
Feature Ranking in Hoeffding Algorithms for Regression

João Duarte
LIAAD, Inesc Tec, University of Porto

Porto, Portugal
jduarte@inesctec.pt

João Gama
LIAAD, Inesc Tec, University of Porto

Porto, Portugal
jgama@fep.up.pt

ABSTRACT
Feature selection and feature ranking are two aspects of the
same learning task. They are well studied in batch scenar-
ios, but not in the streaming setting. This paper presents a
study on feature ranking from data streams in online learn-
ing regression models. The main challenge here is the rele-
vance of features might change over time: features relevant
in the past might be irrelevant now and vice-versa. We pro-
pose three new online feature ranking algorithms designed
for Hoeffding algorithms. We have implemented the three
methods in AMRules, a streaming regression algorithm to
learn model rules. We compare their behaviour experimen-
tally and present the pros and cons of each method.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Concept learn-
ing

Keywords
Data Streams, Howffding Algorithms, Feature ranking

1. INTRODUCTION
Currently, data dimensionality in learning tasks is increas-
ing exponentially. High-dimensional data present serious
problems to existing learning methods. One of them is the
curse of dimensionality, a well-known problem for distance
based methods. Due to the presence of a large number of
features, the instance space becomes sparse and a learning
model tends to underfit, resulting in performance degrada-
tion. To address the problem of high dimensionality several
feature selection techniques have been studied. All methods
aim to select a small subset of features from the original
ones according to a certain relevance evaluation criterion.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’17, April 3-7, 2017, Marrakesh, Morocco
Copyright 2017 ACM 978-1-4503-4486-9/17/04. . . $15.00
http://dx.doi.org/10.1145/0000000.0000000

These methods usually lead to an improved learning perfor-
mance (e.g., higher learning accuracy for classification), a
lower computational cost, and a better model interpretabil-
ity [15]. Most of the methods presented so far, assume that
the relevance of a feature does not change over time. Nev-
ertheless, in many real-world applications, where data is
collected over time, the relevance of a feature might also
evolve. A feature that is relevant during a certain period
might become less important. Also, an irrelevant feature
might become relevant, reducing the predictiveness of the
decision model. These variations can occur due to concept
drift, changes in hidden variables or in key properties of the
observed variables [8]. Detecting irrelevant features can be
used to simplify the decision model, and to save space when
storing the statistics about that feature.

In this paper we focus on online regression learning from
data streams when the relevance of features evolve over time.
The online learning community has studied this problem for
a long time. A major paper in this area is [13], that presents
one of the first incremental linear models that identify irrele-
vant attributes using a threshold over the weights of the lin-
ear model. It is one of the methods we use, and is described
later in Section 2. In [12], the authors reviewed filter and
wrapper approaches for feature selection and concluded the
filter approach to be more adequate for on-line processing
due to its lower computational costs. Filters are based on cu-
mulative statistics (i.e., contingency tables) of the number of
times a feature appears in each distinct class. Updating such
statistics is incremental by nature, which makes the method
suited for data stream processing. The predictive score of
each feature can be computed using popular methods such
as, the information gain, χ2 or mutual information [12].

Feature selection and feature weighting are the basic strate-
gies for quantifying feature relevance. While feature selec-
tion is used to reduce the size of the kept models, feature
weighting is used to sort features by relevance and often used
for providing useful information about the process generat-
ing the data. In this paper, we present an experimental
study comparing three feature-ranking methods from data
streams. The ranking dynamically evolves over time show-
ing which features are relevant at each time instant. The
paper is organized as follows. The next section presents the
related work on feature ranking and describes AMRules, the
Hoeffding algorithm used to implement the proposed rank-
ing methods. Section 3 describes the proposed streaming
feature ranking methods and how they are embedded in AM-

Rules. Section 4, describes the experimental results using
benchmark, both artificial and real world, datasets. Section
5 presents the main lessons learned.

