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Abstract
Tracing and analyzing the interactions and exchanges be-
tween nodes is fundamental to uncover performance, cor-
rectness and dependability issues almost unavoidable in any
complex distributed system. Existing monitoring tools ac-
knowledge this importance but, so far, restrict tracing to the
external attributes of I/O messages, thus missing a wealth of
information in them.
We present CaT, a non-intrusive content-aware tracing

and analysis framework that, through a novel similarity-
based approach, is able to comprehensively trace and cor-
relate the flow of network and storage requests from ap-
plications. By supporting multiple tracing tools, CaT can
balance the coverage of captured events with the impact on
applications’ performance.
The conducted experimental evaluation considering two

widely used applications (TensorFlow and Apache Hadoop)
shows how CaT can improve the analysis of distributed
systems. The results also exemplify the trade-offs that can
be used to balance tracing coverage and performance impact.
Interestingly, in certain cases, full coverage of events can be
attained with negligible performance and storage overhead.

CCSConcepts: •Computer systems organization→Cloud
computing; • General and reference→Measurement.

Keywords: Tracing, Distributed Systems, Black-box, Content-
aware Analysis
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1 Introduction
The development, configuration, and management of dis-
tributed systems are usually difficult, costly, and challenging
tasks. A distributed deployment can easily become a complex
system due to the heterogeneity of software and hardware
components, diversity of protocols, programming models
and interfaces, sheer concurrency, asynchrony of events,
faults, etc.
Tracing and analysis frameworks can assist these tasks

enabling the observation of the applications’ requests as they
propagate through the distributed system and providing valu-
able insights into how the system’s state evolves over time.
Such knowledge is key for performance analysis, diagnosing
anomalies, and even for assessing correctness or security
properties [22]. However, to efficiently trace a distributed
system, the following challenges must be considered:

a) Performance and storage overhead. Capturing I/O events
(e.g., network, storage) requires extra processing in the crit-
ical path of operations that may lead to significant perfor-
mance and resource usage (e.g., RAM, CPU) overheads for
the observed system. Furthermore, as the number of cap-
tured events increases so does the amount of information
that must be stored and analyzed [2, 16].

b) Transparency. Distributed systems are composed of het-
erogeneous components whose source code may be difficult
or even impossible to access. Therefore, the collection of
events needs to be non-intrusive, treating these components
as opaque-boxes, and requiring the least possible knowledge
about the target system [19].

c) Accuracy. The need to reduce tracing performance and
storage overheads leads many solutions to wittingly discard
sets of I/O requests, resorting to sampling [29]. However,
missing important requests can have a direct impact on the
analysis’ accuracy.

d) Causality. In a distributed system, it is fundamental to
preserve the events’ causality to provide a coherent view of
what is happening among the different nodes while showing
the operations dependencies. As there is no global clock, and
having the physical clocks on all relevant nodes synchro-
nized precisely is often impossible, approaches must devise
other ways to infer the causality between events [19].

e) Automation and Visualization.Manually analyzing traces
is costly and hard due to the number of events contained in
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Figure 1. Context vs content-aware tracing analysis.

them. Solutions must implement automatic strategies to ana-
lyze and compare distinct events while highlighting relevant
details in a summarized and human-readable fashion.

Current tools either take an intrusive approach, requiring
source code or binary instrumentation [5, 16, 29], or only
take into account the requests’ context [19, 23, 30], such as,
in general, timestamps and process id, for network messages
their source, destination and protocol, and for files their
descriptor, name and offset.
Indeed, the context of requests provides useful insights

about different components interactions (e.g., it can tell when
a file is written or an application sends data via a socket).
As an example, let us consider an echo application sending
a message to be persisted in a file on another node, while
expecting to receive the same message from that node as the
reply. From the captured I/O events, context-based solutions
can provide an analysis similar to the one shown in Fig. 1-(a).
Namely, one node is sending 12 bytes to another, which stores
12 bytes in file echo.txt and replies with another message of
12 bytes, suggesting that the application is acting as expected.

However, we defend that the analysis of the requests’
content, transmitted and stored by the system’s different
components, can further enrich these tools when validating
distributed solutions. For instance, by analyzing the requests’
contents from the previous example (Fig. 1-(b)), it is possible
to see that, despite storing 12 bytes and replying with a mes-
sage of the same size, node 2 is actually storing and sending
different contents. This can happen due to data adulteration
or corruption, which is not visible when looking only at the
requests’ context (i.e., type of operation, filename, and size).
Therefore, in this paper, we innovate by also exploring the
network messages’ payload and contents of storage accesses.
Namely, to address the challenges above, this paper pro-

poses CaT , a novel framework for analyzing both the con-
text and content of distributed system I/O requests. CaT is
the first framework to combine: i) kernel-level tracing tools
to capture the context and content of network and storage
events in a non-intrusive (black-box) fashion; ii) summariza-
tion and similarity-based techniques to efficiently correlate
the content of captured events and visually depict their data
flows. In detail, this paper makes the following contributions:

Content-based tracing. A novel algorithm that captures
and analyzes the context and content of applications’ I/O
requests. It resorts to hashing techniques to summarize the
requests’ content while reducing storage space overhead and
applies near-duplicate detection algorithms to find similari-
ties between data of distinct distributed events. By perform-
ing a similarity-based analysis, CaT can identify duplicate
data (with a similarity degree of 100%), as well as near-similar
data (with a high degree of similarity (e.g., > 80%)) that was
slightly modified while flowing through different compo-
nents (e.g., messages that include the same payload but have
a different metadata header). This knowledge is key for de-
tecting data modification, corruption or leakage for similar
I/O messages.

Black-box tracing. The previous algorithm is integrated
with two kernel-level tracing tools (Strace[14] and eBPF[17])
for capturing storage and network I/O requests in a non-
intrusive fashion. These two technologies provide different
trade-offs in terms of resources usage (e.g., CPU, RAM and
disk space), accuracy (amount of collected information), and
I/O performance. Also, these can filter requests from specific
processes or file paths to collect only events of interest.

