
FPGA-BASED RECTIFICATION OF STEREO IMAGES

João G. P. Rodrigues∗

Faculdade de Engenharia
Universidade do Porto

Email: nijoao@gmail.com

João Canas Ferreira†

INESC Porto, Faculdade de Engenharia
Universidade do Porto
Email: jcf@fe.up.pt

ABSTRACT

In order to obtain depth information about a scene in com-
puter vision, one needs to process pairs of stereo images. The
calculation of dense depth maps in real-time is computation-
ally challenging as it requires searching for matches between
objects in both images. The task is significantly simplified if
the images are rectified, a process which horizontally aligns
the objects in both images.

The process of stereo images rectification has several
steps with different computational requirements. The steps
include 2D searches for high fidelity matches, precise matrix
calculations, and fast pixel coordinate transformations and
interpolations.

In this project, the complete process is effectively imple-
mented in a Spartan-3 FPGA, taking advantage of a MicroB-
laze soft core for slow but precise calculations, and of fast
dedicated hardware support for achieving the real-time re-
quirements. The implemented system successfully performs
real-time rectification on the images from two video cam-
eras, with a resolution of 640×480 pixels and a frame rate
of 25 fps, and is easily configured for videos with higher res-
olutions.

The experimental results show very good quality, with
rectified images having a maximum vertical disparity of two
pixels, thereby showing that stereo image rectification can be
efficiently achieved in an low-resource FPGA (with 64 KB for
program instructions and data).

Index Terms— FPGA, Stereo vision

1. INTRODUCTION

Depth information of objects in an image is essential in ap-
plications such as video security, military, cinematography,
robotics and medical imaging. The process of recovering this

∗Currently with IT – Instituto de Telecomunicações. Support grant from
the Masters Program in Electrical and Computer Engineering of the Univer-
sity of Porto.
†Work partially supported by research contract PTDC/EEA-

ELC/69394/2006 from the Foundation for Science and Technology
(FCT), Portugal.

information uses information from two images and triangula-
tion operations to determine the depth of objects in the scene.

The triangulation between images from two cameras can
be accomplished by finding a corresponding point or object
viewed by one camera in the image obtained by the other. In
general camera configurations finding these correspondences
requires a search in two dimensions, but it becomes an one-
dimensional search if the images are horizontally aligned. It
has been proved that at least eight reliable matches between
the images are necessary to estimate the fundamental matrix
required to align the images horizontally, thereby reducing the
subsequent search for correspondences to an area around the
epipolar line [1, 2, 3].

Stereo image rectification is the process of transforming
the images to obtain perfectly horizontal and aligned epipo-
lar lines. For rectified pairs of images, objects have the same
vertical position in both, so we just need to search along a
horizontal line to find corresponding points, as is done when
measuring the disparity between images in order to produce
dense depth maps. Even when the rectification is not perfect,
it is still very useful: the better the rectification, the smaller
the search area for correspondences can be. Furthermore, the
rectification of stereo video streams is sufficient for their vi-
sualization in a 3D display.

The process of rectification is normally divided in two
phases: calculation of the required transformation matrices,
and application of those transformations to the images. The
calculation of the transformation matrices typically does not
have real-time requirements, but must be very precise. How-
ever, their application to the video images is computationally
heavy and has real-time constraints, making it difficult to im-
plement in normal CPUs. However, this task can be paral-
lelized and implemented in an FPGA.

The transformations needed to rectify the images are rep-
resented as two 3×3 matrices, one for each camera. Several
authors, such as Fusiello [1] and Hartley [2], discuss the meth-
ods and mathematical background for the calculation of the
matrix coefficients.

Some systems for image rectification have been previ-
ously proposed and implemented, like the MSVM-III of
Jia [4], or the auto-rectification system based on the IC3D

978-1-4244-8735-6/10/$26.00 c©2010 IEEE 199

processor of [5]. The MSVM-III implements rectification
and depth map estimation in a system based on an FPGA
Xilinx Virtex 2 and 3 640 × 480 CMOS sensors working at
30 frames per second (FPS). However, the system requires
previous knowledge and input of the transformation matrices.
The system of [5], based on a SIMD video processor with
320 processing elements, performs rectification and depth
map estimation. The transformation matrices are calculated
by the system, but are limited to translations, and do not
correct small skews or rotations in the stereo kit. The system
only supports video streams of 320× 240 at 30 fps.

