A Mission Programming System
for an Autonomous Sailboat

José C. Alves
Faculty of Electrical and Computer Engineering
University of Porto / INESC TEC
Porto, Portugal
Email: jca@fe.up.pt

Abstract—Robotic sailing vehicles can provide the support for
carrying out long ocean sampling missions, using solely renewable
energy for propulsion and for powering the computing, com-
munication and electromechanical systems. The basic automatic
sailing tasks required to visit a sequence of waypoints has already
been correctly addressed by various teams. However, an effective
system for specifying long term autonomous missions is necessary
to fill the gap between the developers of the robotic platforms and
the scientific end users, mainly interested in the data they can
get. This paper presents a simple, flexible and easy to use mission
programming system implemented in the autonomous sailing boat
FASt. A mission is programmed by defining events and assigning
to them sequences of high level actions. The support of conditional
statements allows the implementation of a basic control flow
mechanism to make route decisions during the deployment of the
mission. Examples are presented to illustrate the construction of
mission programs.

I. INTRODUCTION

Autonomous sailboats have gained particular attention in
the last few years for their unique ability to maintain long
term unassisted operations in the sea surface [1]. Using the
wind as the only source of energy for propulsion, the low
power requirements of the onboard computing systems can
be guaranteed by renewable energy sources like photovoltaic
panels or wind turbines. The superior navigation capability
of sailboats in terms of speed and maneuverability, when
compared to other long endurance surface vessels like wave
gliders [2], makes them a valuable asset for ocean sensing
and sampling tasks requiring a continuous presence at the sea
surface. In addition, the low level of self-generated noise is
a relevant feature of autonomous sailing boats for underwater
acoustics applications like tracking marine mammals [3],[4].

A few recent successful projects have demonstrated the
capability of robotic autonomous sailboats for performing
autonomous missions in the ocean and even survive to harsh
conditions. The Saildrone project is the latest known mature
design, demonstrated in the end of 2013 with a 100 day
autonomous mission in the Pacific ocean, and an announced
plan to try a circumnavigation [5]. Other projects of small sea
worth autonomous sailing robots have also been developed in
Europe, as the Austrian ASV Roboat exploited in research on
marine mammals [6], the BeagleB project of the University
of Aberystwyth, United Kingdom [7], the Vaimos sailboat
from ENSTA Bretagne, France [8] and the Portuguese FASt,
addressed by this work [9].

Nuno A. Cruz
Faculty of Electrical and Computer Engineering
University of Porto / INESC TEC
Porto, Portugal
Email: nacruz@fe.up.pt

To be effective for accomplishing fully autonomous mis-
sions, robotic sailboats must be able to complement their
robustness and navigation proficiency with convenient support
tools for an easy setup, programming and monitoring of
missions. Closing this gap is crucial to enable their exploitation
by the typical end users that usually are not aware of the
supporting robotic technologies.

Defining in advance a fully autonomous mission for a
robotic sailboat can easily go beyond the simple programming
of a list of waypoints to visit. In addition to perform a
certain pre-programmed course, a sailing robot also has to
execute specific tasks at precise locations, to gather data from
the onboard sensing devices or collect physical samples of
the air/water environment. The implementation of complex
mission tasks may also require a close interaction between the
sampling processes and the sailboat’s navigation system, to
dynamically adapt the course plan to varying and unpredicted
conditions. This is particularly important for autonomous sail-
boats, which have their navigation ability greatly influenced
by the surrounding environmental conditions.

In this paper we present the mission programming envi-
ronment developed for the FASt autonomous sailboat. This is
based on a simple and intuitive textual language for specifying
a mission by defining key waypoints, events and actions. The
mission execution environment provides access to a set of
relevant variables shared with the sailboat’s control and navi-
gation system to allow creating missions that interact with the
sailboat. The support of a basic set of conditional instructions
allows the implementation of a simple, albeit flexible, control
flow mechanism to dynamically control the course and the
sequence of mission tasks. This mission programming tool has
been developed as part of the METASail command and control
console, an integrated system for mission planning, supervision
and analysis, described in detail in [10].