Pipeline integration andprototype. An open-source pro-
totype that provides a fully integrated pipeline to capture,
analyze and visualize the context and content of I/O requests.
The pipeline design allows decoupling the tracing from the
analysis phase, enabling an offline analysis that can even be
performed at different and more powerful servers. Therefore,
the main focus of this work, and the conducted experimental
evaluation, resides on the tracing phase as it has a direct
performance impact on the critical I/O path of applications.

Evaluation. A detailed evaluation with two real Big Data
applications: TensorFlow [1] and Apache Hadoop [3]. Experi-
mental results show that it is possible to trace how data flows
over a distributed system while incurring negligible perfor-
mance overhead. Moreover, usability experiments demon-
strate how CaT can improve distributed systems analysis
while adding new and relevant insights on how data is han-
dled in complex multi-node systems. Namely, we show that,
with CaT, users can validate the data access patterns per-
formed by TensorFlow when reading the training dataset or
verify if the Apache HDFS replicated file system is correctly
storing data across the replicas (dependability and correct-
ness). For the latter application we also show that CaT can
help identifying erroneous or suspected flows that may lead
to security flaws, namely data corruption or adulteration.
The rest of this paper is structured as follows. Section 2

introduces relevant background. Sections 3 and 4 describe
CaT’s design and implementation, while Sections 5 and 6
detail its experimental evaluation. Finally, Section 7 points
to relevant related work, and Section 8 concludes the paper.
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2 Background
This section reviews relevant work to better understand how
CaT is designed and works.

2.1 Capturing system’s events
Linux tracing tools such as Ftrace, LTTng, eBPF, SystemTap,
and Strace, are tracing frameworks that run at the operating
system level and provide useful insights about an application
behavior without requiring its modification or custom in-
strumentation. Depending on the tool, it is possible to trace
system calls (e.g., openat, pread), Linux Kernel functions (e.g.,
sock_sendmsg) or user space functions (e.g., malloc). This
paper explores the Strace and eBPF technologies to build a
non-intrusive content-aware tracing framework.

Strace [14] is a command line tool for Unix systems that
intercepts and records system calls issued by a process. Its
implementation relies on ptrace that enables tracing system
calls, read and write operations to memory and registers,
and manipulating signal delivery to the traced process.

Concretely, whenever the target process enters or exits a
system call, it is stopped by the Linux Kernel, allowing the
tracer to inspect the program and print its values (i.e., system
call name, arguments, and return value). Moreover, Strace
can be configured to trace the threads and child processes
that are created by a given process.
As a downside, Strace’s trap generated by the operating

system on each system call, and the context switches of
processes from blocked to running state may impose consid-
erable performance overhead on the target application [9].

eBPF stands for extended Berkeley Packet Filter and is a
universal in-kernel virtual machine that allows user space
applications to inject code in the kernel at runtime (without
changing kernel source code or loading kernel modules) [18].

eBPF allows attaching small programs to specific locations
in kernel and user space (i.e., tracepoint, kprobe, uprobe) to
be executed whenever an event (e.g., system call or kernel
function) occurs. Moreover, it provides maps (key-value data
stores) that allow sharing data between eBPF programs and
between kernel and user space. Also, a ring buffer is usually
used to submit the collected events to the user space. This
buffer is a contiguous memory area that can be read (by user
space) and written (by kernel space) simultaneously.

Lastly, eBPF is considered a safe option to instrument the
Linux Kernel as its Verifier performs a sanity-check to the
eBPF program before attaching it, ensuring that it cannot
threaten the kernel’s stability and security. However, this
has implications when writing an eBPF program since its
total number of instructions, and stack space are limited, only
bounded loops are allowed (if the exit condition is guaranteed
to be true), and map sizes must be statically defined.

2.2 Falcon
In mind with the challenges described earlier, we have se-
lected one of the most recent solutions from the state-of-the-
art, named Falcon, to build upon our framework.

Falcon[19] is a log-based analysis tool for distributed sys-
tems whose components operate together as a pipeline, al-
lowing it to combine several logging sources and generate
coherent space-time diagrams of distributed events in a non-
intrusive way. Its design contains three main components:

a) Trace Processor. This module is responsible for trans-
lating entries from multiple log sources into events to be
processed by Falcon. Namely, it can extract useful knowl-
edge about the system execution from logging libraries (e.g.,
log4j) and network sniffers (e.g., libpcap-based tools). The ex-
tracted information is then organized into process (fork, join,
start, end) and socket (connect, accept, send, receive) events.
b) Happens-Before Model Generator. After the input data

normalization procedure, this module organizes the events
according to their logical clocks and their happens-before
relationship constraints, building a single causally-consisted
schedule. A constraint can, for instance, state that a send
event must happen-before the corresponding receive event.

c) Visualizer. In the end, the Visualizer component gener-
ates a space-time diagram depicting both the events executed
by each process and the inter-process causal relationships.

By combining the application’s logs with kernel-level trac-
ing tools, Falcon can observe the system’s behavior creating
causal traces without needing to known the target system’s
architecture and the interactions among its components.

In CaT, events collected by our novel content-aware trac-
ers are provided to Falcon’s Trace Processor. As Falcon can
only analyze the context of network requests, its pipeline
was extended to provide context and content-aware analysis
capabilities for both network and storage I/O requests. These
modifications are detailed in the next sections.

3 CaT’s Design and Architecture
CaT is a black-box content-aware tracing and analysis frame-
work. It analyzes distributed systems in a non-intrusive way,
highlighting how their components interact with each other
and how data flows through the system. Its design enables the
capture of detailed information related to I/O network and
disk events, such as the context of the request and the data
processed by the event. With this information, CaT proposes
an analysis of the events content based on their similarity,
allowing the detection of data flow patterns that are not
visible when inspecting only the context of events.

3.1 Design Principles
In compliance with the challenges discussed in Section 1,
CaT’s design considers the following design principles:

a) Kernel-level tracing. CaT resorts to kernel-level tracing
to capture the context and content of network and storage
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Figure 2. CaT’s architecture.