The restrictions of these systems make them unsuitable
for many applications. For example, the MSVM-III requires
the transformation matrix to be given, and the IC3D-based
system performs rectification only through translations of the
images, without considering rotation or scaling.

In our project we implemented both phases of rectifica-
tion process in an FPGA-based system, using software run-
ning on a Microblaze soft core processor together with ded-
icated hardware. The system is able to output the rectified
video streams from two uncalibrated cameras at a frame rate
of 25 frames per second (fps). The image data is obtained
from a stereo kit with two CMOS sensors of 640×480 pixels
of resolution at the same frame rate.

The next section gives a brief overview of the proposed
system organization. Section 3 describes the steps needed for
estimating the matrices required for image rectification, and
Section 4 explains how that information is used to rectify the
images. Section 5 gives details of our FPGA-based imple-
mentation. Section 6 presents the experimental results ob-
tained with prototype implementation, and section 7 presents
some concluding remarks about the proposed system.

2. GENERAL SYSTEM ORGANIZATION

The goal of the project is to implement a full solution for
stereo image rectification on a single low-cost board equipped
with a Spartan-3 FPGA [6]. The system is targeted at gray-
scale images (1 byte per pixel) with VGA resolution (640 ×
480 pixels).

The system is able to compensate for deviations in every
image parameter, except for lens distortion, and can there-
fore be employed in setups with general camera locations, as
long as there is no relative movement between them. As it
is based on epipolar geometry, the precision of the algorithm
is improved if the objects in view are not coplanar and have
high horizontal disparity, thus being relatively near the cam-
era. This requirement is important in order to allow the acqui-
sition of relevant spatial information from the images, thereby
improving the accuracy in calculations of the transformation
matrices. An example of a set of images to which this method
should not be applied is satellite photography (e.g. Google
Earth). In this case, the objects (e.g. houses) are practically
coplanar, belonging to the plane corresponding to the earth

surface. In these situations, where almost no 3D information
exists, a simpler method of rectification with fewer parame-
ters should be used, like the one proposed by Jia [4].

The operation of our system is divided in two distinct
phases, each with different computational and time require-
ments. The goal of the first phase is to determine the trans-
formation matrices to be applied to each camera. For this
purpose, the system starts by determining some tens of cor-
respondences between points on both images. These corre-
spondences are then refined iteratively (using criteria based
on epipolar geometry), until a specific confidence threshold
is met. The transformation matrices are estimated from the
correspondences using a singular value decomposition (SVD)
algorithm [7]. These calculations require high numerical pre-
cision to minimize errors, but have no real-time requirements.
Therefore they can be implemented in software running on a
soft core processor.

The second phase consists in applying the calculated ma-
trices to the streams of videos from the cameras. This consists
in a multiplication of every pixel coordinate ([0 − 639, 0 −
479, 1]) with each 3×3 transformation matrix, in order to ob-
tain the coordinates of the pixels (from the incoming images)
that must be used to calculate (by interpolation) the correct
pixel value of the outgoing images. The result of the interpo-
lations are the rectified images, which, in our prototype sys-
tem, are then sent to the display. These calculations require
many multiplications and divisions to be applied in real-time
to the video stream, and thus need to be parallelized and im-
plemented by dedicated hardware in the FPGA.

A more detailed explanation of the implementation as-
pects is presented in section 5.

3. DETERMINATION OF IMAGE
TRANSFORMATION MATRICES

This section explains how we addressed the determination
of the image transformation matrices. We first describe
the approach adopted to address the task of finding good-
quality correspondences between the two images (the cor-
respondence problem). Then we describe the method used
to determine the image transformation matrices from the
correspondence information.

3.1. The Correspondence Problem

The correspondence problem consists in finding, for some
points in one image, the corresponding points in the other im-
age, that is, those points of the other image that belong to the
same feature of the scene [8].

In the current situation, the limited instruction memory
available on the FPGA (64 KB for instructions and data)
severely restricts the implementation of the algorithm. In
order to allow the system to fit in the 64 KB memory, some
memory-hungry functions were implemented in dedicated

200

hardware, as explained in Section 5.2. The softcore keeps
almost no temporary information about the images, besides
the list of candidates and possible correspondences.