2. RELATED WORK
Depending on how class information is used, feature ranking
algorithms can be categorized into supervised, unsupervised
and semi-supervised. Furthermore, supervised feature rank-
ing methods can be broadly categorized into filter models,
wrapper models and embedded models [15]. The filter model
separates the task of feature selection from the task of learn-
ing a classifier so that the bias of the learning algorithm does
not interact with the bias of a feature selection algorithm.
It relies on measuring generic characteristics of the training
data such as distance, consistency, dependency, information,
and correlation. Relief [17], Fisher score [15] and Informa-
tion Gain based methods [15] are among the most represen-
tative algorithms of the filter model. The wrapper model
uses the predictive accuracy of a predetermined learning al-
gorithm to determine the quality of the selected features.
These methods are prohibitively expensive to run for data
with a large number of features.

The roots of online learning ensembles can be found in the
WinNow algorithm [13]. WinNow is an online algorithm that
combines the predictions of several experts by majority weighted
voting. Each expert, which can be an attribute, is associ-
ated with a weight. When the weighted vote misclassifies
an example, the weight of the experts in error is updated.
WinNow uses a multiplicative weight-update scheme, that is,
the weight is multiplied by a constant β < 1. It is re-
stricted to binary decision problems, and exhibits very good
performance when many dimensions are irrelevant. Later
on, the same author presented the Weighted-Majority Algo-
rithm [14] to combine predictions from a set of base classi-
fiers.

Random forests are among the most popular machine learn-
ing methods thanks to their relatively good accuracy, ro-
bustness and ease of use. A random forest consists of a
number of decision trees. Every node in the decision trees is
a condition on a single feature, designed to split the dataset
into two so that similar response values end up in the same
set. The base measure on which the (locally) optimal con-
dition is chosen is called impurity. For classification, it is
typically either Gini impurity or information gain/entropy
and for regression trees, it is variance. Thus when training
a tree, it can be computed how much each feature decreases
the weighted impurity in a tree. For a forest, the impurity
decrease from each feature can be averaged and the fea-
tures ranked according to this measure. They also provide
two straightforward methods for feature selection: mean de-
crease impurity and mean decrease accuracy.

Few algorithms address the problem of feature selection or
feature ranking from data streams. An online algorithm was
proposed in [19], but it requires multiple passes over the
data. In [10], the authors present an unsupervised feature
selection approach on data streams that selects important
features by making only one pass over the data using limited
storage. The proposed algorithm uses ideas from matrix
sketching to efficiently maintain a low-rank approximation

of the observed data and applies regularized regression on
this approximation to identify the important features. A
recent study, for classification, appears in [1].

Since the seminal work on Very Fast Decision Trees [4], the
idea of using the Hoeffding bound as a heuristic to define
the sample size used to select the splitting-test were used
elsewhere. For example, learning regression and model trees
appears in [11], learning decision and regression rules in [6],
multiple models in [2, 5], etc. In this Section, and without
loss of generality, we focus on regression rules, because the
Hoeffding method is used to implement the feature ranking
algorithms described here.

AMRules is a rule-based algorithm that learns from time
evolving data streams. It incrementally grows a set of rules
which are used to make classification [7] and regression [6]
predictions. In this work, we will focus on AMRules for
regression. However, the same concepts could be directly
applied to classification rules and Hoeffding trees. A rule R
is an implication in the form A ⇒ C. The antecedent A is
a conjunction of literals L based on the values of the input
attributes, and the consequent C consists of a predicting
function.

A rule collects summaries of past data and, from time to
time, evaluates a merit-function responsible for measuring
the merit of splitting the data according to a given value
v for each attribute Xj . For regression, AMRules uses the
Variance Ratio (VR) as the merit-function. VR is defined
as

V R(Xj , v) = 1− |EL||E|
var(EL)

var(E)
− |ER||E|

var(ER)

var(E)
, (1)

where E is the set of examples seen by the rule since its last

expansion and y = 1
|E|
∑|E|
i=1 yi. If Xj is a numeric attribute,

EL is the set of examples {xi ∈ E : xi,j ≤ v} and ER is the
set of examples {xi ∈ E : xi,j > v}. If Xj is a nominal
attribute, EL is the set of examples {xi ∈ E : xi,j = v}
and ER the set of the remaining examples. A rule is ex-
panded if there is sufficient confidence in choosing the best
split, i.e. enough examples have been seen by the rule to
make the splitting decision. For this purpose the Hoeffding
bound [9] is used. It states that the true mean of a random
variable r, with range P , will not differ from the sample
mean more than ε with probability 1 − δ. It is defined as

ε =

√
P2 ln (1/δ)

2n
where n is the number of observations. Let

V RBest and V R2ndBest correspond to the best and second
best split options according to the Variance Ratio criterion.
If V RBest − V R2ndBest > ε, we can state that V RBest cor-
respond to the best split with probability 1− δ and the rule
is expanded.