I/O requests, while not requiring previous knowledge about
the application nor instrumenting its source code.

b) Accuracy vs Performance. CaT’s modular design en-
ables the support of different tracing tools, each providing
different trade-offs in terms of the total percentage of col-
lected requests (accuracy), I/O performance, resource usage
and storage space overhead.

c) Summarization. CaT uses hash functions to persist di-
gests of requests’ content instead of their full data, thus
reducing the storage space of trace logs.

d) Causality inference. CaT extends Falcon to correlate
and infer the causality of distributed I/O events [19].

e) Similarity-based analysis and Visualization. To auto-
mate the analysis process, CaT resorts to similarity estima-
tion techniques to compare and highlight data dependencies
of complex systems. Also, a color-based scheme is used to
visually pinpoint I/O events handling near-similar data.

3.2 Architectural Components
As depicted in Fig. 2, CaT operates as a pipeline that allows
combining multiple data sources and assessing the happens-
before relationships between events, while adding the func-
tionality of capturing and analyzing their content. To this
end, CaT extends Falcon’s architecture for analyzing data
in transit and at rest, while providing further information
about the targeted system. Namely, CaT includes the follow-
ing main components:

CaTracer. The pipeline’s first component is the CaTracer,
which is responsible for collecting I/O events information.
It runs simultaneously with the targeted system, observing
requests from the different components and storing them as
events in a log file (CatLog). Its collector submodule (Fig. 2-
➊) resorts to kernel-level tracing facilities that intercept the
context (e.g., type of event, timestamp, PID) and content of
network (e.g., send, receive) and storage (e.g., read, write)
requests in a non-intrusive way. Namely, this component
captures the following type of requests: connect / accept (con-
nection / acceptance of a socket), send (SND) / receive (RCV)
(writing / reading from a socket), open (opening a file), and
write (WR) / read (RD) (writing / reading from a file descrip-
tor). Note that the interception of requests is performed at

the kernel-level of I/O calls, thus allowing CaT to be used
transparently for different applications (e.g., OLAP and OLTP
databases, analytical and machine learning frameworks).
To minimize the tracing performance and storage over-

heads, the CaTracer offers the possibility of saving only
events of interest. Namely, it can 1) filter events by PID
and 2) filter storage events by path. The former sets CaTracer
to collect only the events of a given process identifier and its
child processes, discarding all requests that do not belong to
them. The latter allows recording only storage events (i.e.,
open, write, read) that work within a given path or group
of paths (e.g., a file or subdirectory). By combining these
two filters, CaTracer can significantly reduce the number of
captured events, saving only the most relevant ones.

The captured information is then sent to the handler sub-
module (Fig. 2-➋) that parses and organizes it into the Cat-
Log events format. This log file holds the events’ type, con-
text, and content. For instance, the CatLog for Fig. 1 exam-
ple would contain the event: <type:SND, pid:123, socket:TCP,
src:node1, dst:node2, size:12, message:“Hello world!”>. To min-
imize the resulting log size, CaTracer offers the option to
compute hash sums of events’ content, at the Signature Com-
putation (SigComp) submodule (Fig. 2-➌). When this submod-
ule is enabled, the CatLog file will store the corresponding
hash sums instead of the full data buffers’ content being in-
tercepted. Section 4.1 further details CaTracer’s submodules.

Trace Processor. After collecting the events, which is
done at runtime (i.e., at the target system’s critical I/O path),
the remaining pipeline initiates the analysis phase, which is
performed in background and even at different servers. First,
the CatLog file is forwarded to the Trace Processor (Fig. 2-➍).
This component will parse and organize the events into differ-
ent data structures according to their type (e.g., SocketEvent
– with the socket type, source and destination addresses, and
data buffer transmitted, StorageEvent – with the file path,
descriptor, offset, and data buffer read / written). This compo-
nent is identical to the one provided by the Falcon solution,
with the exception of some minor design modifications to
support the CatLog file as input and to include the parsing of
storage events metadata (e.g., file path, file descriptor, offset).
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HBModelGenerator. The next step is to find the happens-
before relationships between the events, which is done at
the Happens-Before (HB) Model Generator (Fig. 2-➎). This
component accesses the data structures (in memory) cre-
ated by the Trace Processor and combines the events into a
single causally-consistent schedule. With the aid of an off-
the-shelf SMT solver, the HB Model Generator outputs a new
file (Causal Trace) with an identifier for each event (ID), the
order it happened, and its dependencies (e.g., the ID of the
network send event from which a receive event depends on).
For example, the Causal Trace of the example from Fig. 1
would indicate that the RCV events (with ID 2 and 5) depend
on the SND events (with ID 1 and 4), respectively and that the
events from node2 happened after event 1 and before event
5. This component is identical to the one provided by the
Falcon system without any design modifications required.

CaSolver. The Causal Trace is then forwarded to the Ca-
Solver module, which analyzes the events’ content. The mod-
ule selects the content for each event, which can either be
signatures (hash sums) that were provided by the tracer
(Fig. 2-➌), or the full data buffers. In the latter case, the Ca-
Solver module resorts to the SigComp submodule to compute
buffers’ signatures in place (Fig. 2-➏). By having a SigComp
submodule in the CaSolver component, we allow using CaT
with third-party log sources that cannot provide a priori the
events’ content signatures. After obtaining all the signatures,
the CaSolver relies on the DataAnalysis submodule (Fig. 2-➐)
for applying data similarity estimation algorithms to find
events with a high probability of operating over the same
data flow. These algorithms are further detailed in section 4.2.
The inferred similarity information (i.e., list of similar events)
is then added to the original Causal Trace data, producing
the Similarity Causal Trace. For the example from Fig. 1, the
CaSolver would indicate that events 1 and 2 have 100% of
similarity between their content as well as events 3, 4 and 5.

Visualizer. The pipeline’s last component is the Visual-
izer (Fig. 2-➑), which receives the Similarity Causal Trace
file and builds a space-time diagram representing the tar-
geted system execution, the events causal relationships and
their data flows. A more detailed description of the Visualizer
component is provided in section 4.3.

3.3 Pipeline Usage
CaT was designed with the aim to assist developers and sys-
tem administrators, particularly in analyzing their system
behavior and identifying erroneous or suspected I/O flows
that may lead to protocol or security flaws. To use CaT , the
user must first run the targeted application with the CaTracer
component to generate the CatLog file which contains the
captured I/O events. Then, the CatLog file should be passed
as an argument to the Trace Processor component, which will
parse the events and share the informationwith theHBModel
Generator. In the end, a new file is generated (Causal Trace)

Collector 
Storage /
Network

Handler 

Strace
strace.out 

SigCompParser
CatLog

2 3 51 4

User spaceKernel space

Figure 3. CatStrace components.

that contains the events and their corresponding causal rela-
tionships. Next, the user must run the CaSolver component,
passing the Causal Trace as input, to get the Similarity Causal
Trace file with the inferred similarity information. For visu-
alizing the information contained in the latter file, the user
can access the web page of the Visualizer component.