The correspondence problem was simplified by splitting
the evaluation into some small weighting functions. The var-
ious steps of the correspondence search implemented in the
current system are described next. They are applied to a pair
of images taken simultaneously from the cameras.
[Step 1.] One image is selected as the reference image. If
the cameras have different characteristics, the image chosen
should be the one with better quality.
[Step 2.] Every 5× 5 pixel block from the reference image is
analyzed with a non-linear algorithm.

First, a simple detector discards blocks containing strings
or edges. This detector searches the block for straight lines
(in any direction) made of pixels with similar luminance. The
reason to skip these block features is that they usually repeat
themselves in the neighborhood, creating a pattern and lead-
ing to many possible matches in the other image.

Then, the “quality” (Q) of each block is calculated as the
maximum between the number of pixels that are darker than
the central one, and the number of pixels that are lighter (0 ≤
Q ≤ 24). This method is similar in nature to the census
transform presented in [9].

Pixels with a luminance value similar to the central pixel
(with a difference in value of less than 20) are considered as
having the same brightness, and thus ignored when calculat-
ingQ. This fact is important to suppress small Gaussian noise
that is always present in images. Blocks with a Q < 6 or
Q > 22 are not considered further, because they are very
likely caused by image noise or memory access errors.
[Step 3.] The image is divided in zones of 80 × 60 pixels
and only the candidates with higher Q from each zone are
selected. This division is important to obtain correspondence
matches dispersed throughout the entire image, improving the
precision of the transformation matrix. This effect is further
explained and motivated in Section 3.3.
[Step 4.] For each candidate 5×5 block, a search for a match
is performed in the other image. The search area is defined as
a rectangular block around the same coordinates, with small
horizontal offset, and is iteratively reduced around the epipo-
lar line. The initial relative coordinates of the search area are
{[−50, 150], [−60, 60]}, but can be tuned for different stere-
oscopy kits. The negative value of 50 in horizontal disparity is
due to the fact that in our kit the cameras are not parallel, but
are pointing slightly to the middle, causing negative disparity
in objects very far from the cameras.

The similarity of the candidate blocks between both im-
ages is calculated based on the following simple weighting
functions. The 10 most similar (lower result) candidates for
each block are saved in memory.
- A linear comparator: the sum of the absolute differences

(SAD) between both blocks. This function is sensitive to lu-
minosity differences, but susceptible to noise.

- A non-parametric comparator: based on a modified census
transform [9], but made ternary to allow for noise suppres-
sion. This method is similar to the quality metric used be-
fore. Each pixel of a block is compared to the central pixel in
terms of luminance, and a ternary number is saved, indicating
if it’s brighter, similar (threshold of 10) or darker. The re-
sult is compared with the other block’s sequence of ternary
values, and the “differences” are added. The difference is
calculated as 0 if both values are equal, as 1 if one is simi-
lar and the other is not, and 2 if one is darker and the other
is brighter. This method detects structural differences in the
blocks, even thought they might be similar in luminance and
passed the previous test with a good score. This measure can
also be very useful in detecting similar blocks when the per-
ceived luminosity of an object is different between images, as
may happen due to reflections and other artifacts. A weight of
20 for this measure is used, since the result range is [0− 49],
compared to [0− (5× 255)] from the previous method.
- The distance to the epipolar line estimated in the previ-

ous iteration. We assume the cameras are placed horizontally
side-by-side, so we use a horizontal line in the first iteration.
Because of this we also assume the epipolar lines are almost
horizontal, and so we use the difference in the vertical coor-
dinates instead of the Euclidean distance. This measure has
weight 2 in the calculations.
- To break ties, we use the quality Q of the blocks calcu-

lated previously. This factor has a weight of -1, since a higher
quality improves the confidence on the blocks.
[Step 5.] The possible matches for each candidate are re-
fined, but this time using a block size of 15 × 15 pixels. The
similarity of the bigger block is calculated as the sum of the
similarities of the 9 smaller 5 × 5 blocks, using the same al-
gorithms as previously. For each candidate, the similarity of
the two best matches is saved for the next step.
[Step 6.] The unicity of each candidate is calculated. This
factor measures the confidence associated with a correspon-
dence pair. For each candidate coordinate, it is calculated as
the difference in similarities between the two best matches on
the other image. This results in a high unicity when there is
only one clear match.