AMRules starts with an empty rule set R plus a default
rule D. When a new training example (x, y) is available,
the rules covering x are updated: for each rule Rl ∈ S(x), if
x is not an anomaly a change detection test is performed; if
change is detected Rl is removed from the rule set since it is
no longer valid; otherwise, the sufficient statistics of the rule
Ll are updated; the rule is expanded if it satisfies the Hoeffd-
ing bound test. To detect changes, the evolution of the error
of each individual rule is monitored using the Page-Hinkley
(PH) test [16]. If no rule covers x, the sufficient statistics of

the default rule LD are updated and the expansion of the
default rule is attempted. If the default rule expanded suc-
cessfully it is added to the rule set R and a new default rule
is created. Note that the split evaluation and corresponding
rule expansion is only attempted from time to time to save
computation time. To classify a test example, all the rules
that cover the example make a prediction. These predictions
are aggregated by weighted vote. The weights are inversely
proportional to the prequential error of the corresponding
rules.

The Random AMRules algorithm [5] consists of learning an

ensemble F = {f̂1 · · · , f̂k} of k models f̂m using the AM-
Rules algorithm as the base learner. Similarly to the Ran-
dom Forests [3] algorithm, a different version of the data set

is used to learn each individual model f̂m following an on-
line Bagging approach. For each example (x, y) and learning

model f̂m a different weight pm is sampled from the Poisson
distribution pm ∼ Poisson(1) which is used by AMRules to

update f̂m. If pm = 0 the model f̂m stays unchanged, oth-
erwise AMRules learns from (x, y) using weight pm. Also,
when a rule Rl is created or expanded, a subset of the data
attributes with size d′ (1 ≤ d′ ≤ d) is randomly chosen. In
order to prevent the models from being correlated, only this
subset of attributes are considered for the next splitting de-
cision of Rl. The prediction ŷ∗ of Random AMRules is com-
puted as a linear combination of the estimations produced
by the models f̂m ∈ F : ŷ∗ = f̂∗(x) =

∑k
m=1 θmf̂m(x).

In this paper, the weights θm are computed using a uni-
form weighting function, such that all the predictors have
the same importance, θm = 1

k
.

3. ONLINE FEATURE RANKING
In this section, we propose three incremental and adaptive
feature-ranking methods. All methods maintain a vector of
weights of the same size as the number of features. The
weights are updated during the process of learning rule sets:
1) When evaluating the merit of the splits; 2) When expand-
ing a rule; 3) When removing a rule from the rule set.

The features used in the the antecedents of the rules are
clear indicators of the importance of the input attributes.
Another indicator is the impact in variance reduction of a
split. The methods we propose explore these indicators. It is
intended to keep the importance of the attributes available
and up-to-date at all times, using low computational cost.
Therefore, the importance of each feature is computed in an
on-line fashion. Of course, these methods may be applied to
one or several rule sets. Therefore, the ranking methods can
be used to track the relevance of the input features both in
the AMRules and Random AMRules algorithms.

3.1 The Frequency-based Method.

Let a∗ = [a∗1, · · · , a∗d] be the vector that maintains the over-
all attribute importance, and al =

[
al1, · · · , ald

]
be the con-

tribution of the rule Rl to the overall attribute importance
a∗.

The first proposed method consists of simply counting the
number of times that each input attribute appears in the lit-
erals of the rules. It starts by initializing a∗ as a null vector.