4 CaT’s Algorithms and Prototype
CaT’s open-source prototype1 is based on the Falcon project
(commit #997b531 [20]). As depicted in Fig. 2, the latter was
extended to include the new CaTracer and CaSolver com-
ponents, while the Visualizer was modified to provide a vi-
sual representation for content flow across I/O events. Next,
we detail these novel functionalities: content-aware tracing,
similarity-based data analysis and content flow visualization.

4.1 Content-aware tracing
CaT’s prototype supports two implementations of the new
CaTracer component, one based on the Strace tool (CatStrace)
and the other based on the eBPF technology (CatBpf ). These
two tracers were chosen as they provide different trade-offs
in terms of accuracy, I/O performance and resources usage,
as shown in Section 6.1.

4.1.1 CatStrace. The Strace-based tracer is implemented
as a Python program that executes the Strace command to
trace an application’s execution, capturing process, network,
and storage-related system calls (e.g., recvfrom, pwrite64),
and then parses its output into a CatLog file.

As depicted in Fig. 3, the collector module spawns a process
that runs Strace for a given command or PID. Strace inter-
cepts the system calls issued by the traced process (Fig. 3-➀)
and saves them to a file (strace.out) (Fig. 3-➁).
The collected information is then parsed by the handler

module (Fig. 3-➂), whose implementation is based on the
strace-parser [11] tool. The parser produces a generic JSON
structure for all system calls containing the corresponding
type (e.g., pwrite64), timestamp, PID, arguments (e.g., file-
name, buffer, size, offset), and the result (e.g., number of
bytes written), which is then organized as an event.

Then, the event structure goes through the SigComp sub-
module (Fig. 3-➃) that checks if it has content and resorts
to the MinHash algorithm (described later in section 4.2) to
compute the content’s signature. The event with its content
signature is then persisted into the CatLog file (Fig. 3-➄).
1
https://github.com/dsrhaslab/cat
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4.1.2 CatBpf. The eBPF-based tracer is implemented in
GO and resorts to the eBPF technology to capture process,
network and storage requests (e.g., fork, sock_sendmsg, write).
As pictured in Fig. 4, the collector module runs at kernel space
while the handler module runs at user space.

The collector module has an eBPF program, written in
C, that defines the code that runs when an I/O request (e.g.,
write) is intercepted. Namely, it first checks if the request was
issued by the target process and builds a structure (eventCon-
text) that gathers contextual information (e.g., type, times-
tamp, process ID). If the request is handling data (i.e., has con-
tent), for instance a write request persisting a buffer to disk,
the collector module builds another structure (eventContent)
that gathers the data buffer and its size. The eventContent
structures are placed in an eBPF map of type per-CPU array
(Fig. 4-➀) that can be accessed from user space, while the
eventContext structures are submitted to user space via the
ring buffer (Fig. 4-➁).

At user space, the handler is continually polling the events
context from the ring buffer (Fig. 4-➂) and, when applicable,
gets their content from the per-CPU array (Fig. 4-➃). It then
merges all the collected data into an Event structure (Fig. 4-
➄), computes its signature (Fig. 4-➅), and persists it to the
CatLog file (Fig. 4-➆). CatBpf’s SigComp submodule is similar
to the one from CatStrace, but it is implemented in GO.

Our strategy of splitting the context and content of events
into two different structureswas based on that of unixdump[7]
to reduce event loss. As the ring buffer (data structure used
to submit the events from kernel to user space) has a circular
format and a fixed size, once the buffer is filled, the collector
module starts rewriting the buffer from the beginning. If
the handler module cannot process events at a fast pace, the
ring buffer’s data can be overwritten or lost. From prelim-
inary experiments, we observed that the larger the size of
the structure submitted to the ring buffer, the higher the
percentage of lost data. Therefore, by splitting the events’
content from the events’ context, we can submit a smaller
structure (eventContext) to the ring buffer and access the
corresponding eventContent directly via the per-CPU array.

Although this separation allows decreasing the number of
lost events, it can result in incomplete events. Namely, the
number of elements on the per-CPU map has to be statically
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defined due to the limitations imposed by the eBPF Verifier.
Thus, once the map positions are filled, the old ones start
being overwritten. If, after collecting the request’s context,
the handler cannot access the specific eventContent in time,
the event is persisted only with the context details. Even
though this approach can lose the events’ content, it can still
capture their context, thus enabling a context-based analysis.

4.2 Similarity-based analysis
The similarity-based analysis of events’ content is performed
in two phases: 1) the signatures computation (at the SigComp
submodule), and 2) the processing of events’ signatures (at
the DataAnalysis submodule), as depicted in Fig. 5.

In the first phase, we use the min-wise hashing (MinHash)
algorithm [4] to summarize the content of each I/O event
into a small set of signatures. In a nutshell, the MinHash
algorithm applies 𝑛 different hash functions to each shin-
gle (consecutive overlapping sequences of 𝑘 bytes) of the
intercepted content buffer. Then, for each hash function out-
put it is selected the smallest value obtained, resulting in a
signature with 𝑛 values.

To assess the similarity between the content of two events,
at the second phase, we can now calculate the Jaccard index
[10] of their signatures, which determines the percentage of
identical values present in them. However, computing the
Jaccard index for all signature pairs (i.e., all events captured
by CaT) is a costly operation, whose complexity increases
exponentially with the number of signatures to compare.
Therefore, to efficiently compare all MinHash signatures

and find the pairs with a similarity greater than a given
threshold, we resort to the locality-sensitive hashing (LSH)
[12] approach. This mechanism uses several hash functions
to groupMinHash signatures referring to similar content into
the same bucket. Then, the Jaccard index is only computed
for strong candidate pairs, namely signatures that have been
placed at the same bucket.