Besides this introduction, the paper is organized as follows.
Section II presents related work on mission programming
systems for robotic marine vehicles. In section Il we intro-
duce our robotic sailing boat FASt that is the target of the
system presented in the paper. Section IV presents the mission
programming concept and the related execution model. The
mission programming language is detailed in section V and in
section VI we present a set of selected examples that illustrate
the application of the main features of the language. Finally
section VII draws the final conclusions and finalizes the paper.

II. RELATED WORK

The problem of planning complex missions for unmanned
marine vehicles has been addressed by other teams, with
features adapted to specific requirements of their vehicles and
systems. The absence of a common framework to support all
the features needed by each project has motivated the devel-
opment of proprietary systems, difficult to reuse in different
scenarios. All the mission programming systems known were
designed for motorized surface or underwater vehicles and
do not provide support for navigation tasks and constraints
associated to sailing.

In the case of underwater vehicles, almost all commu-
nication systems rely on acoustics, that enable long range
communications but with a high latency and a low data
rate. For that reason, there has been particular interest in
the development of specific compact languages for mission
command and control [11] to minimize the communications
requirements.

Neptus [12] is a modular mission planning, simulation and
analysis framework designed for managing the cooperative
deployment of heterogeneous surface and underwater vehicles,
autonomous or remotely operated. Missions are created with
various types of pre-built basic maneuvers and conditions to
trigger transitions between maneuvers.

Another system is the ROAZ mission control [13], devel-
oped for a specific electric autonomous surface vehicle. Mis-
sions are specified as XML files by defining basic maneuvers
with assigned actions and test functions to evaluate conditions.

The DELFIM mission control system [14] is an interactive
tool for designing and supervising missions of motorized
surface vehicles using an execution model based on Petri nets.
A mission is designed with a graphics interface and rely on
vehicle primitives (e.g. maintain a heading) to build mission
procedures (follow a path) and construct mission programs
with them.

The MOOS-IVP system [15] is an open source project that
provides a software infrastructure for building autonomous
vehicles and program complex missions by instantiating be-
haviors that also include conditions. The MOOS-IvP software
is designed to run in a dedicated computer for handling the
autonomy decisions, receiving the vehicle position and other
data from the onboard computer performing the low level
control.

III. THE FAST AUTONOMOUS SAILBOAT

FASt is a 2.5m LOA, 50Kg, autonomous unmanned
sailing boat designed and built at the University of Porto,
Portugal (figure 1). The sailboat has a highly configurable low
power computing system running an embedded version of the
Linux operating system (uCLinux) and an onboard local area
network easily permits to expand the computing power or to
connect other network-enabled devices. The payload capacity,
either in terms of weight and dry space inside the hull (a
few kilograms and liters), allows a flexible mission-specific
customization. The sailboat also has an electric winch that can
be controlled to wind out a desired length of line for deploying
equipment at precise depths.

Electric power is provided by a 45 Wp solar panel and a
set of Li-lon batteries with a total capacity of 194 Wh. The
onboard sensors provide the wind direction and speed, the
heading, pitch and roll angles, the geographic position, course
and speed over ground and the angle of the boom. A WiFi link
is used for remote access to the onboard computer, mainly to
upload mission programs and for debugging purposes.

The sailboat can be controlled manually with a conven-
tional radio-control, that is useful for the launch and recovery
operations. The autonomous mission starts as soon as the
radio-control is switched off and can be interrupted to return
temporarily to manual control by switching on the radio
control.

Fig. 1.

The FASt autonomous sailing boat (LOA 2.5 m).

IV. THE MISSION PROGRAMMING MODEL

The mission programming model is based on executing
sequences of actions triggered by events detected during the
accomplishment of a mission. A basic event is the arrival to
a given destination waypoint, and the most primitive action to
perform is setting a new destination point. While this behavior
is sufficient to program a path along a set of waypoints for a
robotic marine vessel, it does not allow to define other tasks
or, more importantly, to program route decisions depending on
acquired data.

