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Long period fiber gratings produced by the electric arc technique have found an increasing interest by the scientific community due
to their ease to fabricate, virtually enabling the inscription in any kind of fiber, low cost, and flexibility. In 2005 we have presented
the first review on this subject. Since then, important achievements have been reached such as the identification of the mechanisms
responsible for gratings formation, the type of symmetry, the conditions to increase fabrication reproducibility, and their inscription
in the turning points with grating periods below 200 𝜇m. Several interesting applications in the sensing area, including those sensors
working in reflection, have been demonstrated and others are expected, namely, related to the monitoring of extreme temperatures,
cryogenic and high temperatures, and high sensitivity refractometric sensors resulting from combining arc-induced gratings in the
turning points and the deposition of thin films in the transition region.Therefore, due to its pertinence, in this paper we review the
main achievements obtained concerning arc-induced long period fiber gratings, with special focus on the past ten years.

1. Introduction

The concept of long period fiber gratings (LPFGs) was
introduced in 1996 by Vengsarkar et al. in which a periodic
modulation of the core refractive index was induced by
UV laser radiation [1]. Since the grating periodicity is of
the order of hundreds of micrometers several techniques
have been used for LPFGs fabrication not only through
exposure to UV, CO

2
, and IR femtosecond laser radiation

[1–3] but also based on ion beam implantation, etching,
mechanical arrangements, acoustic waves, broadband UV
light, and electric arc discharges [4, 5]. Among the different
available techniques the electric arc has paved its way during
the past two decades since it is a simple, flexible, and low
cost technique that enables the writing of gratings in all
kinds of fibers. Furthermore, as is the case for CO

2
and

IR femtosecond laser radiation, the arc discharge technique
also overcomes several limitations of the technique based on
UV laser radiation [6] and enables the fabrication of several
optical fiber components [7]. In fact, based on the number of
publications, arc-induced gratings compares well with those
fabricated by using laser radiation. Presently, and apart from

Africa, it is a technique spread all over the world (see Figure 1;
there are also some traces of research activity in Turkey and
Iraq). More than two-tenths of research groups, by their own
or in consortiums, have been studying LPFGs produced by
the electric arc technique (in Figure 1 the flags dimensions are
proportional to the number of publications in international
journals and conferences) resulting in more than 250 papers.
INESC TEC, in Portugal, accounts for about 40% of the
publications (see Figure 2). It can be said that the fabrication
of LPFGs started in 1994 by Poole et al. where they have used
a two-step process involving ablation of the fiber cladding by
CO
2
radiation followed by annealing through arc discharges

[8]. LPFGs based solely on arc discharges are due to Dianov
et al. in 1997 [9]. In the following years a scarce number of
publications were registered and despite the peak in 1998,
the take-off occurred in 2001 by Rego et al. [6] followed by
Humbert and Malki [10] that led to an increasing interest
until 2007, also with important contributions from research
groups in Japan [11], UK [12], and Brazil [13]. From 2008 up
to 2012 there was a decrease in the number of publications
despite the contribution of research groups fromMexico [14]
and Canada/Poland [15]. In the past three years we have been
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Figure 1: Worldwide research on arc-induced gratings.
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Figure 2: Publications concerning arc-induced gratings in interna-
tional journals and conferences.

climbing the technique’s notoriety with growing interest in
Asia, namely, in Malaysia [5].

In the early days, publications were essentially related to
the fabrication in different kinds of fibers, the study of the
gratings properties, and the discussion of the mechanisms of
formation, being those issues reviewed in 2005 [4]. In the
last decade we registered the consolidation of the knowledge
concerning the formation mechanisms, the improvement of
the reproducibility of the technique, the implementation of
several sensors, namely, for the simultaneous measurement
of temperature and strain, the development of refractometric
sensors based on coated LPFGs and, more recently, to the
inscription of arc-induced gratings in the turning points. At
these points, the slope of the phase matching curves, for each
cladding mode resonance, reaches its maximum value. On
the other hand, near the turning points the slope steeply

increases and changes from positive to negative and, for each
grating period, there are two resonance wavelengths for each
cladding mode. These are the regions where LPFGs show
the highest sensitivities [16]. Therefore, by properly address-
ing issues related to the reproducibility of the technique
associated with electrodes degradation and environmental
parameters that impact the optimumarc discharge conditions
and also the required LPFG engineering development associ-
ated with their intrinsic cross sensitivities to other physical
parameters such as temperature, strain, and bending, it is
expected that arc-induced gratings continue their worldwide
spreading leading, in the near future, to commercial devices
in the sensing area.