In the end, the CaSolver outputs a list of tuples indicating
the ID of similar events and their Jaccard index. Such infor-
mation will allow the Visualizer to visually represent the
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Figure 6. Visualizer output example.

events data flow and dependencies. Namely, by looking at
the Jaccard index, the Visualizer will be able to highlight both
identical data (i.e., 100% similar) and similar data (e.g., 80%
similar) that have undergone slight changes when flowing
across components (e.g., addition of metadata headers).

4.3 Visual representation
The Visualizer generates a space-time diagram depicting the
events executed in each host and the inter-host causal rela-
tionships. Moreover, by resorting to the similarity informa-
tion found by the CaSolver module, the Visualizer employs a
color-based scheme to depict the events’ content similarities.
Fig. 6 shows the Visualizer output for the example from

Fig. 1. Each host’s events are represented as circles positioned
along a dashed line according to the order in which they
occurred. For instance, on host node1 occurred two events, a
network send (event 1) followed by a network receive request
(event 5). Each event is accompanied by its ID and type.

Causal relationships are represented by a line linking two
events (e.g., events 1 and 2). Data dependencies, i.e., events
whose content is similar, are presented with the same color
(e.g., events 1 and 2, and events 3, 4 and 5). Events whose
content is unique are assigned with the black color.
When selecting a specific event or relationship it is then

possible to consult additional information about it. In Fig. 6
we show such information for event 1. It is a send request of
12 bytes from node1 (port 5000) to node2 (port 6000), from the
process with PID 123. Moreover, it summarizes the event’s
similarities. In this case, it states that the content from event
1 is 100% similar to the one from event 2.

5 Experimental Methodology
The experimental evaluation of CaTwas planned to validate
the following questions:

• What is the performance, resource usage, and stor-
age overhead of CaT, namely of the two supported
tracers2, at the application’s critical I/O path?

• How do the two different tracers vary in terms of ac-
curacy (number of captured events)?

• What novel insights canCaT’s content-aware approach
provide?

2Note that the remainder of CaT’s pipeline components run in background.

Next, we further detail the experimental methodology
followed to address these questions.

5.1 Use cases and Workloads
We selected two Big Data applications for our evaluation,
namely TensorFlow [1] and Apache Hadoop [3].

TensorFlow is a machine learning platform used for the
training and inference of deep neural networks. During the
training phase, TensorFlow performs disk I/O operations to
read the dataset being used to build the deep-learning model.
CaT prototype was used to capture TensorFlow’s interac-
tions with the storage medium while reading the ImageNet
Large Scale Visual Recognition Challenge 2012 (ILSVRC2012)
dataset[26], which is often used for computer vision research
and includes 1.28 million images (≈ 138 GiB) for training
and 50,000 images (≈ 6 GiB) for validation, distributed across
1000 classes. The dataset was previously converted to the
TFRecord format, resulting in 1152 TFRecords files (1024 for
training and 128 for validation), occupying approximately
144 GiB. The conducted tests consisted of running the train-
ing workload for 20 epochs, with a batch size of 64, while
using a single GPU. Also, the LeNet CNN model[15] was
chosen given its disk I/O-bound nature, thus providing a
scenario where multiple disk operations must be captured
by CaT’s tracers [28].
Apache Hadoop is a framework for distributed storage

and processing of Big Data, which resorts to the HDFS dis-
tributed filesystem for persisting and retrieving data. The
latter has a master/slave architecture, with a NameNode
responsible for managing metadata operations and several
DataNodes where the data is actually persisted. In this use
case, CaT prototype was used to intercept network and disk
I/O calls across HDFS client, NameNode, and DataNodes.

For these experimentswe resorted to BigDataBench 5.0[32],
a Big Data benchmark suite that provides representative real-
world datasets. BigDataBench ran the Naive Bayes algorithm
(a classification algorithm used in data mining) with the Ama-
zon movie review dataset. The experiments also considered
the loading phase of this dataset into the HDFS store with
two different dataset sizes (16 and 32 GiB).

5.2 Experimental Setups
Experiments included three distinct deployments:

• Vanilla: The application running without tracing tools.
• CatBpf : The eBPF-based tracer running simultane-
ously with the target application and intercepting its
events. To optimize the number of I/O events handled,
CatBpf was configured to capture only the first 4KiB
of content from each request. As shown by the results,
this configuration allows capturing the context and
content of more events while still providing useful
content-aware insights.
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Table 1. TensorFlow results. ‘—’ indicates that it is not appli-
cable, while ‘*’ means that the values could not be measured.

Vanilla CatBpf CatStrace
Elapsed time (min) 169.86 173.83 610.56
Images per second 2 527.75 2 495.92 703.07
Events handled — 11 836 041 *

Events incomplete — 0 —
Events truncated — 11 788 963 *

Events lost — 0 *

• CatStrace: The Strace-based tracer intercepting applica-
tion’s events, while capturing 256KiB of requests con-
tent, which allowed obtaining the full content buffers
for most events.

5.3 Collected Metrics and Experimental
Environment

Besides measuring the elapsed time and throughput metrics,
the Dstat[24] tool was used to observe the CPU and memory
usage on each cluster node. Also, we collected the events
statistics reported by each tracer, including the total of events
saved into CatLog, incomplete events (i.e., CatLog events
including only context information), truncated events (i.e.,
events whose content was truncated to a smaller size due
to their original request buffer size being greater than the
captured size), and lost events. We performed 3 runs for
each Hadoop experiment, and 2 runs for the TensorFlow
experiments.
TensorFlow ran on a server equipped with a Intel Core

i9-9900K CPU (8 physical and 16 logical cores); 16 GiB of
DDR4 RAM; one 1 TiB Micron 2200S NVMe; and NVIDIA
GeForce RTX 2070 GPU with CUDA version 10.2.
Hadoop ran in five servers with one Intel Core i5-9500

CPU (6 physical and logical cores); 16 GiB of DDR4 RAM; one
500 GiB, SATA III, Seagate ST500DM009-2F110 HDD; and
one 250 GiB, Samsung SSD 970 EVO Plus. The five servers ran
Hadoop 2.7.1, while three were configured as DataNodes, one
as the NameNode, and the last one as the client. Servers were
interconnected by a switched 10 Gigabit Ethernet network.