Every time a default rule is created, the corresponding con-
tribution vector aD is also initialized as a null vector. Then,
these data structures are updated when a rule expansion or
a change detection event occurs:

• Rule expansion event - Let op be a comparison
operator. When Rl is extended by adding a literal
L = (Xj op v) involving input attribute Xj , then
the corresponding accumulated values are updated as
a∗j ← a∗j + 1 and alj ← alj + 1.
• Rule drop event - When a change is detected in a

rule Rl, resulting in dropping the rule from the rule set,
the overall attribute importance is updated as a∗ ←
a∗ − al.

3.2 The Merit-based Method.

The merit-based method updates the feature importance ev-
ery time the splits are evaluated. It ranks the importance of
the attributes considering the merit-function used to evalu-
ate the splits. For each attribute Xj , a weight wlj is com-
puted in accordance to the merit of the best split of Xj and
to the number of literals nl in the rule Rl. In regression
problems wj is computed considering the variance reduction
(defined in Equation 1) of the split, and is computed as:

wlj =
1

1 + nl
V R(Xj , v). (2)

As nl increases the influence of V R(Xj , v) diminishes so that
higher relevance is given to the first-added literals when com-
pared to the latter ones.

The merit-based method initialises a∗ and aD as null vec-
tors, and nl as 0. The method proceeds by reacting to the
following three events.

• Split evaluation event - Let w = [w1, · · · , wd] be a
vector containing the weights for all d input attributes.
After evaluating the merit of the best splits for a given
rule Rl, the overall relevance of the attributes are up-
dated as a∗ ← a∗−wl

old+wl, where wl
old is the weight

vector resulting from the previous split evaluation of
Rl. If the split evaluation results in a rule expansion
then wl

old ← 0. Similarly, the local relevance is up-
dated as al ← al −wl

old + wl.
• Rule expansion event - If the event above results in

a rule extension, then the number of literal in the rule
should also be updated: nl ← nl + 1.
• Rule drop event - When a rule Rl is pruned from

the rule set the local relevance contribution is deducted
from the overall attribute importance: a∗ ← a∗ − al.

In contrast to the frequency-based method, this method is
able to express feature relevance even before any rule (be-
sides the default rule) is added to the rule set. In addition, it
can express feature importance variations without the need
for rule expansion.

3.3 The Weighted Majority Method.

The last feature ranking method is based in the Weighted
Majority algorithm [14]. Each rule’s importance vector al is
initialized as an all-ones vector. Every time the split eval-
uation event occurs, if the best merit of a given attribute

Xj is less than a threshold λ and Xj does not belong to
the antecedent of Rl then the corresponding importance is
multiplied by a factor θ. The local importance of the at-
tributes that are not relevant for a particular rule decreases
as time goes by. Also, when a rule Rl expands by an at-
tribute Xj the corresponding local attribute importance is
reset to alj = 1. The idea is that an attribute that is part
of the antecedent of a rule is always relevant. The factor θ
depends on the number of times ml that Rl has expanded,
and is defined as θ = ml+1

ml+2
. If the rule as seen no expansions

then θ = 1
2
, and as the number of expansions increases the

value of θ gets closer to 1. The motivation is to be gentler
in dropping the importance of the attributes as the number
of antecedents of the rule increases.

The weighted majority method maintains a global attribute
importance structure a∗ which corresponds to the mean vec-
tor of the local importance vectors al:

a∗j =
1

n

n∑
l=1

alj (3)

where n is the number of rules in the rule set. However,
Equation 3 is not computed every time an event occurs. In
order to reduce computational costs, a∗ is computed on-line
as described below.

• Split evaluation event - Let al
′

and al be the local
importance vectors before and after the split evalua-
tion event. Each component of the overall attribute

importance vector is updated as a∗j ←
a∗jn−a

l′
j +alj
n

,
where n is the number of rules before the expansion.
• Rule expansion event - If the rule expanded is a

default rule, then a new default rule will be created
resulting in a new local importance vector defined as
an all-ones vector, aD = 1. Therefore, the overall
attribute importance vector will be updated as a∗j ←
a∗jn+1

n+1
.

• Rule drop event - When change is detected resulting
in dropping a rule Rl, the overall attribute importance

is updated by: a∗j ←
a∗jn−a

l
j

n−1
.