This step eliminates errors in patterns and repetitive tex-
tures, giving more importance to unique characteristics.
[Step 7.] For each zone of the reference image, only the two
correspondence pairs with higher unicity are added to the final
list of pairs.
[Step 8.] The list of pairs is iteratively refined (be repeat-
ing from step 5), until the search area is significantly reduced
around the epipolar geometry. In each iteration the height of
the rectangle is halved, up to a minimum of 3 pixels, result-
ing in a minimum search area with a height of 7 pixels. The
epipolar geometry is estimated using the 8-points algorithm
(as described in the next sub-section).

The iterative process will stop with failure when the algo-
rithm finds less than 8 pairs in the current search area or the

201

estimated epipolar geometry is far from horizontal (we previ-
ously assumed horizontal placement of the cameras). In this
case the cameras are reactivated for a few seconds, two more
images are taken and the process is restarted from step 1.

After 10 iterations with more than 8 correspondences,
these are considered very reliable and will be used to calcu-
late the transformation matrices.

3.2. Transformation Matrix Calculations

The transformation required to rectify the images is given in
the form of a 3 x 3 matrix, for each camera. The coordinates
of at least eight correspondence pairs are needed in order to
estimate the epipolar geometry and to calculate the transfor-
mation matrices.

In this project we need to determine, for each coordinate
of the final rectified images, the coordinates of the pixels from
the (unrectified) images that must be used to calculate (by in-
terpolation) the new pixel value. For this we have to deter-
mine one matrix for each camera as given by equation 1.

H = D · [C · T ·G ·R]−1 ·N (1)

The matrix H represents the complete transformation to be
applied to the video stream. This formulation extends the
H−1 found in [2], to better account for the stereoscopy needs:
our matrix T preserves depth information and the common
area of both images is maximized by the matrix C. In addi-
tion, the normalizing and denormalizing matrices are already
included to improve precision.

N and D are the Normalizing and Denormalizing matri-
ces. These matrices put the coordinates in the [−1, 1] range,
in order to improve the precision of the 8-points algorithm as
described by Hartley [2]. They are determined by the size of
the images. For our prototype, they are:

N =
1/320 0 −1
0 1/320 −0.75
0 0 1

, D =
320 0 320
0 320 240
0 0 1

R and G are the matrices with the same name described by
Hartley [2]. These matrices send the epipole of the image to
the point at infinity in the horizontal axis, making the epipolar
lines horizontal and parallel between them.

They are calculated using the 8-points algorithm and a C
implementation of a homogeneous equation solver by SVD
taken from [10]. Performing the SVD in the coordinates of
the correspondence pairs produces the Fundamental Matrix,
which describes the epipolar geometry of the images. Per-
forming SVD on the fundamental matrix and its transpose
produces the coordinates of the epipoles of both images. The
matrices R and G have the form:

R =
cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1
, G =

1 0 0
0 1 0
−1
f 0 1

Fig. 1. The displayed area before (left) and after (right) appli-
cation of matrix C.

where f is the distance of the epipole to the origin, and θ is
the angle between the epipolar and horizontal lines.

T is a matrix of scaling and vertical translation that makes
the epipolar lines coincide in both images. Hartley [2] per-
forms this task by minimizing the square of the distance
between corresponding points. In this project we decided
to only minimize the distance between vertical coordinates,
since the horizontal distance contains depth information that
should not be altered. Matrix T has the form:

T =
k 0 0
0 k d
0 0 1

For its calculation we need to apply the previous matrices to
the original coordinates, and then find k and d, so that Y ·k+
d = Y ′, where Y and Y ′ are the vertical coordinates of the
correspondence pairs , k is the scaling factor and d the vertical
translation. This is the same as solving Y · k − Y ′ + d = 0,
which is a homogeneous system solvable by SVD. Horizontal
translation should not be corrected because it represents the
spatial information and therefore should be preserved. This
matrix is only applied to the images of one camera, in this
case the one from which the candidates (Y) were retrieved.