We also extended the mission programming model by
creating a mission execution environment that allows to exe-
cute arbitrary tasks synchronized to navigation related events,
timing events, or conditions associated to data acquired from
Sensors.

The programming environment uses a set of variables or
registers (resembling the configuration and status registers of
micro-controllers) shared with the mission execution and navi-
gation system, to retrieve and evaluate the status of the sailboat
navigation system and of the external sampling devices.

Events trigger the execution of actions. There are three
types of events triggered by different conditions. The initial
event defines the list of tasks to be accomplished when the au-
tonomous mission starts. The waypoint arrival event happens
when the target waypoint is reached. The asynchronous event

is defined as a condition set with the status registers that is
continuously evaluated during the operation of the sailboat.

The mission execution process works as a stack machine,
allowing to create mission programs that implement a call-
return behavior. When an event is triggered (e.g. waypoint
reached) the list of actions assigned to that event is pushed
into the stack. Actions are popped sequentially from the stack
and executed until no more actions exist and the mission
program terminates. The actual behavior performed by the
sailboat upon completion of a mission is determined by the
last action programmed. If a new destination is not defined,
the sailboat will maintain as target the last target waypoint,
performing a station keeping like behavior.

V. MISSION PROGRAMMING LANGUAGE

To ease the process of specifying missions we developed
a simple programming language with an easy-to-learn and
intuitive set of statements. A mission program can be created
as a plain text file and can also be edited with an interactive
graphics tool described in [10]. Such a program includes global
definitions, the specification of events and associated tasks.

A. Global definitions

A mission program starts by defining a list of the relevant
static waypoints and the specification of the geographic limits
of the safe region allowed for the accomplishment of the
mission. Either the target waypoints and the safe area points
can be defined as lat/lon coordinates or as a displacement
and bearing relative to any other waypoint. Figure 2 shows
an example of waypoint and safe area definitions and the
corresponding view in the graphics mission editor.

An extensive set of configuration variables used by the
autonomous sailboat control and navigation system may also
be globally defined to supersede default values defined in
a startup configuration file. Examples are parameters that
control the way some sailing maneuvers are performed, as for
example the minimum beating angle, the width of a corridor
to sail upwind legs or the minimum distance to reach a target
waypoint.

B. Shared register file

The interaction between the mission program and the
FASt’s control and navigation system is done with a set
of variables seen from the program point of view as an
array (shared register file, figure 3). All the variables are
32-bit integers and are organized into five sections: timers,
clocks, counters, data read from the sailboat’s sensors and
also variables gathered from other applications running in the
sailboat’s computer (as, for example, data acquisition programs
that interface to external sampling devices).

Timers and clocks count seconds down to zero and up,
respectively' and counters are set, incremented or decremented
with specific statements included in the action lists. The status
variables hold the current values of internal FASt variables,
including data read from navigation sensors, the status of
the actuators and also other internal variables relevant to the

'Counting up seconds in 32 bits only overflows after 136 years.

/I Absolute waypoint
/I Safe mission area:
autosafearea(50);

/I Absolute waypoints:
defabswpt(0, 41* 10" 59", -8* 42' 20");
defabswpt(1, 41* 11' 02", -8* 42' 23");
defabswpt(2, 41* 10’ 59", -8* 42' 23");
/I Indirect waypoint:

/I 80m along bearing 180 from waypoint 2
defindyvpt(3,2,80,180);

32]

Fig. 2. Definition of waypoints and an automatic safe navigation area set by
expanding the bounding box of the waypoint by 50 m.

knowledge of the state of the sailboat control and navigation
system. A section of the shared register file is reserved to
receive data from external programs. Any of these registers
can be used to set conditional expressions that implement the
control flow mechanism in the mission programming system
and are referred with the identifiers shown in figure 3.

register variable
index ID
0
timers | t0..t15 auto decrement seconds to zero
15
clocks | k0..k15 auto increment seconds
31
counters | c0..c15 increment/decrement by action
47
63 reserved
$0..$255
internal data from sailboat’s sensors
variables | i0..i1127 internal system status
(RIO) (read only)
191
general reserved for interfacing
purpose | g0..g63 external applications
255 (R/W) (read/write)
Fig. 3. The organization of the shared register file visible to the mission

programming environment.