6 Experimental Evaluation
Next, we discuss the performance and accuracy results for
the different tracers and show the usefulness of CaT for bet-
ter understanding the data flow across complex real systems.

6.1 Content-aware Tracers Evaluation
TensorFlow. Table 1 presents TensorFlow’s results, namely

the elapsed training time, the number of images processed
per second, and the events statistics. As expected, the Vanilla
setup processed the highest number of images per second
(2527.75) and was executed in the shortest time (169.86 min).
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Figure 7. BigDataBench elapsed times.

Comparing to the Vanilla setup, the CatBpf deployment
decreases the images processed per second by 1.26% and
increases the elapsed training time by 2.34%. CatBpf col-
lected all the events and their content (i.e., there were no
incomplete or lost events). For the TensorFlow use case, most
events correspond to read requests for different files of the
ImageNet dataset. As each read operation has approximately
256 KiB, the collected content was truncated to the first 4 KiB,
resulting in 99.60% of events truncated. The resulting CatLog
file, with all the collected events and corresponding context
metadata and content signatures, occupied approximately
5.1GiB.

The performance impact imposed by CatStrace was higher,
achieving only 703.07 images processed per second (27.81%
of Vanilla results), with an elapsed time of 610.56 minutes,
almost 3.6 times more than the Vanilla results. Moreover,
the Strace command invoked by CatStrace produced a file
(strace.out) with 7.6TiB of the collected information. As the
generated file exceeded the disk capacity, we could not save
and posteriorly analyze all the collected information (de-
picted as * in Table 1).

Results show that CatBpf offers the best balance in terms
of I/O performance, storage space usage and accuracy for this
specific scenario. Although truncating the events to 4KiB,
it imposes negligible performance overhead and collects all
events. On the other hand, CatStrace can collect the full con-
tent of requests but imposes high performance and storage
overheads.

BigDataBench. The BigDataBench experiments include
a loading phase (load), where the dataset is written to HDFS,
and a running phase (run), where the Naive Bayes algorithm
is executed. Fig. 7 depicts BigDataBench elapsed times for
each phase and dataset size (16 and 32 GiB).

The elapsed times for the Vanilla deployment were around
5.23 minutes for load-16GiB and 11 minutes for load-32GiB.
The CatBpf setup increased the elapsed time by almost 1.20
times, taking about 6.29 and 13.07 minutes for load-16GiB and
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Table 2. Collected events for the BigDataBench experiments. ‘—’ indicates that it is not applicable.

Events load-16GiB run-16GiB load-32GiB run-32GiB
CatBpf CatStrace CatBpf CatStrace CatBpf CatStrace CatBpf CatStrace

Handled 8 M 16 M 18 M 7 M 17 M 32 M 35 M 14 M
Saved 8 M 6 M 18 M 6 M 17 M 12 M 35 M 12 M

Incomplete 0.8 M — 16 M — 1 M — 33 M —
Truncated 3 M 1 2 M 1 7 M 1 4 M 2

Lost 0 — 337 — 0 — 235 —

load-32GiB, respectively. The CatStrace deployment lasted
around 10.11 minutes for load-16GiB and 21.10 minutes for
load-32GiB (almost 1.93 times more than the Vanilla setup).
Concerning the run-16GiB test, the Vanilla deployment

ran in 31.37 minutes, while CatBpf and CatStrace executions
lasted for 32.18 and 33.56 minutes, respectively. As for run-
32GiB, the elapsed times were 61.52, 64.86 and 66.91 minutes
for Vanilla, CatBpf and CatStrace setups, respectively.

The loading phase generatedmore I/O requests in a shorter
time span when compared to the running phase, explaining
why the performance impact was more significant in the
former. As shown in Table 2, at the loading phase, CatBpf
captured all the network and storage requests (around 8 mil-
lion on the load-16GiB test and 17 million on the load-32GiB
test), with approximately 9.18% of incomplete events and had
to truncate the captured content of 42% of handled events.
The CatStrace deployment collected about 16M and 32M re-
quests for loading phases of 16GiB and 32GiB, respectively.
CatStrace saved all relevant events to the CatLog file and only
truncated 2 content buffers that were larger than 256KiB.
As for the running phase, CatBpf lost up to 337 events

for run-16GiB test and could only save the context for 89%
of the 18M handled events. For the run-32GiB test, it lost
235 events and saved as incomplete 93% of the 35 million
handled events. The percentage of truncated content from
the handled events was up to 13% for both dataset sizes.
CatStrace handled around 7M of requests for run-16GiB and
14M for run-32GiB. Again, CatStrace saved all relevant events
to the CatLog file and only truncated 3 of them.

Tracers were configured to only capture HDFS’s data and
metadata operations, while requests to third-party libraries
and applications (e.g., java) were ignored. While the requests
that reach the CatBpf handler (handled events) no longer
include ignored operations, as these were filtered at kernel
space, the same does not happen forCatStracewhere requests
are only filtered by the handler at user space. This explains
the difference between the number of handled events ob-
served for both tracers, and the difference between handled
and saved events for CatStrace. Moreover, while CatStrace
collects requests from a given PID or command and their
newly created processes, CatBpf also captures events from
processes that were already created by the target application
at the tracing time. That is why the number of saved events,

specially for the running phases, is higher than the one from
CatStrace.

The results show that CatStrace can capture all the events,
truncating almost none of them, but generates a significant
performance overhead and a large output trace log. For ex-
ample, Strace created a file of 120GiB when tracing only the
network and storage events for one of the HDFS DataNodes
during the running phase of 32 GiB. Once more, the CatBpf
deployment shows to be the one with the best trade-offs, if
the loss of content for some events can be tolerated, namely
if it is still able to provide insightful analysis information
at the later phases of the pipeline. Although presenting a
high percentage of incomplete events at the running phase,
it captured the context of almost all the events while being
the tracer that incurs the least performance overhead.

Dstat results. For the TensorFlow tests, the Vanilla de-
ployment used 5.6GiB of RAM and 43% of CPU. The CatBpf
setup increased those values up to 12.1GiB and 54.0%, re-
spectively. This increase is justified by the extra processing
done at the critical I/O path and the size of the ring buffer
and eBPF maps necessary to obtain more accurate logs. Con-
versely, the CatStrace deployment required only 4.8GiB of
RAM and 14.5% of CPU. As CatStrace delays I/O requests
and generates less load on the system, resources utilization
is also lower.