C is a matrix that should maximize the visibility of the
common area between the images of both videos. It is very
useful for stereoscopy, since only the common area can be an-
alyzed. This matrix is the same for both cameras and consists
only of a scaling (s) and translation factor in both axis(xt and
yt). It has the form:

C =
s 0 xt
0 s yt
0 0 1

The matrix C can be trivially calculated from the other matri-
ces. In our implementation it can also be interactively set by
the user. The effect of applying matrix C is a maximization
of the common area of both images, as shown in figure 1.

3.3. Evaluation of the Matrix Calculation Procedure

The calculation of the matrices described in the previous sub-
section was simulated and shown to be very reliable.

For the simulations, a list of random coordinates (with
variable size) was used to represent the correspondence

202

Number of pairs 9 25 100
Error range for:

Almost coplanar image 50 - 57 7 - 11 1.7 - 2.3
Depth-rich image... 10 - 14 1.8 - 2.9 0.6 - 0.8
...with dispersed points 5 - 8 1.5 - 2.6 0.5 - 0.7

Table 1. Error in coordinates recovered by using H with
rounded distorted coordinates

points. A second list, representing the second image, was
created by randomly changing horizontal coordinates, thus
introducing a variable horizontal disparity up to a predefined
depth threshold. Then, different random distortion matrices
were applied to the two coordinate lists. In all cases, the
methods described in the last subsection could successfully
and precisely retrieve the distortion matrices, given only the
lists of distorted coordinates.

Another set of simulation was performed with the dis-
torted coordinates rounded to the nearest integer. To avoid the
rounding problem in real images, it is necessary to use mech-
anisms for feature detection with sub-pixel accuracy, which
have high complexity and are computationally demanding.
The effect of coordinate rounding was to introduce the errors
in the recovered coordinates as reported in table 1. The errors
were calculated by measuring the maximum Euclidean dis-
tance between the original coordinates before distortion and
the coordinates after rounded distortion and rectification.

As can be seen from the table, increasing the size of the
list and the maximum horizontal disparity allows the preci-
sion of the calculated matrices to be greatly improved. Fur-
thermore, when the coordinates of the original list are spread
throughout the image, very good results can be obtained with
a few number of coordinates.

The simulation results were used to confirm that our sys-
tem handled a sufficient number of correspondence points for
ensuring the quality of the final result, and to motivate the
inclusion of step 3 of the search procedure (cf. section 3.1).

4. REAL-TIME RECTIFICATION OF THE STEREO
VIDEO STREAM

In this phase, the transformation matrices have already been
calculated and saved in registers, and must be applied to the
video streams in real-time. The implementation of this pro-
cess consists of the following steps:
1. For each coordinate [X,Y] ∈ [0− 639; 0− 479] multiply
them by both transformation matrices. The results are the
homogeneous coordinates of the points to interpolate from the
images.

[X,Y, 1]T ·H = [U, V,W]

2. Transform the homogeneous coordinates into Cartesian co-
ordinates. This requires a division.

[X,Y] = [
U

W
,
V

W
] = [U · 1

W
,V · 1

W
]

Fig. 2. Global overview of the system.

3. Read from memory the four pixels surrounding each cal-
culated coordinate.
4. Perform bi-linear interpolation.

We chose to perform the bi-linear interpolation due to
simplicity, but other methods could be used. As the CMOS
sensors available for this project use a Bayer filter [11], the
images are already low-pass-filtered, making the loss in qual-
ity caused by the interpolation almost negligible.
5. Send the rectified images to the monitor, memory, or other
output device.

More information about the implementation of these steps
is available in the next section.

5. FPGA IMPLEMENTATION

The methods and algorithms proposed were implemented in a
Spartan-3 XC3S1500 FPGA, together with the support mod-
ules and controllers to communicate with external resources.
The full system is shown in Figure 2, and has a system clock
of 100 MHz for most of the modules. The auxiliary modules
are represented in white, the external resources in dark gray,
and the modules for the two main phases in light gray.

5.1. Auxiliary Modules

The cameras use CMOS sensors with embedded Bayer fil-
ter [11] and provide an 8-bit luminance channel. The systems
supports a 25 fps image rate (640×480 pixels) with a pixel
clock of 12.5 MHz. As the Y channel is obtained by a demo-
saicing filter, the black-and-white images have a lower real
resolution. This fact makes image processing harder, but has
been taken into consideration during the development. The
cameras are fixed side-by-side, but the resulting images show
some vertical disparity (cf. Fig. 4), due to some slack in the
connectors and differences in the sensors themselves.