3.4 Discussion.

For FB and MB methods, an attribute i is considered ir-
relevant if its relevance a∗i is below 1

2d

∑d
j=1 a

∗
j . For WM,

an attribute has no relevance if a∗i < 0.5. All the meth-
ods are efficient, with low computational complexity and
easy to implement. They can be applied both for classifi-
cation and regression problems. The first two methods, the
Frequency-based and Merit-based methods, use the feature
selection criterion to quantify the relevance of features. In
these methods, the feature relevance starts from 0 and in-
creases when the feature is selected by the feature selection
criteria. The Frequency-based method, only applies when
a rule is expanded. In that case, we add 1 to the rele-
vance of the selected attribute. The Merit-based method,
updates the feature score whenever the set of features are
evaluated. In that case, the relevance of all attributes is
updated with the value of the merit-function for that at-
tribute. The relevance of these two methods has no up-
per limit, the score varies from (0, inf [. The relevance in

Frequency-based method grows by steps, while in the Merit-
based method it grows smoothly. The starting point for the
Weighted-majority feature ranking method is 1, that is, in
the absence of any information, all the features are relevant.
The relevance of features decreases over time. The relevance
in the weighted majority feature ranking is bounded, taking
values in the interval (0, 1].

4. EXPERIMENTAL EVALUATION
We implemented the three proposed methods for ranking
feature relevance in AMRules and Random AMRules. Both
algorithms run using their default parameter settings.

In most of the real-world datasets, the relevance of attributes
is unknown. In order to study the ability of the proposed
method to identify the relevant attributes we need to know
the ground truth. For this propose, we use artificial data.
Artificial data allow us to design controlled experiments
where we know which are the relevant attributes; when they
become irrelevant, which ones become relevant, and so forth.
In this section, we present results using two artificial data
sets. In these datasets, the relevance of the attributes evolve
over time. It is known which attributes are relevant and ir-
relevant in each period.

In the set of experiments reported here, the impact of the
feature selection methods in the performance of AMRULES
is reduced and without statistical significance. Due to the
lack of space, we prefer focusing the analysis in the set of
features select by each method.

4.1 Experiences with the SEA dataset.

This is a benchmark dataset [18] for drift detection. It is a
two-class problem, described by 3 attributes and 60k exam-
ples. Attributes are numeric, taking values between 0 and
10. Only two of them are relevant. There are three drifts,
dividing the dataset into 4 regions. In the first 2 regions,
the relevant attributes are the first and second. For the last
2 regions, the relevant attributes are the first and third.

Using artificial datasets, we can perform controlled experi-
ences, quantifying reactions and delays. Figure 1 plots the
relevance of the 3 features over time. The first column of
plots report the results of AMRules, and the second column
refer to RandomRules. Each row refers to one of the meth-
ods: frequency-based, merit-based and the weighted major-
ity feature ranking method. While in the first two methods,
the relevance of features starts from 0, in the weighted ma-
jority feature ranking method the relevance starts from 1.
The relevance of the first two methods has no upper limit,
varies from (0, inf [. The relevance in the weighted major-
ity feature ranking is bounded, taking values in the interval
(0, 1].

From these plots, we can conclude that all the three methods
capture the relevant and irrelevant features. Moreover, the
three methods are able to track the changes in relevance of
the features in the presence of drift. RandomRules, that
aggregates the information from 10 trees, better captures
the relevance of features. The weighted majority feature
ranking method (WM) with RandomRules is the method
that first captures the change in relevance of the features.

Table 1: Summary of results using benchmark data sets.
AMRules RAMRules

Dataset Examples Attributes Irrelevant FB MB WM FB MB WM

2D planes 40768 10 3 3(0+0) 3(0+0) 3(0+0) 3(0+0) 3(0+0) 3(0+0)
bank8FM 8192 8 0 6(6+0) 1(1+0) 1(1+0) 4(4+0) 1(1+0) 0(0+0)
Fried 40768 10 5 7(2+0) 5(0+0) 5(0+0) 5(0+0) 5(0+0) 5(0+0)
FriedDrift 50000 10 5 7(2+0) 5(0+0) 5(0+0) 6(1+0) 5(0+0) 5(0+0)
Californian Housing 20460 8 – 4 0 0 3 0 0
Ailerons 13750 40 – 37 20 18 31 20 15
Elevators 16559 18 – 16 8 9 12 9 5
House8L 22784 8 – 4 1 0 4 1 0
House16H 22784 16 – 12 0 3 8 0 0