C. Conditions

One important feature of the mission programming system
is the ability to specify missions with a control flow mecha-
nism. This is done with the establishment of conditions that can
be used in various contexts in a mission program, as detailed in
the next section. Conditions are created with single relational
operators between a shared register file variable and a constant,
or between any two variables, as exemplified in figure 4.

/1 If clock O (register $16) is less-than 200 seconds
/I goto waypoint 1, else goto waypoint 2

... if(k0.1t.200, 1, 2) ...

/I If internal register 13 ($77) equals the general

/I purpose register 21 ($213), goto waypoint 3

... if(i13.eq.921, 3) ...

Fig. 4. Setting conditions for implementing the control flow mechanism.

D. Events and actions

As stated before, a mission program is created with lists of
actions assigned to trigger events. When a trigger event occurs,
the statements (or actions) defined for that event are executed
sequentially. There are three types of trigger events currently
supported. The initial event is automatically triggered
when the autonomous mission starts and thus represents the
mission program entry point. The waypoint event is assigned to
a previously defined waypoint and triggers when that waypoint
is reached. The asynchronous event allows to program a behav-
ior similar to an interrupt handling system in microprocessors
by setting a trigger condition that is continuously evaluated,
and the associated list of actions to execute when the condition
is evaluated to true (comparable to an interrupt handler). To
control the way the trigger events are processed, they can be
individually or globally enabled or disabled.

Figure 5 presents an example of a simple mission program
consisting in starting to sail to waypoint 0 and then circling
forever along the waypoints 1, 2, 0. The example in figure 6
adds a counter and a conditional statement to execute 5 laps
around the waypoints 0, 1 and 2 and then exit to waypoint 3.

/I Navigation program entry point,

/I Sail to waypoint 0

@initial{ goto(0); }

/I When reaching waypoint 0, sail to waypoint 1
@0{ goto(1); }

@1{ goto(2); }

/I Return to waypoint 0

@2{ goto(0); }

Fig. 5. A simple mission program. This example assumes the definitions of
3 waypoints with IDs 0, 1 and 2.

The execution of a statement (or action) can block the
execution of the forthcoming actions until it concludes (block-
ing statements) or the execution can proceed immediately to
the next statement (non-blocking statements). The blocking
statements are those that specify navigation-related tasks or
other actions that require a non-deterministic time to complete,
as, for example, executing a sampling process.

The mission execution system implemented in the sailboat
accepts a basic set of infernal statements that is sufficient for

/I Set counter c0 with value 0, sail to waypoint 0:
@initial{ setcounter(c0,0); goto(0); }

/I When reaching waypoint 0, increment counter 0
/I if counter O is less than 6, sail to waypoint 1

/I else exit to waypoint 3

@0{ inccounter(c0); if(c0.1t.6, 1, 3); }

@1{ goto(2); }

@2{ goto(0); }

Fig. 6. Adding a conditional statement to count the number of laps in the
mission listed in figure 5.

describing complex missions in a very flexible way (table I).
In addition to these, additional external actions can be easily
executed by the mission execution system, specified as shell
command-line instructions. External actions are performed
by programs cross-compiled for the FASt main computer
and adhering to a code template that include primitives for
receiving arguments and returning results via UDP sockets.
The external program requests input arguments from the status
register array and upon completion provides return results (if
any) that are placed in register locations enabled for writing.
External actions can be invoked in blocking or non-blocking
execution mode depending on the relevance of its completion
for the continuation of the execution of the mission program.
An example of non-blocking external action is a program that
drives an external data logger to start acquiring data while the
rest of the mission proceeds. On the other hand, an example of
a blocking external action is the execution of a data acquisition
or analysis process whose results are necessary to decide what
to do next.