Regarding BigDataBench load experiments, the Vanilla de-
ployment used 3.7GiB of RAM on the client node, 0.8GiB on
the NameNode, and 0.6GiB on DataNodes. CatBpf required
additional 3GiB, for each type of node, while CatStrace re-
duced RAM consumption by 1GiB at the client node. For the
remaining nodes, CatStrace used around the same amount
of RAM as the Vanilla setup.
For the same experiments, the Vanilla setup used 1.5% of

CPU on the NameNode, 10.3% on the DataNodes, and 98.2%
on the client node. CatBpf increased CPU usage by 15% for
the NameNode and 30% for the DataNodes. The values for
the CatStrace are similar to the Vanilla ones, except for the
CPU usage on the client machine that required 70% of CPU.
As for BigDataBench run experiments, the Vanilla setup

used 1.9GiB of RAM on the client node, 1GiB on the Na-
meNode, and 2.4GiB on the DataNodes. CatBpf imposed an
increase of 2GiB on each server while CatStrace used 1GiB
less at the client node. CPU usage was similar for the Vanilla
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and CatStrace setups, approximately 0.4% for the client node,
1.3% for the NameNode and 46% for DataNodes. CatBpf in-
creased CPU usage by 15% across all nodes.

Discussion. The previous results show that, depending
on the workload, it is possible to collect the context and con-
tent of I/O requests with negligible performance overhead.

CatBpf imposes the least performance and storage space
overheads but captures only 4KiB of each request and can
lead to events’ loss in scenarios with increased I/O loads.
When tracing an application with lower I/O throughput (e.g.,
TensorFlow ∼ 1147 events/s), CatBpf can collect the con-
tent and context of all requests. When tracing a more I/O
intensive application (e.g., BigDataBench ∼ 22308 events/s
for load-16GiB), CatBpf starts losing information (high per-
centage of incomplete events and loss of some requests).
Moreover, CatBpf can increase resource consumption (CPU
and RAM) considerably. Yet, for scenarios where one wants
to debug applications or trace non-CPU-intensive applica-
tions, CatBpf is still a good approach. If CPU consumption is
a major criterion, CatStrace provides a good alternative. Con-
trarily to CatBpf, CatStrace presents lower resources usage
values and can capture all the events and their full content
for any I/O throughput, but it incurs significant performance
and storage space overheads. Indeed, CatStrace can easily cre-
ate intermediate log files in the order of TiBs, while CatBpf,
by computing hash sums before storing the corresponding
logs persistently, can reduce such values to few GiBs.

One aspect to take into account is the implications of lost
information at the analysis phase. Namely, when truncating
the events’ content thus capturing only the first X bytes of
their payload, events with the same first X bytes but with a
different payload for the remaining content will be matched
as equal. Additionally, incomplete or lost events do not pro-
vide sufficient information to apply our similarity-based anal-
ysis. For lost events, the causality inference analysis is also
impossible to conduct.
To sum up, if I/O performance overhead must be mini-

mized and one can relax CPU and RAM resource usage and
accuracy criteria, CatBpf is the best option. On the other
hand, if all events must be captured and resource usage must
be kept low, at the cost of additional I/O and storage space
overhead, CatStrace should be used.

6.2 CaT Framework in Action
Two possible purposes for using tracing frameworks are to
analyze data access patterns and the correction / adulteration
of protocols. Next, we show how CaT can be useful for both
cases.

TensorFlow Dataset shuffle. CaT was used to analyze
TensorFlow’s training phase and observe the access pattern
used to read the dataset from disk. Typically, a dataset is
split into three groups: train, validation, and test. During
the training phase, TensorFlow uses the training set to train

epoch 1 epoch 2

(a) Shuffle enabled

epoch 1 epoch 2

(b) Shuffle disabled

Figure 8. Disk access pattern for TensorFlow’s dataset shuf-
fle.

the model for a given number of times (epochs). On each
epoch, it is usual to randomly shuffle the data records that are
going to be read to keep the model general while avoiding
it from overfitting and decreasing its accuracy. If shuffling
is disabled, all epochs will fetch (read) data records in the
same order.

We ran LeNetmodel for two training epochs with shuffling
enabled and disabled. A sample of the ImageNet training set
including 64 tfrecords with a total of 64 images was chosen.
CatBpf was used to capture events and the resulting CatLog
file was provided to the remaining CaT’s pipeline.
Fig. 8 shows the disk access pattern output of CaT’s Vi-

sualizer. For clarity purposes, only the first ten disk read
events are compared for each training epoch. Each event is
represented as a rectangle. Events with the same color (and
symbol) have similar content while events colored as black
do not match, in terms of content, to any other depicted
event.
With the shuffling mechanism enabled (Fig. 8-(a)), Ten-

sorFlow accesses disk records (ImageNet images) in random
order. Therefore the order in which data is read differs be-
tween epochs. The only similarities found were between
events 7 and 15 and events 8 and 19. While on the first epoch,
event 7 was the eighth operation, on the second epoch, the
same data was read in sixth place (event 15). The same hap-
pened for events 8 and 19. The uniqueness of data and the
different order used to read the same data on the two epochs
shows how, with the shuffling mechanism, TensorFlow reads
the data randomly.
When the shuffling mechanism is disabled (Fig. 8-(b)),

TensorFlow reads the train set files in the same order (deter-
ministic access pattern) at each epoch, as depicted by CaT’s
output.

HDFS File replication. As another example, CaT traced
the send of a file to HDFS to verify if the replication protocol
was being correctly applied. More precisely, we instantiated
CatBpf on the client machine to capture the events issued
by the HDFS copyFromLocal command, and we ran another
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CL DN3 DN2 DN1

(a) Normal execution

DN3 DN2 CL DN1

(b) Storage corruption

DN3 DN2 CL DN1

(c) Network corruption

Figure 9. HDFS replication of a file.

instance of CatBpf for each of the three DataNodes. The
resulting CatLog files were then fed into CaT’s pipeline.
Briefly, the HDFS replication protocol, with a 3-factor

replication, works as follows: after interacting with the Na-
meNode, the client receives a list of available DataNodes.
Then, it selects one of them to whom it will send the file.
Once the elected DataNode receives the data, it sends a copy
to another DataNode and persists it to disk. This process is
repeated until all three DataNodes have a copy of the data.
Fig. 9-(a) depicts the visual output from CaT’s pipeline.