Frequency, AMRules Frequency, RandomRules

Merit, AMRules Merit, RandomRules

WM, AMRules WM, RandomRules

0
2
4
6
8

0
10
20
30
40
50

0

1

2

3

0

5

10

15

20

0.00
0.25
0.50
0.75
1.00

0.5
0.6
0.7
0.8
0.9
1.0

0 20000 40000 60000 0 20000 40000 60000
Number of examples

A
ttr

ib
ut

e
im

po
rt

an
ce

Attr

1

2

3

Figure 1: Study on the Relevance of Features using the SEA Dataset

4.2 Experiences with the FRIED dataset.

This is a well-known regression dataset with 40768 cases,
described by 10 continuous attributes. The only relevant
attributes are the first five ones; the last five attributes are
irrelevant.

Figure 2 plots the relevance of the 10 features over time.
Again, the first column of plots report the results of AM-
Rules, and the second column refer to RandomRules. Each
row refers to one of the methods: frequency-based, merit-
based and the weighted majority feature ranking method.
From these plots, we can conclude that all the three meth-
ods capture the relevant and irrelevant features.

Again, the best method is the weighted majority feature
ranking method (WM) with RandomRules. In this set of
experiments, RandomRules with WM correctly detect all
the irrelevant features. No relevant feature was signalled as
irrelevant.

Frequency, AMRules Frequency, RandomRules

Merit, AMRules Merit, RandomRules

WM, AMRules WM, RandomRules

0

5

10

15

0
25
50
75

100
125

0
1
2
3
4
5

0

10

20

30

0.00
0.25
0.50
0.75
1.00

0.4

0.6

0.8

1.0

0 10000 20000 30000 40000 0 10000 20000 30000 40000
Number of examples

A
ttr

ib
ut

e
im

po
rt

an
ce

Attr

1

2

3

4

5

6

7

8

9

10

Figure 2: Study on the Relevance of Features using
the Fried dataset.

4.3 Summary of results in benchmark datasets.

Table 1 presents a summary of results using benchmark
datasets. We use artificial data (first 4 datasets), where the
irrelevant attributes are known, and real-data with unknown
categorization of feature relevance. The last six columns
show the number of irrelevant attributes found by the frequency-
based (FB), merit-based (MB) and weighted majority (WM)
feature ranking methods when used embed with AMRules
and Random AMRules (RAMRules). For each experience,
we report a string: ’NR(T1+T2)’, where NR is the num-
ber of irrelevant attributes reported by the algorithm, T1
the number of relevant attributes reported as irrelevant, and
T2 the number of irrelevant attributes reported as relevant.

All methods correctly identified all irrelevant features for 2D
planes. However, only WM detected the correct number of
non-relevant features for bank8FM (0) and only with RAM-
Rules. MB detected 1 irrelevant feature both with AMRules
and RAMRules and FB was the worst performing method.
The low number of expanded rules in the rule sets explains
the poor performances of MB and (especially) FB meth-
ods. This resulted from the small size of the dataset. For
Fried and FriedDrift, MB and WV always correctly iden-
tified all irrelevant features. FB incorrectly classified two
features as irrelevant with AMRules on both datasets and
one with RAMRules in FriedDrift. From the analysis of the
synthetic datasets we conclude that WM is the best method
followed by MB. These methods correctly identified the ir-
relevant features in most of the cases. Also, just counting
the frequencies of attributes on the antecedents of rules is
not an effective method for detecting unimportant features.
Analysing the results for the real data sets, we observe that
FB usually detects more irrelevant features than the other
methods. FB only takes into account the presence of the
attributes in the antecedents of the rules and not its mer-
its. The MB and WM methods overcome this problem and
consequently identify much less features as irrelevant.