E. Programming timeouts

The asynchronous event and the abort () statement al-
lows to easily define global timeouts for any navigation-related
statement. This only needs to set a timer at the beginning of
the navigation command and program an asynchronous event
to abort the current maneuver when the timer expires. Figure 7
exemplifies the utilization of this feature.

/I Create asynchronous event (timeout on timer 3)

/I and assign it the ID 1 (disabled by default)

@when(1,t3.eq.0){ disablecond(1); abort(); }

/ Start the mission: sail to waypoint 1

@initial { goto(1); }

/I At waypoint 1, sail to waypoint 4 within 1000 seconds

/I then go to waypoint 5

@1{ settimer(t3,1000); enablecond(1); \
goto(4); disablecond(1); goto(5); }

/I At waypoint 4 disable the asynchronous event 1

/I and sail to waypoint 6

@4{ disablecond(1); goto(6); }

Fig. 7. Programming timeouts for navigation-related actions.

FE. Complex maneuvers

A station keeping navigation is performed with the state-
ment stationkeep (R, cond). Whent this statement is
executed, two waypoints are defined along a line perpendicular
to the true wind direction, centered in the current position and
separated by 80% of the diameter of the station keeping region

TABLE 1.

Global definitions

SUMMARY OF THE MISSION PROGRAMMING LANGUAGE.

defabswpt (wpID, lat, lon[, "label"])

Create an absolute waypoint with ID wpID. The optional argument
"label" is a text string to display in the graphics console.

defindwpt (wpID, refwpID,dist, angle[, "label"])

Create an indirect waypoint with ID wpID obtained as the projection of
refwpID along dist meters and angle degrees.

defabssa (salD, lat, lon)

Define an absolute point with ID saID to form the safe navigation area.

defindsa (salD,refsalD,dist, angle)

Create an indirect waypoint to define the safe area, with the ID saID,
obtained as the projection of the safe area point refsaID along dist
meters and angle degrees.

defindsw(salD, refwpID,dist, angle)

Create an indirect waypoint to define the safe area, with the ID saID,
obtained as the projection of the waypoint refwpID along dist meters and
angle degrees.

autosafearea (dist)

Define the safe area as a rectangle exploded by dist meters to the outside
of the bounding box enclosing all the waypoints.

setvar (varname, value)

Set internal variable varname with value value. This statement can also
be used as an action.

Trigger events

@initial{actions...} Trigger the initial actions (this represents the mission program entry point).
@wpID{actions...} Trigger upon arrival to the waypoint defined with the ID wpID.
@when (condID, cond){actions...} Trigger when condition cond is true and assign the ID condID to this event.

Statements for specifying actions

goto (wpID)

Go to the waypoint defined by wpID.

gotorel (D, brg)

Go to a waypoint defined by the distance D along bearing brg relative to the
current position.

whilegoto (cond, wpID)

While condition cond holds true, go to waypoint wpID.

follow(rIDlat,rIDlon, cond)

Go to the waypoint defined by the coordinates latitude/longitude read from
registers rID1lat and rID1lon, while condition cond is true.

stationkeep (R, cond)

Perform a station keeping navigation pattern within a radius of R centered in
the current position while condition cond is true.

scanarea (D,wpl, ..., wpn)

Execute a navigation pattern to scan the area defined by the list of waypoints
wpl, ..., wpn, with parallel lines separated by D meters.

hold ([cond])

Hold while cond is true by loosing sails and suspending the navigation
control system. If the condition is not specified, the sailboat enters hold mode
and the program continues to the next action. The hold mode exits with the
execution of a navigation command (e.g. goto ()).

if (cond, true_wpID[, false_wpID])

if condition cond is true, go to waypoint true_wpID, else (optional
argument) go to waypoint false_wpID.

settimer (tID,value)

Set timer t ID with value.

setcounter (cID,value)

Set counter cID with value.

setclock (kID, value)

Set clock kID with value.

inccounter (cID)

Increment counter cID.

deccounter (cID)

Decrement counter cID.

setregister (rID,value)

Set register rID with value value.

enablecond (condID)

Enable asynchronous evenb defined by condID.

disablecond (condID)

Disable asynchronous evenb defined by condID.

setvar (varname, value)

Set internal variable varname with value value.

external ("external_command"”", bmode)

Start the external program external_command in blocking or
non-blocking mode, according to the value of parameter bmode.

abort ()

Abort current blocking action under execution.

