Clustering Data Streams Using a Forgetful Neural Model

Douglas O. Cardoso, Felipe Franca
Universidade Federal do Rio de Janeiro
PESC-COPPE

Rio de Janeiro, RJ, Brazil )
{douglascardoso, felipe}@cos.ufrj.br

ABSTRACT

To cluster a data stream is a more challenging task than
its regular batch version, having stricter performance con-
straints. In this paper an approach to this problem is pre-
sented, based on WiSARD, a memory-based artificial neu-
ral network (ANN) model. This model functioning was re-
viewed and improved, in order to adapt it to this task. The
experimental results obtained support the use of this system
for the analysis of data streams in an informative way.
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1. INTRODUCTION

Weightless ANN models [I] are one of the first machine
learning tools, which powered some of the most primitive
pattern recognition systems [2]. Despite working straight-
forwardly, some of these models can effectively handle some
of the most recent learning challenges [4,5]. Moreover, this
simplicity eases the creation of variations of these learners
without compromising their operation. This was explored
through this research, resulting in the successful develop-
ment of a data stream clustering [6] system based on WiS-
ARD [2], one of these models.

2. DATA STREAM CLUSTERING

Let a data stream S = (s1, $2, 83,...) be an unbounded se-
quence of inputs. Each input s; = (Z;,t;) is a pair consisting
of a vector &; € R™ representing an observation, and its re-
spective arriving time t; € R. As a processing constraint, the
stream item s; is assumed to be available just until the item
si+1 becomes known. During this research it was considered
that ¢; = 4, but this is not required by this proposal [9].
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In this work, the sliding window model [3] is used to de-
fine how observations become obsolete. This model consid-
ers just the w most recent observations equally important to
define the up-to-date knowledge, where w is a model parame-
ter. Moreover, under this model, the defined clusters should
be somehow similar to those generated by a conventional
clustering algorithm from these w most recent observations.

A widespread technique to cluster data streams is to con-
tinuously process the raw input into an intermediate layer,
which provides the information to high-level clustering, re-
alized on demand. These two parts are called the data ab-
straction step and the clustering step [8]. The intermediate
layer is usually a big collection of tiny groups, called micro-
clusters. Algorithm 1 describes the general form of the data
abstraction step. The clustering step, in turn, is a conven-
tional clustering task which uses the micro-clusters as input.

1: for all Z;, the observations from the stream do
Discard information obtained from observation Z;_.,
Discard micro-clusters which are no longer useful
Find the micro-cluster mc; which better encloses Z;
if mc; is close enough to 7; then

Update mc; definition using &;
else

Start a new micro-cluster based on ;

Algorithm 1: A generic data abstraction procedure.

3. NEURAL NETWORKS AND WISARD

Biological neurons receive stimuli through its dendrites, which
are organized as a tree. These stimuli are combined during
tree traversal until the neuron soma, where a response for
such inputs is generated. This response is forwarded trough
the axon to other neurons by synapses.

In the most popular mathematical abstraction of biological
neurons [7], the synapses are represented by edges, connect-
ing the nodes of the neural network. Various ANN models
rely on the modification of weights of its edges by the su-
perposition of the effects of the observations in the training
sample. Weightless ANNs [1] are memory-based alternatives
to weights-based ones. All links of these networks have no
weight. Their memorizing nodes are responsible for learning.

The biological inspiration of these memory nodes comes from
the fact that the input signals (excitatory or inhibitory) of
biological neurons are combined by the dendritic tree before
reaching the soma, prompting an output signal. This is


http://dx.doi.org/10.1145/2851613.2851889

similar to accessing a dictionary of bit values using a binary
key. The most basic memory neurons operate this way.

