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Abstract. This paper studies complex coordination mechanisms based
on constraint satisfaction. In particular, it focuses on data-sensitive con-
nectors from the Reo coordination language. These connectors restrict
how and where data can flow between loosely-coupled components taking
into account the data being exchanged. Existing engines for Reo provide
a very limited support for data-sensitive connectors, even though data
constraints are captured by the original semantic models for Reo.

When executing data-sensitive connectors, coordination constraints are
not exhaustively solved at compile time but at runtime on a per-need
basis, powered by an existing SMT (satisfiability modulo theories) solver.
To deal with a wider range of data types and operations, we abstract data
and reduce the original constraint satisfaction problem to a SAT problem,
based on a variation of predicate abstraction. We show soundness and
completeness of the abstraction mechanism for well-defined constraints,
and validate our approach by evaluating the performance of a prototype
implementation with different test cases, with and without abstraction.

1 Introduction

Coordination languages describe how data can be exchanged among components,
focusing on the glue code and abstracting away the computations performed by
components. An ongoing trend for these languages over the last years leans to-
wards more expressive coordination models, aiming at more compact and man-
ageable representations of complex behaviour than basic models such as Linda.
This paper focuses on coordination models whose glue code is given by con-
nectors, expressed as logical constraints. Using constraints to describe how data
flows in a connector has been investigated, for example, for the BIP [3,4] and the
Reo [1,7,15] coordination languages. Constraints have also been used to describe
desirable properties of process algebras, such as Bruni’s et al.’s compensable
processes [5]. In order to keep the problem of producing and executing connec-
tors tractable, only properties that bear no computation are captured by the
constraints. These are then analysed using off-the-shelf constraint solvers.
Engines for BIP and Reo have incorporated various properties into their co-
ordination constraints, such as history of the connector, some notions of priority,
and simple data restrictions. These coordination-related properties are encoded
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Fig. 1. Filtering communication between a sensor and a display based on data.

as boolean formulas or as formulas over a decidable theory, which can be anal-
ysed by a given off-the-shelf constraint solver. An implementation of BIP [4]
relies on BDD libraries for constraint solving, and some Reo implementations
rely on SAT solvers [7] and on Computer Algebra Systems [6]. Using constraint
solvers to execute connectors brings more flexibility than compiling them into
state machines that list all coordination patterns, since it supports larger con-
nectors, and changes to the system have a low impact on performance.

This paper exploits the usage of constraints to describe coordination patterns
that use complex (and possibly undecidable) data predicates. This is achieved by
decoupling the evaluation of complex data predicates from the constraint solving
problem. We propose a method that encodes formulas over data structures into
a boolean formula, by incorporating in the final formula the results of operations
over data that influence coordination. We show that this method is sound and
complete with respect to a class of constraints that covers all Reo connectors
over data that we encountered in the literature. An earlier version of this work
with the detailed proofs can be found in a companion technical report [16]. Our
technique has been recently exploited to introduce interaction between the solver
and external components during constraint solving [15]. More generally, our ap-
proach falls within the implicit programming paradigm [14], wherein constraints
specify the computation and SAT and SMT solvers perform the computation.
Our contribution to this field is the use of constraint satisfaction to implement
coordination patterns. More specifically, this paper deals with the problem of
increasing the complexity of data used to coordinate components.

We use the Reo coordination language as the source of coordination con-
straints, based on our previous work [7]. Reo is a synchronous graph-based visual
language wherein complex connectors are built out of simpler primitive connec-
tors. Each primitive connector imposes restrictions on how and where data can
flow, and the behaviour of a composite connector is given by the composition
of the constraints of all primitives involved. A connector evolves on a per-round
basis, and in each round data flows atomically through some of the ports of this
connector, based on its combined constraints. After each round the state of the
connector may change, resulting in new constraints.

The Reo connector depicted in Fig. 1 has a data producer and a data con-
sumer that displays a given temperature value. The data producer tries to pub-
lish a temperature value of 15°C, measured at 8:35am. This producer is con-
nected to two transformer channels, depicted with a triangle, that extract the



time and the temperature attributes from the data. These values are then fil-
tered by filter channels, depicted with zig-zag lines, that allow data to flow if the
associated predicate holds for the data flowing. For example, isF checks if the
temperature is measured in Fahrenheit degrees. The result from the —night filter
acts as a barrier to the temperature value, allowing data to flow to the display
only if it is daytime. The connector evolves atomically, in the sense that data
only flows from the producer to the consumer if it is daytime, if the temperature
is in Fahrenheit or in Celsius, and if the display accepts data. If the predicates
—night and isC hold but the display cannot receive data, then the producer is
not allowed to publish the value. This reflects the role of data-constraints for
coordination, where the mere attempt to send data influences dataflow.