5. CONCLUSIONS
In this paper, we discuss three online methods for continu-
ously quantifying the relevance of features: the Frequency-
based method, the Merit-based method, and the Weighted-
majority feature ranking method. The first two methods are
online versions of the feature ranking in Random Forests.
The third one, embed in rule learning the weight update
rule of the WinNow algorithm. The three methods exploit
characteristic of the Hoeffding algorithms for learning trees
and rules. Our experimental evaluation, WM with Ran-
domRules is the most effective and robust method to detect
relevant features. Moreover, the WM is the fastest to adapt
to changes in relevance of the features in presence of drift.

Acknowledgements: Authors acknowledged the support
given by European Commission through MAESTRA (ICT-
2013-612944) and the Project TEC4Growth financed by the
North Portugal Regional Operational Programme (NORTE
2020), under the PORTUGAL 2020 Partnership Agreement.

6. REFERENCES
[1] J. P. Barddal, H. M. Gomes, F. Enembreck,

B. Pfahringer, and A. Bifet. On dynamic feature

weighting for feature drifting data streams. In ECML
PKDD 2016, pages 129–144, 2016.

[2] A. Bifet, G. Holmes, B. Pfahringer, P. Kranen,
H. Kremer, T. Jansen, and T. Seidl. Moa: Massive
online analysis. Journal of Machine learning Research
(JMLR), pages 1601–1604, 2010.

[3] L. Breiman. Random forests. Machine Learning,
45(1):5–32, 2001.

[4] P. Domingos and G. Hulten. Mining High-Speed Data
Streams. In Proc. of the ACM Sixth International
Conference on Knowledge Discovery and Data Mining,
pages 71–80, Boston, USA, 2000. ACM Press.

[5] J. Duarte and J. Gama. Ensembles of adaptive model
rules from high-speed data streams. In Proc. of the 3rd
Int. Workshop BigMine, pages 198–213, 2014.

[6] J. Duarte, J. Gama, and A. Bifet. Adaptive model
rules from high-speed data streams. TKDD, 10(3):30,
2016.

[7] J. Gama and P. Kosina. Learning decision rules from
data streams. In IJCAI, pages 1255–1260. AAAI,
Menlo Park, USA, 2011.

[8] J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy, and
A. Bouchachia. A survey on concept drift adaptation.
ACM Comput. Surv., 46(4):44:1–44:37, 2014.

[9] W. Hoeffding. Probability inequalities for sums of
bounded random variables. Journal of the American
Statistical Association, 58(301):13–30, 1963.

[10] H. Huang, S. Yoo, and S. P. Kasiviswanathan.
Unsupervised feature selection on data streams. In
Proc. of CIKM, pages 1031–1040, 2015.

[11] E. Ikonomovska, J. Gama, and S. Dzeroski. Learning
model trees from evolving data streams. Data Min.
Knowl. Discov., 23(1):128–168, 2011.

[12] I. Katakis, G. Tsoumakas, and I. P. Vlahavas. On the
utility of incremental feature selection for the
classification of textual data streams. In Panhellenic
Conference on Informatics’05, pages 338–348, 2005.

[13] N. Littlestone. Learning quickly when irrelevant
attributes abound: A new linear-threshold algorithm.
Machine Learning, pages 285–318, 1988.

[14] N. Littlestone and M. K. Warmuth. The weighted
majority algorithm. Information and Computation,
108(2):212–261, Feb. 1994.

[15] H. Liu and H. Motoda. Feature Selection for
Knowledge Discovery and Data Mining. Kluwer
Academic Publishers, Norwell, MA, USA, 1998.

[16] E. S. Page. Continuous inspection schemes.
Biometrika, 41(1/2):100–115, 1954.

[17] M. Robnik-Sikonja and I. Kononenko. Theoretical and
empirical analysis of relieff and rrelieff. Machine
Learning, 53(1-2):23–69, 2003.

[18] W. N. Street and Y. Kim. A streaming ensemble
algorithm (sea) for large-scale classification. In Proc.
of the 7th ACM SIGKDD, KDD ’01, pages 377–382,
New York, NY, USA, 2001. ACM.

[19] H. Yang, M. R. Lyu, and I. King. Efficient online
learning for multitask feature selection. ACM Trans.
Knowl. Discov. Data, 7(2):6:1–6:27, Aug. 2013.