A module was implemented to handle the communica-
tions and synchronization with both cameras. This module

203

outputs a common clock of 12,5 MHz and a reset signal to
both cameras, synchronizes image reception and sends the
data to the memory controller.

For display, image data is sent to an external VGA module
that has having 3×512 KB FIFOs (one for each color) and an
RGB output.

Both the Auxiliary Overlay module (during the first
phase) and the Rectification module send images from the
on-board SRAM to the VGA module. These two modules
use a new way to evaluate pairs of images, based on tradi-
tional 3D display mode: they create a bi-color image, on
which each source image is assigned a different color channel
(red or blue). Without glasses, we easily compare the objects
position on both images, and thus the precision of the rectifi-
cation method. When looking at the images with colored 3D
glasses it is possible to confirm the increase in visual quality
after the rectification. In this black and white paper, it is not
possible to see these advantages. In our prototype, the third
color and FIFO (green) is only used during the first phase to
display information about the correspondence problem and
epipolar geometry estimation.

Each image occupies about 300 KB, so it does not fit in the
internal FPGA block RAMS (BRAMs). To simplify the dif-
ferent image processing parts, the images received are saved
in a 2 MB external SRAM (32 bit data bus). The memory
controller generates a memory clock of 50 MHz, and arbiters
the access to the external memory according to a fixed prior-
ity scheme. The scheme awards higher priority to the writing
operation for data from the cameras; next, comes the reading
of data to be sent to the display or rectification module, and
finally come microprocessor accesses (for the non-real-time
image processing of the first phase).

The writing and reading operations are performed 4 pix-
els at a time in order to optimize the 32 bit bus utilization.
This allows us to make (50MHz/12.5MHz) × 4) = 16
memory operations in the time necessary for the cameras to
deliver 4 pixels each. Two of these operations are required to
save the streams from both cameras, leaving 14 memory op-
erations to be used by the rectification module as described in
Section 5.3.

5.2. Processor and FSL Interpreter

The different modules are controlled by the MicroBlaze soft-
core micro-processor (from Xilinx), through the fast simplex
link (FSL) interface and our own FSL Interpreter module. The
FSL Interpreter works at the system clock of 100 MHz, but the
soft-core and FSL link are connected to a 50 MHz clock.

The FSL Interpreter has the ability to (de-)activate specific
functions or modules, such as selecting operating mode and
freezing the images in memory. It also implements many sup-
port functions for MicroBlaze operations, in order to reduce
processing time and save instructions and data memory. Most
of the image processing operations carried out by the proces-

sor are not performed, but consist in sending commands and
analyzing the response from the Interpreter. This module im-
plements most of the repetitive image processing functions,
like each block’s Q calculation, and the SAD and Census
comparison of blocks. This approach greatly increases the
performance in the software. For example, the MicroBlaze
only needs to send one command with coordinates to get a
similarity between two 5× 5 pixel blocks.

For square root operations, we used a dedicated CORDIC
core provided by the Xilinx Core Generator. It improves the
performance of the SVD implementation significantly, be-
cause the SVD calculation requires many of these operations
and they take very long to be performed in software. The
CORDIC module uses the highest possible precision (48 input
bits and 24 bits). The hardware implementation of the square
root function also allowed us to save more than 10 KBytes of
instructions memory.

The MicroBlaze microprocessor controls the execution of
the calculations described in section 3. It is a 32 bit integer-
only processor core, which runs at 50 MHz clock, and only
occupies 1400 slices (about 10% of the FPGA). However, the
FPGA only has 64 KB internal memory to be used for instruc-
tions and data. The procedures implemented on the MicroB-
laze have no real-time restrictions, but we tried to keep the
execution time within acceptable bound. The calculation of
H−1 takes between 30 seconds and about 3 minutes to exe-
cute, depending on the number of iterations required in step
8 of the correspondence problem (section 3.1), which itself
depends on the amount of depth-rich objects in the images
analyzed.