The WiSARD is a weightless ANN model originally de-
signed for classification. To realize a class prediction, it
provides for each class a value in the interval [0,1], rep-
resenting how well the provided observation matches the
acquired knowledge regarding that class. Each class score
is computed from a structure called discriminator, which
is responsible for storing the knowledge regarding a class.
How a discriminator learns about its respective class is de-
scribed in algorithm 2. Mind some notation introduced
here: Ay is the discriminator of class ; Ay, is the j™
node of Ay; § is the number of nodes which compose each
discriminator. Consider as a randomly defined mapping
addressing(Z) (a1 as -+ as), a; € {0,1,...,2° —1}.
Moreover, § and 8 are model parameters. After training,
a WiIiSARD instance can rate the matching between any
known class ¢ and an observation & as shown in eq. (1la).
At last, classification happens according to eq. (1b).

1: for all Ay, the network nodes do

2: Ay @ > Initially, nodes are empty sets
3: for all pairs (Z;,y;), the training sample do

4: for all addresses a; in addressing(#;) do

5: Ayij = Ay, 5 Udag}

Algorithm 2: A description of WiSARD training procedure.
1

matching(y, ¥) = 5 Z [addressing ; (%) € Ay;]' ; (la)

(1b)

9 = argmax matching(y, ¥)
Y

4. WISARD FOR CLUSTERING STREAMS

Targeting data stream clustering, it is proposed here to use
WiSARD discriminators as micro-cluster representatives.
Since clustering data is unlabeled, a discriminator will not
“absorb” observations of some class, but those it matches
well enough, better than other discriminators. This way,
some parts of algorithm 1 would be translated as follows:
line 4 is a search for the best matching discriminator in the
same mold of eq. (1b); line 5 is similar to compare a match-
ing rate to a threshold; line 6 is a regular absorption of #;
by the discriminator of mc;; line 8 prompts the addition of
a new discriminator to WiSARD, which absorbs Z;.

This idea is supported by some interesting facts: a discrim-
inator is natively an incremental learner; there is no restric-
tion to adding or removing discriminators, since they ex-
ist independently; WiSARD provides a richer feedback than
just a distance to a decision boundary as discriminative clas-
sifiers, what enables decisions beyond class prediction [4];
a discriminator is more informative than data abstraction
units of other approaches to data stream clustering, which
depict a data sample based on its mean and variance.

4.1 Knowledge Forgetting

The panorama provided so far is very positive with respect
to this WiSARD adaptation. However, lines 2 and 3 of algo-
rithm 1 remain unclear: the first regards cancelling the influ-
ence of an observation on aggregated knowledge so to keep

Tverson bracket: [L] = 1 if the logical expression L is true;
otherwise, [L] = 0.
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it up-to-date; the second one concerns the proper ending of
the life cycle of micro-clusters when they become useless.

The cancellation of the influence of an outdated observation
on knowledge comes down to deleting the addresses obtained
from it which were stored in the nodes of a discriminator.
This can be accomplished keeping a reference to every stored
address in a Least Recently Used cache, so that every time
an address is stored, its reference is updated as the most
recently used. Using this structure increases the cost of ab-
sorption, but it expressively simplifies dumping expired ad-
dresses: it is enough to delete the least recent cache entry
until it becomes reference to a non-expired element.

Now, consider that the knowledge a discriminator possess
is expanded when new addresses are added to the discrimi-
nator nodes, and it is contracted by the removal of expired
addresses. Suppose that some time after creation, a discrim-
inator Ay becomes “empty” (i.e., V4, Ax; = &), because all
its addresses expired. From then on this discriminator will
be unable absorb other observations, since it can not match
any of their addresses (i.e., VZ;, matching(k, #;) = 0). Thus,
it can be discarded as it is no longer useful.

4.2 Clusters Imbalance

Because of the way WiSARD learns, it is strongly susceptible
to have its effectiveness harmed when dealing with class im-
balance. Although there is no information about classes for
clustering, imbalance is still possible: in some instant during
stream processing, two discriminators can have a very dif-
ferent number of observations associated to themselves [5].
To consider such difference during clustering, an alternative
definition of matching comes in handy. Thus, it is proposed
here to define the cardinality of a discriminator and a nor-
malized matching rate as in egs. (2a) and (2b), respectively

|Ak] = <1;[|Ak,j|> ;

matching(k, Z)
(1Ak[)*/?