Summarizing, we model and execute synchronous connectors where arbitrary
data operations can influence dataflow—even when these cannot be handled by
SMT solvers—, by using a SAT solver after a pre-analysis of the coordination
constraints. These data operations can be described, for example, using Java
methods. We show that our approach is sound and complete, and we compare
the overhead cost of decoupling the data analysis against more traditional ap-
proaches where the data constraints are directly solved by an SMT solver. Our
small benchmark shows that using data values and operations that can be en-
coded into complex integer calculations can be more efficiently handled using
our methodology. However, when they can be encoded with simple integer ex-
pressions the performance of using the SMT solver directly is sometimes similar
or better than our approach, depending on the number of new boolean variables
introduced during the encoding into a boolean formula.

The rest of this paper is organised as follows. Section 2 motivates our ap-
proach. Section 3 presents a constraint-based semantics for Reo. Section 4 de-
scribes predicate abstraction. Section 5 evaluates the performance of abstracting
over data. Section 6 discusses related work and Section 7 concludes our paper.

2 Motivation

When viewing coordination as constraints, the decision of what and where data
can flow is made using constraint solving techniques. More precisely, a connector
imposes a set of constraints, which evolve during the lifetime of the connector,
whose solutions describe the dataflow through the connector. Finding these so-
lutions is an NP problem, wich can be solved using off-the-shelf SAT and SMT
solvers. By doing this the expressivity of coordination constraints becomes tighly
coupled with the expressivity of the constraint solver. For example, if a connec-
tor wants to filter all time references based on a predicate night, the constraint
solver needs to represent constraints over time references. This paper proposes
an approach that allows operations over data values to be performed outside the
underlying constraint solver, allowing functions and predicates to be defined in
a more conventional programming language such as Java.

The main challenge when implementing an engine that executes connectors
such as the one in Fig. 1 is to decide which data should flow in each of the ports,



taking into account operations over arbitrary data types, including temperature
values and time references. We consider two main approaches to this challenge:

SMT The time references and temperature values are represented as integers
that are used by an off-the-shelf SMT solver to find a solution. This encoding
into integers can be done, for example, by representing the time in minutes
and combining it with the value of the temperature using simple arithmetic
operations. This restricts the expressivity of the constraints to the language
of the SMT solver.

SAT The data constraints are reduced to a simpler constraint over boolean
variables using an abstraction technique, and solved using an off-the-shelf
SAT solver. The actual values flowing through the ports are calculated based
on solutions from the SAT solver. In our example a possible boolean solution
could say that only the predicates —night and isC hold, and that there is flow
in all three ports. Based on this solution we can infer that the value 8:35am
flows on the port connected to the display.

Not all solutions to an abstract constraints are guaranteed to produce a
solution to the original constraints. Therefore we focus on a subset of constraints
that provide this guarantee. For example, we consider the connector from Fig. 1
to be ill-defined without the data producer, since a solution for the abstract
constraints would not clearly map to a solution in the original formula.

3 Coordination as constraints

Connectors are viewed as a set of constraints representing valid coordination
patterns, following our previous work [7]. Each port has a boolean variable x € X
indicating presence of dataflow and a data variable T € by indicating what data
flows. Coordination evolves in rounds: in each round the coordinated components
contribute to the constraints of the connector, a solution for these constraints is
found, and both the connector and components are updated accordingly.

3.1 Guarded commands

When compared with the original formulation of coordination constraints for
Reo [7], we use an (asymmetric) attribution operator for data variables instead
of equality, and we allow attributions to be only in positive positions (they can
never be negated). The resulting data causality is exploited in our abstraction
technique and in the definition of well-defined connectors, but it is does not mod-
ify the semantics of connectors. The requirement of having assignments in posi-
tive positions facilitates the analysis of connectors, while reflecting the concept
of connectors as structures where data flows through. Formulas are represented
by Dijkstra’s guarded commands [8].