Event 81 corresponds to the sending (SND) of the file content
by the client to the DataNode 3 (DN3). In turn, DN3 received
the data in two receive (RCV) events (15 and 16), forward it
to DN1 (event 17), and then saved the corresponding data
(event 18) and metadata (event 19) on disk. DN1 did the same
thing, sending the data to DN2. Circles with the same color
identify similar content. From this example, it is possible to
observe the client’s data path (blue color), going from the
client’s machine through all the DataNodes. Moreover, it
shows that the three DataNodes have persisted a copy of the
data (blue color) and the metadata (green color) to disk.
In order to further prove how the similarity of events’

content can add useful information about the system, we
modified the source code for DN2 to observe two adultered
behaviors: 1) storage corruption, i.e., DN2 alters the file con-
tent before persisting it on disk (Fig. 9-(b)), and 2) network
corruption, i.e., DN2 sends the wrong data content to another
DataNode (Fig. 9-(c)).
For the first case (Fig. 9-(b)), DataNodes 1 and 3 have

a write event (events 81 and 109) with the same color as
the send event from the client (event 53), indicating that
their content is similar. However, the write events from DN2
(events 16 and 17) have a black color, as the data andmetadata
persisted is no longer equal to the one DN2 received (event
14), or to other data being handled by the system. As the
chunk checksum verification is only performed once, upon

the data arrival to the DataNode, and the data corruption
happened when writing data to disk, HDFS did not reported
any inconsistency.
In the second case (Fig. 9-(c)), the client sent a file (event

52) to DN2 (event 11). Then, DN2 forwarded the data to
DN3 (event 12) and persisted it to disk (event 13). While
event 13 has the same color as events 52 and 11, event 12
has a different color, meaning that DN2 sent different con-
tent to DN3. This time, along with the chunk adulteration,
we also modified its checksum (e.g., mimicking a possible
man-in-the-middle attack) to match the new content. Thus,
DataNodes 3 and 1 were unaware of the data corruption,
and both persisted wrong copies of the client’s data and
metadata.

Discussion. The previous use cases showcase the advan-
tages of combining the tracing and analysis of both the con-
text and content of I/O network and storage requests. CaT
provides a more complete strategy to analyze complex sys-
tems which can pinpoint correctness and dependability flaws
that are not visible when using context-based state-of-the-
art tools and are not detected by the integrity mechanisms
of the applications. Even for scenarios where the data is en-
crypted, therefore limiting the ability to find equal data (as
different ciphertexts can correspond to the same plaintext
data), CaT can be used to ensure that the encryption algo-
rithms are being correctly applied. For instance, when using
a probabilistic encryption scheme, the content of different
events should never have high similarity degree.
Moreover, when choosing the appropriate set of tracing

tools (Section 6.1), we show that CaT can be used over real
systems while imposing a balanced trade-off in terms of
accuracy, performance overhead and resources usage. At
the proposed framework, only the tracers are deployed on
the critical network and storage I/O path of applications,
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while the remainder of CaT’s pipeline can be executed in
background and on dedicated servers.
Finally, for automation purposes, CaT’s pipeline could

be improved to: 1) save the captured events directly to the
analysis components, allowing for near real-time analysis
and avoiding the cost of saving all the events to disk; 2) use
a database to save the pipeline outputs, enabling queries
and automated procedures over the results; and 3) use the
visualization component to depict only a query of interest
instead of the whole captured data. However, the automation
and optimization of these components are an interesting
future research direction which is orthogonal to this paper.

7 Related Work
The analysis of systems’ behavior has been a subject of exten-
sive research for diverse purposes such as troubleshooting,
debugging, performance analysis, and anomaly detection.
A common approach is to use static analysis or machine

learning algorithms to extract information from application
logs [6, 33–35]. However, the typical information available
at these logs makes it hard, if not impossible, to correlate
events across heterogeneous and distributed components.
Another approach is to trace applications’ events by in-

strumenting their source code or binaries. These solutions
modify applications ormiddleware libraries to collect the nec-
essary information or propagate context across the different
components of a distributed system [5, 8, 13, 16, 27, 29, 31].
However, this approach requires prior knowledge or access
to the source code of targeted systems, thus making it less
transparent and less applicable to a wider range of scenarios.

Non-intrusive approaches resort to kernel-level tools (e.g.,
Strace, LSM, NetFilter) to capture applications requests [19,
21, 23, 25, 30]. Although some of them can infer the data
flow across multiple nodes by correlating network events
with file operations, their analysis is focused solely on the
requests’ context, thus overlooking possible data corruption
scenarios (such as the example from Fig. 1) or content flows
such as those depicted for HDFS in section 6.2. These can
only be revealed when observing the content of requests.

Unixdump[7] and Re-Animator[2] are the only non-intrusive
solutions that can capture the content of I/O events. How-
ever, none of these solutions can capture network and storage
requests simultaneously, while being restricted to request
tracing, thus not providing any analysis mechanism.

Unlike previous solutions, CaT is able to capture the con-
text and content of both network and storage events. Also, it
can track the causality of events across a distributed system
deployment. Finally, CaT contemplates a complete content-
aware pipeline including the black-box tracing, correlation,
analysis, and visualization of distributed I/O events.

8 Conclusion
This paper introduces CaT, a novel framework for collect-
ing and analyzing storage and network I/O requests of dis-
tributed systems. The key contribution is a content-aware
tracing and analysis strategy that correlates the context and
content of events to better understand the data flow of sys-
tems.
A detailed evaluation of CaT’s open-source prototype

with real applications shows that, depending on the target
workload, it is possible to capture most of the I/O events
while incurring negligible performance overhead. Moreover,
it showcases that CaT’s content-aware approach can im-
prove the analysis of distributed systems by pinpointing
their data flows and I/O access patterns. These improvements
are key to find performance, correctness and dependability
issues in today’s complex systems.
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