
Theoretical Computer Science 702 (2017) 60–64
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

On the rate of decrease in logical depth

L.F. Antunes a,1, A. Souto b,c,2, P.M.B. Vitányi d,e,∗,3

a University of Porto & CRACS/INESC-TEC, Rua do Campo Alegre, 1021, 4169-007 Porto, Portugal
b LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal Campo Grande, 1749-016 Lisboa, Portugal
c Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
d CWI, Science Park 123, 1098 XG Amsterdam, The Netherlands
e University of Amsterdam, The Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 March 2017
Received in revised form 26 July 2017
Accepted 19 August 2017
Available online 25 August 2017
Communicated by L.M. Kirousis

Keywords:
Logical depth
Kolmogorov complexity
Compression

The logical depth with significance b of a string x is the shortest running time of a
program for x that can be compressed by at most b bits. Another definition is based on
algorithmic probability. We give a simple new proof for the known relation between the
two definitions. We also prove the following: Given a string we can consider the maximal
decrease in logical depth when the significance parameter increases by 1. There exists a
sequence of strings of lengths n = 1, 2, . . . , such that this maximal decrease as a function
of n rises faster than any computable function but not as fast as the Busy Beaver function.
This holds also for the computation times of the shortest programs of these strings.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The logical depth is related to complexity with bounded resources and measures the tradeoff between program sizes and
running times. Computing a string x from one of its shortest programs may take a very long time, but computing the same
string from a simple “print(x)” program of length about |x| bits takes very little time.

A program p for x, i.e. such that U (p) = x where U is a universal Turing machine, of larger length than a given program
q for x may require less computation time than q does. This need not always be the case, as a longer program might simply
perform some pointless redundant steps.

In general we associate longer computation times with shorter programs for x. As a consequence, one may raise the
question of how much time can be saved by computing a given string from a longer program.

* Corresponding author.
E-mail addresses: antunes.lfa@gmail.com (L.F. Antunes), andrenunosouto@gmail.com (A. Souto), Paul.Vitanyi@cwi.nl (P.M.B. Vitányi).

1 This work was supported by “Project *NanoSTIMA: Macro-to-Nano Human Sensing: Towards Integrated Multimodal Health Monitoring and
Analytics*/NORTE-01-0145-FEDER-000016” which is financed by the North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL
2020 Partnership Agreement, and through the European Regional Development Fund (ERDF).

2 This work was supported by LaSIGE Research Unit, ref. UID/CEC/00408/2013 and the FCT project Confident PTDC/EEI-CTP/4503/2014, tSQIG – Security
and Quantum Information Group, the Instituto de Telecomunicações (IT) Research Unit, ref. UID/EEA/50008/2013, and the FCT Post-doc scholarship
SFRH/BPD/76231/2011 during which the major part of the work was done.

3 CWI is the National Research Institute for Mathematics and Computer Science in the Netherlands.
http://dx.doi.org/10.1016/j.tcs.2017.08.012
0304-3975/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2017.08.012
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:antunes.lfa@gmail.com
mailto:andrenunosouto@gmail.com
mailto:Paul.Vitanyi@cwi.nl
http://dx.doi.org/10.1016/j.tcs.2017.08.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2017.08.012&domain=pdf

L.F. Antunes et al. / Theoretical Computer Science 702 (2017) 60–64 61
1.1. Previous work

The above question was first considered by C. Bennett in [1]. The minimum time to compute a string by a b-
incompressible program was called the logical depth at significance b of the string considered. Bennett also provided vari-
ations of this definition and studied their basic properties and relations. A more formal treatment, as well as an intuitive
approach, was given in [4], Section 7.7.

1.2. Results

Section 2 introduces notations, definitions and results needed in the remainder. Section 3 presents two versions of logical
depth and gives a simple new proof of quantitative relations between them. Section 4 shows that slight variations on the
significance level may cause drastic variations of logical depth. Section 5 presents conclusions.

2. Preliminaries

We use string for a finite binary string. Strings are denoted by lower case letters, such as x, y and z. The length of a
string x (the number of occurrences of bits in it) is denoted by |x|, and the empty string by ε . Thus, |ε| = 0. The nth string
in the lexicographic length-increasing order is viewed also as the natural number n and vice versa.