You=¢g—os | iy | T (formulas)
¢ =z (eX) | P(@) [ 1 AG2 | =9 (guards)
s u=¢@ | s1Ase | T:=d(€D) | T:=7 | T:=f(y) (statements)
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Table 1. Channel Encodings.

Synchronous variables x € X range over booleans and data variables in X =
{Z | z € X} range over a global data set D. Each synchronous variable corre-
sponds to exactly one port of a Reo connector. T is true, P € P is a unary
predicate over data variables, and f € F is a unary total function. A guarded
command ¢ — s is interpreted as =@V s, ¥ ¢ as Y A/, and T =y as T = 7.
The other logical connectives for guards can be encoded as usual.

Definition 1 (solution). A solution to a formula v defined over ends X is a
mapping o from X to {T, L}, and from X to data values D, such that o satisfies
¥, regarded as a boolean expression, according to the satisfaction relation o = 1

defined below. FEach predicate symbol P and function symbol f have an associated
interpretation, denoted by Z(P) and Z(f), such that Z(P) C D and Z(f) C D?.

cET always ockEx iff o(x)=T
ckEz:=d iff o(Z)=d ok iff oEY

ckEz:=y iff o(@)=0(y) o =1 A iff o f= 1y and o = o
o= f@)uf (0y),0®)eI(f) oFP@ iff o@)eI(P)

3.2 Reo as constraints

Table 1 presents the formulas of some of the most common Reo primitives [7].
It includes a writer that produces a data value d and reader that receives any
data value, which are used to abstract away the behaviour of more complex com-
ponents. We write 1. to denote the current formula imposed by a connector c.
Composition of a connector is simply given by the conjunction of their formulas.

The formula 1,,; below constrains the connector on the left of Fig. 2, a sim-
plified version of the connector in Fig. 1.




x—7T:=83bam z<+<y y—y:=DST(Z) (yA-night(y)) <z z—-2:=y

A possible solution for v,; is {z,y,z — T;Z — 8:35am; ¥y, z — 9:35am}, assum-
ing DST adds one hour, and that —night(9:35am) holds. This solution states that
x,y, z have dataflow, 8:35am flows through x, and 9:35am flows throw y and z.

3.3 Well-defined formulas

A well-defined formula is a formula to which our predicate abstraction can be
applied. More precisely, a well-defined formula must have solutions that produce
only well-defined routes, where each route is a set of data assignments derived
from a given solution. Well-definedness of a route reflects (1) the absence of
loops, (2) the absence of multiple assignments to a single variable, and (3) the
existence of a data value at the end of each tree of assignments. For example,
the following two formulas are ill-defined: (a Ab) - a:=b a — a:=5 and
a— (a:= HAD = a). The first assigns a to b and to 5 when a A b holds, which
could be fixed by replacing the second guard by a A —b. The second assigns @
and b to each other, creating a loop of data assignments. Both formulas have
routes that violate condition (3), which could be fixed by extending them with

the guarded command T — b := 7.

Definition 2 (route). A route r of a formula ¢ is a set of assignments asso-
ciated to a solution o |= 1, given by route,(¢) defined below.

route, (¢ = s) = {E)outeg(s) g;;f;(izse .

route, (11 2) = route, (1)1) U route, (¢2) w* ere: B

o) o
:gttzzg i Cglg i %\ : % U:(¢1 A d2) = 0" (¢1) No"(¢2)
route, (Z == f(7))) = {Z — J} o*(P(z)) =o(z)€I(P)
route,(s1 A s2) = route,(s1) U route, (s2)

Notation. routes(1)) represents the set of all route, (¢) for any o, and routet ()
the set of all assignments in t. Then for every r € routes(¢), r C routeT ().

Definition 3 (well-definedness). A route r is well-defined if the conditions
below hold. A formula v is well-defined if all its routes are well-defined.

1. The transitive closure of r is not reflexive (no loops).
2. Each variable T is assigned at most once in r (single assignment).
3. If(Z—t)€r, thent €D or exists t’' such that (t — t') € r (data source).

Given a well-defined route it is always possible to calculate the data values
flowing on this route. This is intuitively done by copying data starting from the
data values, and using the functions extracted from guarded commands with



guards that evaluate to true. In the formula 1,; defined in Section 3.2, and
using the solution o presented there, route, (¢,;) returns {Z — §; g +— ;T —
8:35am}. This route can be used to retreive back the values of § and z, knowing
that § := DST(Z), which can be inferred from ,,; and o.