(shown in figure 8 as the two red dots labeled 1 and 2 within
the hatched circle representing the station keeping region). The
station keeping navigation is performed by continuously sailing
with side wind (reaching) and gibing at those waypoints, until
the condition cond is evaluated to false (figure 8).

Conditions can be created with the timers or clocks to set a
fixed time for the station keeping operation and the conditions
can also evaluate results returned by external applications,
to conclude the action under control of an external program
(e.g. start a sampling process and conclude when receiving a
completion acknowledge).

G. Scan area

Due to the wind constraints, a zig-zag lawn mower naviga-
tion pattern performed by a sailboat must be set according to
the wind direction, to avoid doing upwind legs and guarantee
the accuracy of the track. The mission programming system
includes the statement scanarea (...) to automatically set
a zig-zag navigation pattern for scanning an area, executing
parallel legs separated by a given distance and perpendicular
to the true wind direction. The area to scan is set as a closed
polygon defined by a list of geographic marks. When the
statement is executed, a temporary destination waypoint is
set upwind the scan area region. Then, a list of waypoints
is generated to navigate with side wind (reaching) along legs
that cross the area of interest and force gibing at each end.

Fig. 8. Illustration of the implementation of station-keeping around waypoint
3, with a radius of 20 m, during 100s. The waypoints 1 and 2 are generated
automatically when the command is executed.

Figure 9 illustrates the implementation of the
scanarea (...) action. The large red dots outside
the scan area region (in green) indicate the approximate
position of the waypoints generated automatically, according
to the current true wind direction. The dark blue line shows
the approximate path followed by the sailboat.

3
/“ /“ 2
54 ds2

true wind

a3} \ N 2

@3{ scanarea(10, 2, 6, 5, 4); goto(7); }

Fig. 9. Performing the scan area action in the area defined by the points 2,
6, 5 and 4, with a line separation of 10 m. The waypoints defined outside the
shaded area are defined automatically to force the lawn mower pattern.

VI. EXAMPLES OF MISSION PROGRAMS

Besides the basic waypoint visiting mission shown in
figure 5, this system allows to program complex missions that
can interact with external systems or devices attached to the
sailboat’s computing system or local network, as illustrated in
the next examples.

A. Regatta with a trapezoidal course

This scenario considers a trapezoidal course with 4 buoys
(represented by the waypoints 0, 1, 2, 3 and 4), as usually
set for regattas of sailing dinghies (figure 10). In this example
we consider the course as visiting the waypoints in the order
0-1-0-1-2-3—4 rather than rounding them, as it is required
in real sailing regattas. If the true wind speed raises above 20

r_Z—-'&T‘_'-
reaching

start line
40] :
' finish '

autosafearea(30);

defabswpt(0, 41.6781425, -8.7073669, "start line");
defabswpt(1, 41.6792488, -8.7073669, "upwind");
defabswpt(2, 41.6790885, -8.7081069, "reaching”);
defabswpt(3, 41.6783218, -8.7081069, "downwind");
defindwpt(4, 0, 20, 135, "finish");

@when(1, t0.eq.0){ abort(); goto(4); }

/l variable i7 has the averaged true wind speed
/I wind speed is in tens of knot:

@when(2, i7.9t.200){ abort(); goto(4); }

/I start mission, set the time limit to 15 minutes

@initial{ setcounter(c0,0); settimer(t0, 900); \
enablecond(1); enablecond(2); \
goto(0); }

@0{ goto(1); }

@1{ inccounter(c0); if(c0.1t.2, 0, 2); }

@2{ goto(3); }

@3{ goto(4); }

/I hold forever:

@4{ hold(t0.eq.t0); }

Fig. 10. A typical dinghy regatta course and a mission program that
implements it.

knots the course is canceled and the sailing boat should return
immediately to the finish point. If the course is not completed
within the maximum time of 15 min, the sailboat should also
go to the finish point.