Computability, resource-bounded computation time, self-delimiting strings, big-O notation, and (prefix) Kolmogorov com-
plexity are well-known and the properties, notations, are treated in [4].4 Originally Kolmogorov complexity was introduced
in 1965 in [2] and the prefix version in 1974 in [3]. The length of a self-delimiting version of a string of length n will be
n + 2 log n + 1 where log denotes the logarithm base 2. That is, the self-delimiting version of x is x′ = 1||x||0|x|x where ||x||
denotes the length of |x|. Restricting the computation time resource is indicated by a superscript giving the allowed number
of steps, usually denoted by d.

We choose a reference optimal universal prefix Turing machine and call it U . Let x, y be strings. The prefix Kolmogorov
complexity K (x|y) of x with auxiliary y is defined by

K (x|y) = min
p

{|p| : U (p, y) = x}.

If x is a string of length n then K (x|y) ≤ n + O (log n). The notation U d(p, y) = x means that U (p, y) = x within d steps. The
d-time-bounded prefix Kolmogorov complexity K d(x|y) is defined by5

K d(x|y) = min
p

{|p| : U d(p, y) = x}.
If the auxiliary string y is the empty string ε , then we usually drop it. Similarly, we write U (p) for U (p, ε). The string x∗ is
a shortest program for x if U (x∗) = x and K (x) = |x∗|. A string x is c-incompressible if |x∗| ≥ |x| − c and it is c-compressible if
|x∗| ≤ |x| − c.

Define Q (x) = ∑
p:U (p)=x 2−|p| . In [3] L.A. Levin proved in the Coding Theorem that (see [4] Theorem 4.3.3 for details):

− log Q (x) = K (x) + O (1)

3. Different versions of logical depth

The logical depth as defined in [1] for a string (the finite case) comes in two versions: one based on the compressibility
of programs of prefix Turing machines and the other using the ratio between algorithmic probabilities with and without
time limits.

The algorithmic probability version is based on the so-called a priori probability [4] and its time-bounded version:

Q (x) =
∑

U (p)=x

2−|p|, Q d(x) =
∑

U d(p)=x

2−|p|.

4 The reader may be less familiar with the prefix Turing machine. It is a Turing machine with a one-way read-only program tape, an auxiliary tape, one
or more work tapes and an output tape. All tapes are linear and divided in cells capable of containing one out of a finite set of symbols. Initially the
program tape is inscribed with an infinite sequence of 0’s and 1’s and the head is scanning the leftmost cell (the program tape is semi-infinite). When the
computation terminates the sequence of bits scanned is the program. For every fixed contents of the auxiliary tape the set of programs for such a machine
is a prefix code (no program is a proper prefix of another program). Another consequence is that if the computation of a prefix Turing machine takes d
steps then for its program p holds that d ≥ |p|. The prefix Kolmogorov complexity is based on the prefix Turing machine similar to the (plain) Kolmogorov
complexity based on the (plain) Turing machine.

5 Since we deal with running times of computations the following can happen. Two different reference optimal universal prefix Turing machines may
have different computation times for the same combination of input, auxiliary string, and output. It can also be the case that they have different sets of
programs. Let U and U ′ be two optimal universal prefix Turing machines in the standard enumeration of prefix Turing machines. For every auxiliary y and
every program q there is a program p with |q| = |p| + O (1) such that U d(q, y) = U ′ d′

(p, y) for integers d, d′ and d′ = g(d) with g a computable function.
Therefore, although U and U ′ have the same length of shortest programs for a string x (with O (1) precision, that is, up to a constant additive term), the
time-limited prefix Kolmogorov complexity of a string x may differ by a non-constant additive term.

62 L.F. Antunes et al. / Theoretical Computer Science 702 (2017) 60–64
Definition 1. Let x be a string and b a nonnegative integer. The logical depth, version 1, of x at significance level ε = 2−b is

depth(1)
ε (x) = min

{
d : Q d(x)

Q (x)
≥ ε

}
.

The definition of logical depth based on the prefix Kolmogorov complexity version is based on the minimal time the
reference optimal prefix Turing machine needs to compute x from a program which is b-incompressible.

Definition 2. Let x be a string and b a nonnegative integer. The logical depth, version 2, of x at significance level b, is

depth(2)

b (x) = min
{

d : p ∈ {0,1}∗ ∧ U d(p) = x ∧ |p| ≤ K (p) + b
}

,

the least number of steps to compute x by a b-incompressible program.