In the following sections, we begin by reviewing the
underlying mechanisms of arc-induced gratings formation.
Afterwards, the fabrication of long period fiber gratings,
in particular, in the turning points is discussed. The main
properties of LPFGs, which include the thermal behavior
and the dependence on the external refractive index, are also
presented. Finally, we analyze three important applications in
the sensing area, namely, the simultaneous measurement of
temperature and strain, flow measurement, and refractomet-
ric sensors.

2. Mechanisms of Gratings Formation

A long period fiber grating is a wavelength selective fil-
ter whose transmission spectra exhibit several resonances
resulting from coupling between the core mode and the
different copropagating cladding modes at wavelengths that
obey the resonance condition [1]: 𝜆res = (𝑛

eff
co −𝑛

eff
cl,𝑚)Λ, where

𝜆res represents the resonance wavelengths, Λ represents the
grating period, and 𝑛effco and 𝑛effcl,𝑚 represent the effective
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Figure 3: (a) Temperature profile in the fiber during the arc discharge and (b) and its time dependence (it corresponds to a 50 𝜇m Pt/Rh
thermocouple inserted in a 56/125 𝜇m silica capillary) [23].

refractive index of the core mode and the effective refractive
index of the cladding modes, respectively. The theoretical
equations governing the intrinsic properties of LPFGs, such
as, transmission loss and resonance wavelengths or their
temperature and external refractive index dependence, can
be found elsewhere [5, 17–20]. For almost two decades
that the underlying mechanisms of arc-induced gratings
are under debate and in this context the estimation of the
temperature reached by the fiber during an arc discharge
allowed a proper discussion on the mechanisms responsible
for their formation [21–23]. Figure 3 shows that for the typical
fabrication parameters used, namely, electric current and
time of the arc discharge, the fiber reaches a peak temperature
of about 1400∘C in less than half a second (estimated from
Figure 3(b)) [23]. The latter result is also important in order
to limit heat diffusion along the fiber since it prevents the use
of short grating periods, due to overlap of the effects caused
by the adjacent arc discharges.

Several works have been published focused on stress
and refractive index profile measurements [24–28]. The
main conclusions are that the arc discharge (considering
typical fabrication parameters) relaxes intrinsic stresses in
the fiber core and cladding but in regions that are larger
than the grating period being, therefore, the refractive index
modulation not enough to explain the grating formation.
On the other hand, an increase of the refractive index of
the cladding and a decrease of the core-cladding difference
were observed which impacts the position of the resonance
wavelengths. The conclusions concerning the core region are
not so straightforward and results may depend on the fiber
and also on the fabrication conditions. In 2006, it was demon-
strated through simulation and by measuring the near field
intensity distributions that depending on the fiber, LPFGs
could couple to cladding modes of different symmetries [29].
Further studies revealed that the arc discharge is directional,
possessing a temperature gradient that induces asymmetric

microdeformations in the fiber [30]. These microdeforma-
tions can account for the formation of the gratings and, simul-
taneously, the average reduction of the fiber cross section
also leads to a displacement towards shorter wavelengths of
the resonances (see Figure 4(a)). It should be stressed that
five years earlier the periodic modulation of the fiber was
already pointed out as a potential origin of LPFGs formation
[31, 32], although in the case of a symmetric perturbation it
would require a severe deformation of the fiber cross section
(∼17%) in order to obtain strong gratings [17].Therefore, both
changes, the geometrical and the refractive indices, caused
by the arc, need to be taken into account for the correct
simulation of arc-induced gratings (see Figure 4(b)).

In the case of the B/Ge codoped fibers typical cladding
modes are symmetric (Figure 5(a)), unless the fiber is placed
under tension in a region of the arc with lower average
temperature and higher temperature gradient (which is also
an optimum point to increase the reproducibility of the
technique) where, with optimized fabrication parameters,
gratingswith different symmetries arewritten simultaneously
[33]. In Figure 5(b), the resonances at shorter wavelengths
belong to asymmetric cladding modes whilst the others are
due to coupling to symmetric cladding modes, in accordance
with the simulations. Moreover, the latter modes vanish at
higher temperatures, so they are not a consequence of per-
manent geometrical changes. These superimposed gratings
showing a dual set of resonances results from two different
mechanisms: microdeformations and densification [34].