Figure 10 lists a program that implements this mission.
After creating the waypoints defining the course, the program
sets two asynchronous events to limit the race time to 15 min
and to terminate the mission when the true wind speed
exceeds 20 knots. When these events are triggered, the current
navigation action is aborted and the target waypoint is set to
the finish point (waypoint 4). To count the two passages in
waypoint 1 we use counter 0.

B. Sampling data with external devices

We consider here that the sailboat is equipped with a
sonar, a remotely controlled CTD attached to a winch and
an autonomous underwater sound recorder. The CTD and the
sound recorder start and stop the acquisition process with

the command-line shell scripts ctd —-start, ctd —-stop,
sr -start and sr -stop. The winch operation is also
controlled with an external software application that receives as
argument the desired depth and is called from the mission pro-
gram in blocking mode. The control of the sonar is integrated
in the sailboat’s software system and is started/stopped with the
value written in the shared register variable g9 (0:off, 1:on).
Figure 11 presents a program that implements this mission.

The sailboat starts by going to point 1 to record the
underwater sound for 2 minutes, while holding the navigation
processes to avoid the noise generated by the electric actuators;
then it performs a CTD profile in location 2: switch on the
CTD, unwind the winch to the desired depth, recover the CTD
and switch it off.

The sailboat continues to point 3 and starts scanning the
area delimited by points 10, 11, 12, 13, 14 and 15 to perform
a bathymetry log with 10m of separation between the scan
lines. This operation has to be completed within 2 hours. At
the end the sailboat must return to point 4 and hold forever.

/I Set the condition to abort the scan area operation:
@when(1,t2.eq.0){ disablecond(1); abort(); }

@initial{ goto(1); }

/I Switch on the sound recorder, hold for
/I two minutes, switch off the recorder
/I and continue to waypoint 2:
@1{ settimer(t1, 120); \
external(”sr -start”, 0); \
hold(t1.gt.0); \
external(”sr -stop”,0); \
goto(2); }

/I Enter hold mode, start the CTD acquisition,

/I wind out the winch down to 10 m, stop

/I the CTD and proceed to waypoint 3

@2{ hold(); \
external(”ctd -start”, 0); \
external(”winch -depth 107, 1); \
external(”winch -depth 07, 1); \
external(”ctd -stop”, 0); \
goto(3); }

// Start the bathymetry: enable the timeout timer
/I switch on the sonar, and do the scan area
@3{ settimer(t2,7200); \

enablecond(1); \

setregister(g9, 1); \

scanarea(8, 10, 11, 12, 13, 14, 15); \

setregister(g9, 0); \

goto(4); }

@4{ hold(t0.eq.t0); };

Fig. 11. A program to implement the data acquisition mission described in
the text. The definition of waypoints and safe area is not represented.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented the mission programming sys-
tem of the autonomous sailboat FASt. A mission program is
created by setting the reference waypoints, defining events
and assigning actions to them, allowing to easily specify
dynamic missions whose behavior depend on the state of
the sailboat control and navigation system and also external
systems. Mission programs are created as plain text files using
a simple and intuitive language and can also be edited with an
interactive graphics editor.

Future developments aim to test the programming environ-
ment in real operations and develop a framework to allow an

easy integration in the command and control system of other
robotic vehicles. Although this environment has been created
for a specific sailing robot, the implementation of the mission
compiler and mission execution components support easily the
integration of new commands for adapting to other platforms.