Remark 1. The relation of almost equality between those definitions is known [4, Theorem 7.7.1] based on the more infor-
mal [1, Lemma 3]. As far as we know that is the only existing proof. We give a simple new proof based on algorithmic
probability. �
Theorem 1. Let x be a string and b, d positive integers. Then

(i) depth(1)

2−b (x) = d implies depth(2)

b−O (1)
(x) = d, and

(ii) depth(2)

b (x) = d implies depth(1)

2−b′ (x) ≤ d for some b′ ≤ b + K (b) + O (1).

Proof. (i): Let Q d(x) ≥ 2−b Q (x) with d least. Let c be the greatest integer such that all programs computing x within d
steps are c-compressible. Therefore every p such that U d(p) = x satisfies U (r) = p for some r. To compute string x by U
using program r requires that r is concatenated with an extra program q of constant length c′ ≥ 0 to restart U after it
has computed p. Then U d(U (rq)) = x and |r| ≤ |p| − c − c′ . For every p there are possibly more than one such r. Let P
be the set of these p’s and R be the set of the r’s. Hence

∑
r∈R 2−|r| ≥ ∑

p∈P 2−(|p|−c−c′) . That is, the reference optimal
universal Turing machine computes x with probability at least 2c+c′

Q d(x) ≥ 2c+c′−b Q (x) from the programs in R . Then
Q (x) ≥ 2c+c′−b Q (x) + 2−b Q (x) (the left-hand side comprises all halting programs for x no matter what is the running
time and the right-hand side comprises a lower bound on the contribution of the programs in R plus the contribution of
the programs in P). This means that 2c+c′−b < 1 and therefore c + c′ − b < 0, that is c + c′ < b. Among the programs in
P there is a program which is c-incompressible (otherwise c is not greatest as assumed above) and since c + c′ < b it is
(b − c′) = (b − O (1))-incompressible.

(ii): Assume that d is the least number of steps to compute x by a b-incompressible program. By way of contradiction
let Q d(x) < 2−B Q (x) with B = b + K (b) + e > 0 for a large enough constant e. Let an auxiliary distribution R be defined
as follows. Computably enumerate the set P of all programs p such that U d(p) = x. Let R(x) = ∑

p∈P 2B−|p| . Then6 R(x) =
2B Q d(x) < Q (x). The function R given B is lower semicomputable. Since Q is a semimeasure and R(x) < Q (x) for all x the
function R is a semimeasure. A program p ∈ P adds 2−|p|+B probability to R(x) and p is therefore (B − O (1))-compressible
given B , and hence (B − K (B) − O (1))-compressible. It remains to bound the constant term. For sufficiently large e,

B − K (B) − O (1) = b + K (b) + e − K (b + K (b) + e) − O (1)

≥ b + K (b) + e − K (b + K (b)) − K (e) − O (1)

> b.

The first inequality follows from K (u + v) ≤ K (u) + K (v) + O (1), and the second inequality holds since K (b + K (b)) ≤
K (b, K (b)) + O (1) ≤ K (b) + O (1) and K (e) < e/2 for e large enough. Hence all programs that compute x in d steps are
(b + 1)-compressible contradicting the assumption. Therefore Q d(x) ≥ 2−B Q (x). �
Remark 2. With b, d as in the theorem a slight modification in the proof yields

1

2b+K (b)+O (1)
≤ Q d

U (x)

Q U (x)
≤ 1

2b−O (1)
,

where (i) corresponds to the right inequality and (ii) to the left inequality. �
6 We assume that R(x) > 0. If R(x) = 0 then there is no program p such that U d(p) = x and (ii) is vacuously correct.

L.F. Antunes et al. / Theoretical Computer Science 702 (2017) 60–64 63
Remark 3. Notice that it is possible to use K (d) instead of K (b) in the above proof by changing the construction of the
semiprobability as follows: knowing d generate all programs p computing x within d steps and let the semiprobabilities be
proportional to 2−|p| and the sum be less than Q (x). In this way, K (b) in Theorem 1 can be improved to min{K (b), K (d)} +
O (1). �
4. The graph of logical depth

Slight changes of the significance level b can drastically change the value of the logical depth.

Lemma 1. Let φ be defined by

φ(n) = max|x|=n
min

d
{d : U d(x∗) = x}.

Then φ is not computable and grows faster than any computable function.

Proof. If a function φ as in the lemma were computable, then for an x of length n we could run U for φ(n) steps on
any program of length n + O (log n). Among those programs that halt within φ(n) steps, we could select the ones which
output x. Subsequently, we could select from that set a program of minimum length from which x can be computed. Such a
program has length K (x). This would imply that K would be computable. But the function K is incomputable: contradiction.
Therefore φ cannot be computable. Since this holds for every function majoring φ, the function φ must grow faster than
any computable function. �
Definition 3. The busy beaver function B B :N →N is defined by

B B(n) = max{d : |p| ≤ n ∧ U d(p) < ∞}.