In the case of pure silica-core fibers it was also demon-
strated that microdeformations can be responsible for the
formation of the gratings [35].During these investigations the
knowledge regarding mechanically induced LPFGs was very
important for the sake of comparison between both types
of gratings [36]. Figure 6 shows the dispersion curves for
symmetric and asymmetric modes being the latter at shorter
wavelengths in accordance with the theory. For our particular
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Figure 4: (a) Resonance wavelengths as a function of the geometric modulation and (b) transmission spectrum of an asymmetric 540 𝜇m
LPFG induced in the SMF28 fiber: experimental (solid line) and simulation (dashed line) [32].
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Figure 5: (a) Spectrum of a symmetric 415 𝜇m LPFG induced in the B/Ge codoped fiber using an external tension of 5.1 g and 60 discharges
with 8.5mA and 0.5 s; (b) spectrum of a 540𝜇m grating with a dual set of resonances inscribed simultaneously in the B/Ge codoped fiber
after downshifting ∼20𝜇m the fiber relatively to the arc and using an external tension of 23 g and 60 discharges of 9mA and 0.5 s [33].

setup, where the arc discharge is directional, and considering
Ge-doped fibers such as the SMF28 from Corning, cou-
pling occurs for asymmetric cladding modes. The compari-
son between arc-induced and mechanical-induced gratings
(MLPFGs) is presented in Figure 7. It can be observed that
the resonances of arc-induced gratings are located at shorter
wavelengths, which can be attributed to the changes caused by
the arc in terms of a reduction of the average core diameter
and also due to annealing of intrinsic stresses that lead to
a change of the refractive index of the core and cladding
regions, as discussed previously. As far as the inscription of
LPFGs in photonic crystal fibers is concerned this topic is
discussed, for instance, in [11, 37].

3. Fabrication and Characterization of
Arc-Induced LPFGs

Generally speaking, arc-induced gratings are fabricated by
placing an uncoated fiber, under tension, between the elec-
trodes of a splicing machine [6], being it then submitted
to an arc discharge with an electric current of 7 to 15mA
and a duration ranging from 200ms up to 2 s. Afterwards
the fiber is displaced by the grating period, typically from
400 𝜇m to 700 𝜇m, and the whole process arc discharge/fiber
displacement is repeated 20 to 50 times. Along the years sev-
eral modifications to the set-up were implemented, in part,
to increase the reproducibility [17, 30]. Other improvements
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were also claimed by other researchers through modification
of commercial fiber splicers [15, 38–43] or by developing their
own high voltage power supply [31, 32, 44–46]. All advance-
ments led us to a compactness, flexible and reproducible
technique that enables the fabrication, virtually in all kinds
of fibers, of low loss LPFGs with considerable short grating
periods. However, as far as high sensitivity LPFGs based
sensors are concerned, it was necessary to inscribe LPFGs in
the turning points and this goal was reached in the last couple
of years, first by Smietana et al. [47, 48] by writing LPFGs
below 200𝜇m in B/Ge codoped fibers and later by Colaço et
al. [49] that were able to inscribe LPFGs below 200𝜇m in
the SMF28e fiber and below 150 𝜇m in the 1250/1550 B/Ge

Figure 8: Experimental set-up (mechanical arrangement and high
voltage power supply) used to fabricate arc-induced gratings in the
turning points.

codoped fiber, establishing a new record for the shortest
grating period achieved for arc-induced gratings. This goal
resulted from the development of a dedicated high voltage
power supply (see Figure 8).

Figure 9 shows the spectra of gratings arc-induced in
the SMF28e fiber and also in the B/Ge codoped fiber.
The fabrication parameters were set as electric current of
12.7mA, 600ms arc duration, 2 g pulling weight, and 400 arc
discharges, for the SMF28e fiber. It should be stressed that
we are working in the limits of the electric arc technique
since it was only possible to write a week grating even after
400 arc discharges. Even so, this result is quite impressive
since previously in this fiber the shortest period was larger
than 300 𝜇m [15]. For the grating inscribed in the Fibercore
fiber we used the following fabrication parameters: electric
current of 13.8mA, 308ms arc duration, 2 g pulling weight,
and 142 arc discharges. Note, however, that we have also
produced gratings (Λ = 180 𝜇m) in this fiber with resonance
strength of about 20 dB by applying only 122 arc discharges
(see Figure 10).