In practice, connectors with well-defined formulas need to explicitly mention
what data values can be sent by producers; data cannot “created” during con-
straint solving. Two concerns emerge from this formulation of well-definedness.
First, it seems unnatural to build a route from a given solution o, and to use
this route later to discover what values should flow through the route, since this
is already given by o. Second, checking well-definedness (as it is) requires iter-
ating over all solutions. Our first observation is that route,(-) does not use the
values flowing on the ports: only the synchronisation variables and the validity
of the predicates. The abstraction technique described later will provide exactly
this information. Regarding the cost of verifying well-definedness, we chose to
test sufficient (yet not necessary) conditions for being well-defined. We dedicate
the next subsection to this. Furthermore, our data abstraction technique (cf.
Section 4) will not produce invalid behaviour from ill-defined connectors; in the
worse case it may fail to find the next step.

3.4 Verifying well-definedness

We provide a simple procedure to guarantee well-definedness, which does not
cover all well-defined formulas. We address each of the three conditions in Defi-
nition 3 separately, and informally discuss the correctness of our procedure.

Loop free Instead of searching for loops in routes from routes()), we do so
in routet (¢). Since every route is a subset of routeT (7)), these will also be loop
free. An example of a loop-free formula that will be wrongly identifed as having
loopsisa —b:=¢ —a— ¢:=Db, since the mutual data dependency between b
and ¢ is guarded by a variable a that guarantees that the loop never occurs.
When considering formulas from traditional Reo primitive connectors, the
direction of dataflow is fixed. It is still possible to create Reo connectors that
yield wrongly identifed loops, but we find these to be complex and unnatural.

Single assignment We guarantee each variable to be uniquely assigned by
construction. More precisely, we provide a condition that guarantees that the
composition (conjunction) of two formulas preserves the single-assignment prop-
erty. Intuitively two formulas are pluggable if they assign different variables.

Definition 4 (read and write variables, pluggable). We say T is a read
variable in i if either (y := ¥) € routet(¢) or (¥ := f(T)) € routet (), and is
a write variable in ¢ if (X :=t) € route(¢)), for some f, y, and t. Write 71
and 1t to denote all read and write variables of ¥, respectively. Two formulas
Y1 and ¥y are pluggable if:

!¢1 N "(/)2 = @
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Fig. 2. Calculating dependencies of predicates; DST updates the time according to the
daylight saving time, and F2X and C2X create a structure X that it verified by isValid.

By composing only pluggable formulas the effort of verifying the single-
assignment property is restricted to only smaller formulas of primitive connec-
tors. All formulas from Table 1 obey the single-assignment property.

Data source We guarantee routes of a formula to always end up in a data value
also by construction, by requiring (1) formulas to be pluggable and (2) each
primitive formula v, to use only data variables with dataflow. More precisely,
every solution o = ¢, must obey Z € var(route,(¢,)) = o(x), where var(-)
returns the variables present in a route. Finally, we also require (3) all read
variables to be write variables in the global formula v, that is, € 7¢ = Z € 4.

All formulas in Table 1 obey requirement (2): in all solutions of these formulas
if a variable T is written or read then x is set to true. Dropping the guard b in
the formula of the Sync channel, for example, would break this property, since
b could be read even when b is false. The third requirement is violated every
time the SyncSpout is connected to a channel via a shared port x, since & will
be a read variable but not a write variable. This can be solved without violating
other requirements simply by using a variation of the SyncSpout channel that
always outputs a constant value. In fact, we do not know any system modelled
in Reo that uses the data value produced by the SyncSpout channel.

4 Data abstraction

This section describes how to encode formulas over data into boolean formulas.
This is done in two phases: (1) the dependencies for each predicate are calculated
by tracing back the provenience of data, and (2) new boolean variables replace
the existing data variables, used to dictate which predicates hold.

Fig. 2 illustrates the dependency analysis for predicates. From trace 3, for
example, we deduce that isValid depends on the evaluation of isValid(F2X(23°C)).
By evaluating the traces 1 to 5 the data values are no longer needed when search-
ing for valid solutions. This section will describe how to transform formulas—
such as the one in Section 3.2—into formulas over booleans—such as the one be-
low. The expression within square brackets is replaced by its evaluation. Observe
that z does not have any data variable, since it does not affect any predicate.