ACKNOWLEDGEMENT

The authors would like to acknowledge the support of the
Faculty of Engineering of the University of Porto and the
Department of Electrical and Computer Engineering.

This work is financed by the ERDF European Regional
Development Fund through the COMPETE Programme (oper-
ational programme for competitiveness) and by National Funds
through the FCT Fundacdo para a Ciéncia e a Tecnologia
(Portuguese Foundation for Science and Technology) within
project FCOMP-01-0124-FEDER-037281

REFERENCES

[1] P. E Rynne and K. D. von Ellenrieder, “Unmanned autonomous sailing:
Current status and future role in sustained ocean observations,” Marine
Technology Society Journal, vol. 43, no. 1, pp. 21-30, 2009.

[2] R. Hine, S. Willcox, G. Hine, and T. Richardson, “The wave glider:
A wave-powered autonomous marine vehicle,” in OCEANS 2009,
MTS/IEEE Biloxi-Marine Technology for Our Future: Global and Local
Challenges. 1EEE, 2009, pp. 1-6.

[3] A. Silva, A. Matos, C. Soares et al., “Measuring underwater noise with
very high endurance surface and underwater autonomous vehicles,” in
Proceedings of the OCEANS 2013 MTS-IEEE Conference, San Diego.
IEEE, 2013.

[4] H. Klinck, R. Stelzer, K. Jafarmadar, and D. K. Mellinger, “Aas
endurance: An autonomous acoustic sailboat for marine mammal re-
search,” in Proceedings of the International Robotic Sailing Conference
(IRSC2009), Matosinhos, Portugal, 2009, pp. 43—48.

[5] “Saildrone,” http://www.saildrone.com (accessed July 2014), 2014.

[6] R. Stelzer and K. Jafarmadar, “The robotic sailing boat ASV Roboat
as a maritime research platform,” in Proceedings of 22nd International
HISWA Symposium, 2012.

[71 C. Sauzé and M. Neal, “Design considerations for sailing robots per-
forming long term autonomous oceanography,” in International Robotic
Sailing Conference, Breitenbaum, Austria, 2008, pp. 21-29.

[8] O. Ménage, A. Bethencourt, P. Rousseaux, and S. Prigent, “Vaimos:
Realization of an autonomous robotic sailboat,” in Robotic Sailing 2013.
Springer, 2013, pp. 25-36.

[9] J. C. Alves and N. A. Cruz, “FAST—an autonomous sailing plat-
form for oceanographic missions,” in Proceedings of the MTS-IEEE
Conference—QOceans’2008, 2008.

[10] ——, “METASail a tool for planning, supervision and analysis of
robotic sailboat missions,” in Robotic Sailing 2014 (to appear).

[11] T. Schneider and H. Schmidt, “Unified command and control for
heterogeneous marine sensing networks,” Journal of Field Robotics,
vol. 27, no. 6, pp. 876-889, 2010.

[12] J. Pinto, P. Calado, J. Braga, P. Dias, R. Martins, E. Marques, and
J. Sousa, “Implementation of a control architecture for networked
vehicle systems,” in Navigation, Guidance and Control of Underwater
Vehicles, vol. 3, 2012, pp. 100-105.

[13] N. Dias, C. Almeida, H. Ferreira, J. Almeida, A. Martins, A. Dias, and
E. Silva, “Manoeuvre based mission control system for autonomous
surface vehicle,” in OCEANS 2009-EUROPE. 1EEE, 2009, pp. 1-5.

[14] J. Alves, P. Oliveira, R. Oliveira, A. Pascoal, M. Rufino, L. Sebas-
tiao, and C. Silvestre, “Vehicle and mission control of the DELFIM

autonomous surface craft,” in Control and Automation, 2006. MED’06.
14th Mediterranean Conference on. 1EEE, 2006, pp. 1-6.

[15] M. R. Benjamin, P. M. Newman, H. Schmidt, and J. J. Leonard, “An
overview of MOOS-IVP and a users guide to the IvP helm autonomy
software,” MIT Technical report, August 2010.