This is a variant in terms of number of steps from the original Busy Beaver function in [5]. The following result was
mentioned informally in [1].

Lemma 2. The running time of a program p of length n that halts is at most B B(n). The running time of a shortest program (shortest
in prefix Kolmogorov complexity) for a string x of length n is at most B B(n + O (log n)).

Proof. The first statement of the lemma follows from Definition 3. The second statement follows from the observation that
K (x) ≤ n + O (log n) for every x of length n. �
Theorem 2. The function

f (n) = max
|x|=n, 0≤b≤n

{x : depth(2)

b (x) − depth(2)

b+1(x)}

grows faster than any computable function but not as fast as the Busy Beaver function.

Proof. Let φ be the incomputable function of Lemma 1. For every n ≥ 1 select xn of length n such that Uφ(n)(x∗
n) = xn . Since

a shortest program can be compressed by at most O (1) bits we have depth(2)
O (1)

(x) = φ(n). The optimal reference prefix
Turing machine U can compute x from its self-delimiting version x′ of length n + O (log n) using an O (1)-bit program in
time g(n) with g a computable function.

For every n we can consider the finite sequence Ln
0, L

n
1, . . . , L

n
n−K (x)+O (log n)

with Ln
m = depth(2)

m (xn) − depth(2)
m+1(xn)

(0 ≤ m ≤ n − K (n) + O (log n)), and φ(n) = ∑n−K (x)+O (log n)

i=0 Ln
i . Then, the average (φ(n) − g(n))/(n − K (n) + O (log n)) is

incomputable (as it grows faster than any computable function), and therefore the function f defined by

f (n) = max
m

{Lm
n : 0 ≤ m ≤ n − K (x) + O (log n)}

also grows faster than any computable function, since f (n) ≥ (φ(n) − g(n))/(n − K (n) + O (log n)). �
5. Conclusion

In [1] one version of logical depth is based on compression and one is based on algorithmic probability. These are closely
related [1,4]. We gave a new proof of this relation based on incompressibility and algorithmic probability. For a string x the
logical depth with significance b is the minimum number of steps d in a computation of x from a program p that is less
than b bits longer than K (p). This b is called the significance. There is a sequence of strings such that for each string

64 L.F. Antunes et al. / Theoretical Computer Science 702 (2017) 60–64
changing the significance parameter by only 1 can change the depth by a large amount. As a function of the position of the
string in the sequence this amount grows faster than any computable function but not as fast as the Busy Beaver function.
The computation times of shortest programs can similarly rise faster than any computable function but not as fast as the
Busy Beaver function.

Acknowledgements

We thank an anonymous person for comments and suggesting the new proof of Theorem 1 and the referees for com-
ments.

References

[1] C. Bennett, Logical depth and physical complexity, in: R. Herken (Ed.), The Universal Turing Machine: A Half-Century Survey, Oxford University Press,
1988, pp. 227–257.

[2] A.N. Kolmogorov, Three approaches to the quantitative definition of information, Probl. Inf. Transm. 1 (1) (1965) 1–7.
[3] L.A. Levin, Laws of information conservation (non-growth) and aspects of the foundation of probability theory, Probl. Inf. Transm. 10 (1974) 206–210.
[4] M. Li, P.M.B. Vitányi, An Introduction to Kolmogorov Complexity and Its Applications, Springer, New York, 2008.
[5] T. Rado, On non-computable functions, Bell Syst. Tech. J. 41 (3) (1962) 877–884.

http://refhub.elsevier.com/S0304-3975(17)30621-7/bib62656E3838s1
http://refhub.elsevier.com/S0304-3975(17)30621-7/bib62656E3838s1
http://refhub.elsevier.com/S0304-3975(17)30621-7/bib4B6F3635s1
http://refhub.elsevier.com/S0304-3975(17)30621-7/bib6C65763734s1
http://refhub.elsevier.com/S0304-3975(17)30621-7/bib4C563038s1
http://refhub.elsevier.com/S0304-3975(17)30621-7/bib52613632s1

	On the rate of decrease in logical depth
	1 Introduction
	1.1 Previous work
	1.2 Results

	2 Preliminaries
	3 Different versions of logical depth
	4 The graph of logical depth
	5 Conclusion
	Acknowledgements
	References