T = Tnidst := [night(DST(8:35am))] =y Y — Uni := Tnidst (YA i) € 2



4.1 Precomputed domain invariants

Write P.f1.fo... fn, to denote a predicate P € P with an associated sequence of
functions that have to be evaluated before the predicate. Define:

[ Error if fe{fi,....fa}
(Pfi.-+.fn)of= {Pfl Jn-f otherwisé

and write {Pi,...,P,}35f to denote {Pyo f,..., P, o f}\{Error}. Note that
every function in a connector is considered unique.

For each port x € X in a formula v we define its domain invariant D, as
the set of predicates and functions that can be reachable, intuitively captured
by the 5 traces in Fig. 2. More precisely, each D, is the smallest set of predicates
such that p(¢) holds, where p(-) is defined as:

p(P(Z)) = D: 2 {P} p(¢ = s) =p(¢) Ap(s)  p(h1 Y2) = p(h1) A p(t2)
p(T:=9) =Dy 2D, p(d1 A d2) = p(d1) A p(¢2) p(=) = p(¥)
p(@:=f(¥) =Dy 2 (D:5f) plsi As2)=p(s1)Ap(s2) p(_) = true.

Domain invariants are always finite sets because the definition of © prevents the
application of the same function twice. Well-definedeness does not prevent this
duplication because it relies on routes(-), while p(-) relies on all assignments.

The formula ,; for the left connector of Fig. 2, presented in Section 3.2,
yields the following domain invariants.

= {ni.dst} D, = {ni} D, =10

We write ni and dst as shorthands for night and DST, respectively. These domain
invariants are indeed the smallest solution for the constraints given by p(1y,;),
namely D, DO (D,odst) and D, O {ni}. Applying the same reasoning for the
connector on the right of Fig. 2 we can conclude that D, = {isF, F2X.isValid, C2X.
isValid, isC}. The remaining domain invariants can be calculated in a similar way.

4.2 Predicate abstraction

This subsection formalises the encoding from a formula v into a new boolean
formula, such as the one exemplified right before Section 4.1.

Let [P.fi.- .fo(d)] = P(fi(...(fn(d)))), where n > 0 and d € D.3 The
function [-], defined below, receives a formula ) over arbitrary data types in D
and returns a new formula over booleans, i.e., data variables in [¢)] range over
booleans. This transformation is a variant of predicate abstraction [9].

[ — s] = [¢] = [s] [2] = [P(7)] = Zp (] = —[¢]
[th1 ¥o] = [1h1] [92] [#:=d] = Apep, Tr = [P(d)]

[¢1 A 2] = [p1] A [02] @ =7 = Apep.np,) Br = TP

[s1 A s2] = [51] A [s2] [z := f(y)] = /\PeDI,(Pof)eDy Tp:=Ypof

3 More precisely, [P.fi.--- .fn(d)] iff (n = 0) A (d € Z(P)) or Ja,.. da,ep - (d1 €
Z(P)) A (Yieq1,...,n} - (d1+1,d ) € Z(f:)), where dpy1 = d.



Predicates and functions are computed during the encoding of data assign-
ments 7 := d. Each of these assignments originates a new variable Tp for every
P € D, given by the domain invariants, explained before, such that p < P(Z).
Hence the number of new variables depends on the size of the domain invariants.
Ports with an empty domain invariant will not have variables in the abstract for-
mula, and ports that can affect n predicates will have at least n new variables.

4.3 Soundness and completeness

Our main claim is that every solution for a well-defined formula ¢ can be found
by finding a solution for its predicate abstraction [¢)]. This requires the abstrac-
tion function [-] to be sound and complete. Soundness means that every solution
o of ¥ must also be a solution of [¢)], after mapping each data assignment to the
assignments of the new data variables as follows.

0] = {Zp — [P(c(2))] | Z € dom(c) N X, P € D,}
U {z —ox) | € dom(c) N X'}

Completeness means that every solution of [¢)] must be the abstraction of at
least one solution in . Both proofs of soundness and completeness rely on the
definition of p(-) and [-], and completness requires formulas to be well-defined.

Theorem 1 (Soundness). o E=v¢ = [o] = [¢].

Proof. Start by fixing the domain invariant of every port. The proof follows by
induction on the structure of formulas, applied to guards, statements, and to
guarded commands. Soundness of the conjunction of guarded commands follows
directly from the soundness of guarded commands and the definition of . O

Theorem 2 (Completeness).
¥ is well-defined and o' =[] = - (c E¥)A (o' =[0]).