LPFGs have been arc-induced in different types of fibers
including Ge-free fibers [24, 50, 51], photonic crystal fibers
[52–58], flat cladding fibers [59], and cladding-etched fibers
[14, 60, 61] and in adiabatic tapers [62]. Modifications to
the technique include applying no tension, applying com-
pression, or even pressurizing the hollow core fibers during
the arc discharges [5, 19, 55, 63]. LPFGs have been pro-
duced with random period [64], superimposed with different
periods [65] or with phase-shifts resulting from changing
the fabrication parameters during their inscription [66]. In
B/Ge codoped fibers the choice of the fabrication parameters
also allowed fabricating simultaneously LPFGs with different
symmetry [33].

Arc-induced LPFGs have been characterized as a func-
tion of the variation of physical parameters such as strain
and temperature [40, 66–72], bending and torsion [73],
pressure [74, 75], and external refractive index [76–86].
They were also exposed to gamma radiation [51]. The
polarization dependence loss was also investigated [87] and
the results demonstrate why they have a minute success
in optical communications. As far as sensing is concerned
three important characterizations were performed. First, one
of the major potential applications of arc-induced gratings
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Figure 9: Transmission spectra of LPFGs near the turning points, inscribed in the (a) SMF28 fiber, (b) B/Ge codoped fiber [49].
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Figure 10: Transmission spectra of a 180𝜇m-LPFGs inscribed in the
B/Ge codoped fiber.

results from their ability to resist to high temperatures as was
demonstrated by the fact that they survived at temperatures
of 1000∘C for about two weeks (see Figure 11). Further
improvements are nevertheless expected by isolating the
grating from external environment (to prevent in-diffusion
of oxygen at high temperatures) and avoiding the use of
unwanted external pulling tensions. This can be reached by
inserting the grating into a silica capillary [68].

On the other hand, it was recently demonstrated that
arc-induced gratings are also good candidates to perform at
cryogenic temperatures [72]. A phase-shifted LPFG, working
in reflection, was produced by polishing the fiber after cutting
it at a distance from the grating of about a quarter of the
period (Figure 12(a)). As can be observed in Figure 12(b),
the temperature sensitivity obtained in the 4K–30K range
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Figure 11: Evolution of the grating spectrum during the heat
treatment at 1000∘C for 12 days [68].

is considerably higher than for other approaches such as
embedded FBGs. Currently, further research is ongoing in
order to improve their sensitivity and reproducibility.

Another intrinsic property of LPFGs is their dependence
on the external refractive index which affects the effective
refractive index of the cladding modes and, therefore, in
particular, changes their resonance wavelengths [18]. The
gratings sensitivity depends on the order of the cladding
modes and reaches its maximum close to the so-called
turning points. In these regions the slope of the phase match-
ing curves changes from positive to negative, and for each
grating period, there are two resonance wavelengths for each
cladding mode.This is due to the dependence on wavelength
of the core and cladding effective refractive indices. For
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Figure 12: (a) Reflection spectrum of the phase-shifted LPFG at room temperature; (b) wavelength of the two Dips and the Peak of the
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a particular grating period, the phasematching condition can
be satisfied for more than one resonance wavelength since
as the wavelength increases the effective refractive index of
the cladding mode decreases faster than that of the core
[88]. An arc-induced inscribed in the B/Ge codoped fiber in
the turning points was characterized as a function of water-
glycol mixtures and a sensitivity of about 1000 nm/RIU was
obtained by considering the shift of the resonance at shorter
wavelengths (Figure 13). Further improvements are expected
as will be discussed in the next section.

4. Applications of Arc-Induced Gratings

LPFGs find application in optical communications and
sensing areas. However, as far as arc-induced gratings are
concerned only few works related to optical communications
have been published, namely, those related to their perfor-
mance as filters in optical sources and in the equalization
of optical fiber amplifiers [39, 89–92]. The reason may lay
in the fact they are intrinsically polarization dependent [87],
therefore, impacting negatively in communication systems.
A way to mitigate this issue would be the fabrication of
helical arc-induced gratings, since, as demonstrated for
LPFGs fabricated by CO

2
laser radiation, they exhibit low

polarization dependent loss (PDL) [93–95]. Clearly this topic
requires further study and, therefore, in this section we
shall present only applications in the sensing area. In this
field a diversity of applications have been published, namely,
related to the measurement of physical parameters, such
as temperature and strain [66, 96, 97], displacement [98],
bending [99–102], torsion [73], or pressure [103, 104]. An
important achievement related to arc-induced gratings is
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concerned with the demonstration that by changing the
fabrication parameters not only the resonance wavelengths
change but also their sensitivity to physical parameters are
modified. Based on that, a sensor for the simultaneous
measurement of temperature and strain was implemented
by changing the fabrication parameters during the grating
inscription, that is, for the first 15 discharges, an external
tension of 22.8 g and a current of 9mA during 1 s were used
followed by 40 discharges using an external tension of 1.2 g
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and an electric current of 11mA during 1 s. This resulted in
a phase-shifted grating in which two neighbor resonances,
in the third telecommunication window, exhibited different
sensitivities to temperature and strain [66]. Figure 14 shows
the evolution of the grating spectrum during the fabrication
process, where the fabrication parameters used are also
presented.

