD/105804/2014 and SFRH/BPD/118211/2016, respec-
tively.

REFERENCES
[1] João Bispo, Pedro Pinto, Ricardo Nobre, Tiago Carvalho, João M. P. Cardoso, and

Pedro C. Diniz. 2013. �e MATISSE MATLAB Compiler - A MATrix(MATLAB)-
aware compiler InfraStructure for embedded computing SystEms. In IEEE Inter-
national Conference on Industrial Informatics (INDIN’2013). Bochum, Germany.

[2] João Bispo, Luı́s Reis, and João M. P. Cardoso. 2015. C and OpenCL Generation
from MATLAB. In Proceedings of the 30th Annual ACM Symposium on Applied
Computing (SAC ’15). ACM, New York, NY, USA, 1315–1320.

[3] Vineet Kumar and Laurie Hendren. 2014. MIX10: Compiling MATLAB to X10
for High Performance. SIGPLAN Not. 49, 10 (Oct. 2014), 617–636.

[4] MathWorks. 2017. MATLAB - �e Language of Technical Computing. h�p:
//www.mathworks.com/products/matlab/. (2017). Accessed: Feb 2nd, 2017.

[5] Ashwin Prasad, Jayvant Anantpur, and R. Govindarajan. 2011. Automatic Com-
pilation of MATLAB Programs for Synergistic Execution on Heterogeneous
Processors. SIGPLAN Not. 46, 6 (June 2011), 152–163.

[6] Luı́s Reis, João Bispo, and João M. P. Cardoso. 2016. SSA-based MATLAB-to-C
Compilation and Optimization. In Proceedings of the 3rd ACM SIGPLAN Interna-
tional Workshop on Libraries, Languages, and Compilers for Array Programming
(ARRAY 2016). ACM, New York, NY, USA, 55–62.

[7] Sravanthi Kota Venkata, Ikkjin Ahn, Donghwan Jeon, Anshuman Gupta, Christo-
pher Louie, Saturnino Garcia, Serge Belongie, and Michael Bedford Taylor. 2009.
SD-VBS: �e San Diego Vision Benchmark Suite. In Proceedings of the 2009 IEEE
International Symposium on Workload Characterization (IISWC) (IISWC ’09). IEEE
Computer Society, Washington, DC, USA, 55–64.

http://specs.fe.up.pt/tools/matisse/
http://specs.fe.up.pt/tools/matisse/
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/

	Abstract
	1 Introduction
	2 Our Approach
	3 OpenCL Code Generation
	4 Evaluation
	5 Conclusions
	6 Acknowledgments
	References