Proof. We build a solution o for ¢ based on ¢’, knowing that v is well defined.

1. Start with the smallest o such that Vz € (dom(¢’) N X) - o(z) = o'(x).

2. Assume (so far) that, for every Zp € dom(o’), o/(Zp) = T = o(Z) € Z(P).
Calculate r = route, (1) using the assumption above to resolve o*(P(Z)).

3. The route r is well-defined (based on the assumption mentioned above),
hence it is possible to calculate the data flowing in every port along these
routes. Starting from each data value in 7, apply the assignments and func-
tions induced by r to calculate these data values.

Observe that not all  and Z need to have a value assigned by o. Extending o
with assignments of variables not in o will not modify o |= v, since the validity
of the route is enough to guarantee satisfaction.

The assumption introduced in (2) can be shown based on the the construction
of o and on the routes induced by ¢’ on both 1) and its abstraction. m]



5 Evaluation

We validate our approach by applying predicate abstraction to five connectors
with varying sizes. All but the last connector use integers as the data domain,
allowing us to compare the performance of our techniques against the direct
usage of an SMT solver. The goal of this evaluation is to understand the overhead
of pre-computing the operations over data before invoking a SAT solver, possibly
introducing a larger number of variables. The last connector uses a Java data
structure instead of integers, showing that the performance is not compromised
when dealing with other data domains, and to emphasise that our abstraction
technique supports more expressive data-sensitive connectors.

Our prototype implementation uses the Z3 SMT solver* to solve expressions
with booleans and integers. Z3 is a high-performance theorem prover with an
incorporated SMT solver being developed by Microsoft. In our experiments we
use only integer arithmetic, although Z3 supports many other theories.

We evaluate our test cases using the following solver configurations.

Z3 73 is used to solve the original data constraints.

[Z3] The original constraints are encoded into boolean constraints using pred-
icate abstraction, and solved with Z3; and a solution for the original con-
straint is produced.

Our prototype implementation is developed using the Scala language,® which
produces Java binary classes, can import Java libraries, and supports functional
programming. The source code and our benchmarks can be found online.® To
integrate Z3 with Scala we use the Scala”Z3 libraries developed at EPFL [13].

5.1 Test cases

Our approach is evaluated using five test cases: the temperature connector from
our motivating example, a set of transactional functions in sequence and in
parallel, and two variants of an approval system.

Temperature This connector (Fig. 3) is based on our motivating example
from Section 1. The data value is regarded as an integer, the transformer channels
perform simple arithmetic operations, and the predicates use simple inequalities.

Transactional functions We define a transactional function to be a tuple
<pre, f,f1, post>, where f is the main function, f~! is a compensation that must
be applied to undo f, and pre and post are pre- and post-conditions of f. The test
cases consist of the sequential and parallel composition of transactional functions
(Fig. 4). Data enters the connector via the in port and exits either via out if both
conditions hold, or via stopped otherwise. The stop port propagates the stopping
signal in the sequential composition. Predicates and functions use again simple
arithmetic operations and inequalities, and are setup so that all transactions
succeed except the last transaction in the sequence.

4 http://research.microsoft.com/projects/z3
5 http://www.scala-lang.org
S http://is.gd/reopp
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Fig. 3. Temperature connector connected to n outputs.
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Fig. 4. Connectors with transactional functions.

Approval system The approval system (Fig. 5) captures the merging from
several applicants, each publishing their classification. Each applicant provides
a tuple of 5 integers, consisting of a unique identifier and 4 classifications from
0 to 20. The predicates isApproved and isDenied check if these ratings are within
a certain thresholds, encoded in two variants: (1) as expressions that require
arithmetic operations to convert back and forward tuples (based on conversions
to and from base 21), and (2) as Java methods over tuples of elements.

5.2 Results and discussion

The constraints for our test cases are solved using a 8-core 2.4 GHz Intel Xeon
desktop with 16 GB RAM running Ubuntu Linux. Each measurement was per-
formed 10 times, and the average was used (Fig. 6). The time covers the building
of formulas, the solving of constraints, and the calculation of the dataflow, per-
formed at runtime. In the first and last two graphs a log-log scale is used.