(2a)

matching™ (k, T) (2b)

4.3 Algorithmic Description

To conclude the description of the proposed WiSARD-based
system to cluster data streams, its functioning is detailed in
algorithm 3, in the same format of algorithm 1.

S. EXPERIMENTAL EVALUATION

The effectiveness of the developed WiSARD-based system
was assessed through a collection of experiments, comparing
the quality of the k micro-clusters which are maintained at
a given time instant ¢ with those a conventional k-means
algorithm generates using the current observations as input.

Two real-world data sets were used to evaluate the clustering
performance. The Forest Cover Type (FCT) data set [3] is a
popularly used data stream clustering benchmark. For the
characterization of the data set as a stream, the observations
were sorted with respect to their ‘elevation’ [9]. The original
10% data split of the Network Intrusion Detection (NID)
data set ? was also employed, with the observations in the
original order. Just the numeric attributes of both data sets
were considered.

2http://kdd.ics.uci.edu/databases /kddcup99/
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Window Size

Homogeneity

Data Set Entropy # Micro-clusters
(w) WiSARD K-means Difference
FCT 400 0.681 06.34(0.478) 0.0790.005)  0.098(0.005y  -0.019(0.037)
FCT 2000 0.624 27.65(0.858) 0.140(0.004) 0.153(0.003)  -0.013(0.024)
FCT 10000 0.605 59.74(0.753) 0.181(0.002) 0.205¢0.002) -0.023(0.024)
NID 400 0.086 01.23(0.077) 0.9670.025y 0.954(0.035)y +0.013(0.160)
NID 2000 0.070 01.99(0.110) 0.9550.024y 0.897(0.012) +0.0590.220)
NID 10000 0.139 06.37(0.120) 0.954(0.021)  0.887(0.016y +0.068(0.186)

Table 1: Test definitions and results. Top performances are highlighted. Standard deviation of averages shown as subscripts.

1: for all (Z,t), the stream elements do

2 while min LRU <t —w do

3 k,j,a; = argmin LRUy j.a,

k,j,a;

4: Ay Ak \{a;}

5: Delete LRUg,j,a;

6 Delete all Ay, for which |Ax| =0

7 k = argmax matching™ (k, Z)

k

8: if matching® (k, #) > o then > « is a parameter
9: for all addresses a; in addressing(Z;) do
10: Ak,j — Ak,]' U {CLJ'}
11: LRUk,j,aj —t
12: else
13: Let A, be a new discriminator
14: for all addresses a; in addressing(%;) do
15: A*,]‘ +— A*,j U {aj}
16: LRU, j.q; + t

Algorithm 3: WiSARD-based data abstraction procedure.

Each test, represented by one row of table 1, was repeated
10 times. For all runs, at each 10 thousand observations,
it was realized a quality assessment of the current cluster-
ing. One of the classes of NID is by far the most frequent,
what leads to the low entropy level of NID compared to that
of FCT. This fact reflects on the number of micro-clusters
maintained during stream processing. With respect to ho-
mogeneity, the WiSARD-based system performs similarly to
K-means, despite the fact that the first not only learns in-
crementally but also discards useless information, while the
last works as a regular batch learner.

It can be noticed that K-means was the superior alternative
for the FCT data set, while WiSARD was in this condition
regarding NID. This may be explained by the fact that NID
is more stable than FCT as a stream. Consequently, to learn
based on some previous established structure appears to be
more beneficial for NID, while learning from scratch goes
better for FCT.

6. CONCLUSION

Although there is a rich variety of works on data streams
clustering, there is still room for improvements. The exist-
ing alternatives to the problem in question discard expired
data on an estimate basis. However, the novel conception of
micro-clusters, based on discriminators, allowed to overcome
this condition. An intended continuation of this work is the
definition of a distance-like measure for WiSARD discrim-
inators, targeting to perform the clustering step based on
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their pairwise similarities. Currently, the throughput per-
formance of the proposed system is still being analyzed and
improved, based on redesigning the structure of WiSARD,
and this already provides promising preliminary results.
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