Other more unusual applications include sensors per-
forming as inclinometers [105] and flowmeters [106]; they
have been used for the determination of metal thermal
conductivity [107] and oxidation [108] and also to follow
reactive ion etching processes [109]. The optical flowmeter
[106] is a particular interesting application that comprises the
use of an LPFG, a FBG, and a metallic thin film. Figure 15
shows the sensing head used to measure the air flow. The
LPFG couples light to the cladding at a wavelength that is
absorbed by the metallic film in which, being in the FBG
region, its resonance shifts towards longer wavelengths due
to the heating process. Afterwards, the air flow removes the
heat from the film at a rate that depends on the air velocity
and that translates into the movement of the FBG signature.
Topics concerning interrogation techniques are discussed in
[110–115].

LPFGs are intrinsically sensitive to changes of the external
refractive index and, therefore, they are used as refractome-
ters [14, 18, 47, 48, 61, 65, 81, 116–151]. As discussed in [18]
standard arc-induced LPFGs are limited to resolutions of
about 10−3 in changes of the refractive index and, therefore,
several techniques such as tapering, etching, and bending
or by implementing interferometric configurations have
been applied in order to improve their resolution. Another
limitation is related to the value of the ambient refractive
index to be monitored since the sensitivity increases as it
approaches the cladding refractive index but, in general, one
works with aqueous solutions with a refractive index around
1.33. Moreover, the resonance wavelengths do not change
for external medium with a refractive index above that of
the cladding. These constraints can be overcome by using
thin films and recently several applications based on coated
arc-induced LPFGs have been proposed [123–134]. Some
examples include monitoring the quality of fried oils [125]
and olive oil [126], measure humidity [127], CO

2
[131], or

detect the presence of E. coli [132]. Figure 16 exemplifies the
use of titanium dioxide coatings in order to be able to detect
changes in olive oil which possesses a refractive index above
that of the cladding.
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Another recent milestone was the possibility to arc-
induce gratings in the turning points [47, 48] with periods
as short as 148 𝜇m [49]. Therefore, and despite the fact that
cross sensitivity issues need to be properly addressed, the
combination of strong arc-induced gratings in the vicinity of
the turning points coated with thin films in the transition
region opens the possibility of reaching resolutions of the
order of 10−6 [135]. Furthermore, it was demonstrated that
the initial coupling strength of the grating is determinant in
order to avoid the fading out of the resonance in the transition
region [136]. Recently, Del Villar also demonstrated that
additionally to the previous methods, the etching of the fiber
cladding can be used to further increase the sensitivity of
the gratings reaching potential sensitivities of the order of
1.4 × 105 nm/RIU [137]. Smietana et al. demonstrated the
possibility of tuning the characteristics of LPFGs coated
with diamond-like carbon nano-layers by using reactive
ion etching [138, 139]. Finally, it should be stressed that
these gratings can work in reflection configuration [72].
Thus, we have now all means to produce high sensi-
tivity optical refractometers based on coated arc-induced
gratings.

5. Conclusions

In this paper we review the issues related to arc-induced
gratings, addressing both the research groups that are work-
ing worldwide with the technology and their main achieve-
ments. In particular, we highlighted the issues concerning the
reproducibility of the technique, the mechanisms of gratings
formation, and the possibility of inscribing LPFGs in the
turning points. We are now in the presence of a technology
with a degree of development that enables the fabrication, at
a reduced cost, of high sensitivity refractometric sensors and
also temperature sensors for extreme environments, namely,
to perform at cryogenic and high temperatures. On the other
hand, the mass production of sensors based on arc-induced
gratings will require the control of the environmentwhere the
discharges occur, in order to prevent or mitigate electrodes
degradation, and the intrinsic gratings cross sensitivity to

other physical parameters also demands for some product
engineering attention.
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