73 uses SAT solving to iteratively search for solutions to more complex the-
ories, in our case the theory of integers. Our abstraction also reduces a more
complex problem to a SAT problem. Probably due to internal optimisations in
73, and the usage of more efficient memory operations, its performance is in
some cases similar or better than predicate abstraction.

The transactional functions running in parallel exhibit the best results for
predicate abstraction compared to Z3. This is partially justified by the small

isApproved

Approved

'
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Fig. 6. Performance evaluation of our five parameterised test case connectors.

number of variables added during predicate abstraction, and because pre-com-
pilation of the predicates is not more expensive since all predicates need to
be evaluated also for Z3. Conversely, the number of variables in the sequence
of transactional functions is very high, reducing the performance of [Z3]. The
unexpected variations of time for Z3 in the approval system are probably a
consequence of the complexity of its predicates and of the high valued integers
involved.” This complexity has little impact when using predicate abstraction,
which performs faster and more consistently. Furthermore abstraction allows the
usage of Java data structures and operations, allowing a reimplementation of the
approval system in a more structured way and without loss of performance.
Summarising, we conjecture that scenarios with complex data functions and
predicates benefit from our predicate abstraction mechanism, scenarios with a
large number of simple functions and predicates and no complex calculations
benefit from using SMT solvers, and in scenarios with a smaller number of data
operations the difference of performance is small. Using predicate abstraction can
also be beneficial in scenarios with a large number of predicates and functions,
provided the encoding does not produce a large number of variables, as in ParT.

6 Related work

A recent attempt to coordinate Erlang actors uses special actors with associ-
ated Reo connectors [11]. That work illustrates the need to support data con-

7 A number of runs for Z3 timed out after 5 min and were left out of this benchmark.



straints, since there was no automatic tool to generate coordination code from
Reo connectors. From the verification perspective, model checking techniques
for Reo connectors exist based on mCRL2 and on its representation of data
structures [12]. Regarding implementations of Reo, Changizi et. al [6] extended
the automata-based compilation approach with filters and transformers. These
are handled by a SAT/SMT solver, though the choice of filters and transformers
is limited to those expressible in the language of the solver. Their process of
building an automaton searches for all solutions for all states. Our work is more
flexible by considering only one state and solution at a time during execution, and
it supports formulas with data operations outside the underlying solver. Jong-
mans et al.[10] orchestrated web services based on Reo, and integrated external
functionality by generating Java code corresponding to the automata-with-data-
constraints model of Reo. The resulting code has an exponential number of
formulas, without data transformations, that are checked sequentially. Our ap-
proach improved on these implementations by exploiting the flexibility of con-
straints, not limited by the expressivity of the underlying constraint solver, and
by identifying a suitable set of connectors for our abstraction techniques.

Predicate abstraction is a technique used to reduce complex problems to
simpler ones while preserving some relevant properties [9]. This technique is
commonly used for model checking [2], where concrete states of a system are
mapped to a smaller set of abstract states based on a set of predicates. New
predicates can be added to expand the set of abstract states, in a process called
abstraction refinement. Our variation of predicate abstraction modifies an orig-
inal system by replacing operations over data by boolean variables that reflect
properties over this data. Instead of refining the abstraction until a solution is
found (also experimented outside this paper), we identify systems that do not
require abstraction refinement.

Our work falls within the implicit programming paradigm. Koksal et al. pro-
posed to integrate the power of SAT/SMT solvers non-intrusively into sequen-
tial, imperative programs [14]|. In contrast, our approach targets coordination
languages, and addresses the expressivity of data-sensitive synchronous systems.

7 Conclusions

This paper explores an execution model for data-sensitive connectors based on
predicate abstraction. We exploit the fact that the vast majority of connectors
includes concrete data values to precompute the predicates used by the connec-
tor before solving the data constraints. A simple analysis of the constraints yields
which predicates should be computed for each variable, and the original predi-
cates are abstracted to boolean variables holding the precomputed results. Our
approach is shown to be sound and complete for well-defined connectors. As a
result, one can specify and run the coordination layer between components using
high-level constraints that inspect and manipulate data offered by producers.
This abstraction technique has been exploited to investigate new interaction
mechanisms between the solver and external components during constraint solv-



ing, by using functions and predicates that perform interaction [15]. An interest-
ing direction for future work is to encode generic data constraints into formulas
over simple theories, instead of boolean formulas, making a tradeoff between re-
lying on more powerful solvers and avoiding the potential increase of variables.
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