5.3. Rectification Module

The rectification module must apply the calculated transfor-
mation matrices in real-time to both video streams. The mem-
ory operations are performed in groups of 4 pixels, and each
pixel arrives to the memory at a pixel clock rate of 12.5 MHz.
Therefore, each group of 4 pixels must be processed in 100×
4/12.5 = 32 clock cycles. Since there are a lot of memory
and mathematical operations, including a division, we split
this module in 5 different concurrent state machines, all run-
ning at a speed of 100 MHz, as shown in Fig. 4. Each state
machine implements one of the steps of the rectification pro-
cedure described in Section 4.

The synchronization between the different state machines
is performed by shared registers, except for the first two.
There must be an exact 32-cycle delay between them, because
of the constraints imposed by the CORDIC divisor. Each of
the other machines signals the next one when it is ready, and
waits for a signal from the previous one, at which time the
needed data registers are copied between them. There is not a
rigid synchronization after state machine 3, because this state
machine performs memory operations that can take a varying
number of cycles, depending on the state of other modules

204

Fig. 3. Rectification module organization

(up to a certain maximum).
The first machine starts by calculating the transformed co-

ordinates of the group of 4 pixels for both images, according
to [X,Y, 1]T · H = [U, V,W]. This machine also starts the
1/W divisions on the two CORDIC divisor modules. Each
CORDIC divisor has a 39 cycle latency and accepts new in-
put values every 4 cycles.

Every 32 clock cycles the second machine reads the coor-
dinates and waits for the result from the divisor, which arrives
in the 11th cycle, 39 cycles after the beginning of the division
operation.

The remaining state machines perform the multiplications
described in Section 4. Since there are only 14 memory ac-
cess slots, we decided to always read 6 groups of pixels from
each image, leaving 2 memory access slots unused. The 12
groups of four pixels are read from memory by state machine
3, which takes about 29 cycles to complete.

Due to the number of groups of pixels read from memory,
there are some limitations on the maximum image distortions
that cannot be compensated.The images cannot be rotated by
more than 18 degrees, and the scaling factor should always
be equal or less than 1. The first limitation is easily met by
our setup, where the cameras are placed with almost no ro-
tation between them. The limitation on scale is always met,
since the matrix C will zoom in on the common area, which
is always equal or smaller than the smaller image.

The last two machines are responsible for the interpola-
tion and the forwarding of the results to the VGA module. As
the interpolations require many sums and multiplications, we
implemented them in a separate module with registered inputs
and outputs and a slower clock of 50 MHz.

BRAMs 64 KB of 64 KB 100%
Slices 9,468 of 13,312 71%
LUTs 15,969 of 26,624 59%
Slice Flip Flops 10,788 of 26,624 40%
MULT18X18s 23 of 32 71%

Table 2. Resource utilization for Spartan-3 XC3S1500

Table 2 shows the FPGA resource utilization of the final
system. Resource utilization by the memory controller and
other auxiliary modules is almost negligible. All the BRAMs
were used by the MicroBlaze core, which also used about
1400 slices. Most of the other resources were used in the rec-
tification module, and a small number in the DIVISOR and
CORDIC modules.

6. EXPERIMENTAL RESULTS

The FPGA used for implementation was a Xilinx XC3S1500,
but the system is adaptable and easily ported to other FPGAs
or cameras with different characteristics. The complete pro-
cess was successfully implemented, meeting the time require-
ments by exploiting the hardware resources of the FPGA.

The proposed correspondence algorithm has been thor-
oughly tested in the development system. The cameras used
have significant lens distortion and are Bayer filtered, but,
even so, the algorithm was capable of detecting correspon-
dences with good efficiency: this algorithm exhibited around
10% of false correspondence pairs after the first iteration, al-
lowing it to successfully iterate and eliminate most of the false
positives.

Although the cameras in our setup are visibly aligned, the
original images are clearly unrectified, as we can see in im-
age 4. The bi-color image display approach was used to vi-
sually evaluate the results. Results were also analyzed on a
computer by freezing the video stream after rectification and
downloading it from the board’s external memory through a
serial connection. In this way, object positions on both im-
ages could be easily measured, and thus the precision of the
rectification method confirmed (cf. Figure 5).

The vertical disparity still present after rectification
matches the precision expected from the simulations. When
about 50 pairs of good correspondence points are used, the
system rectified the videos with a maximum error of 1 pixel.
In general, there were always between 20 and 60 pairs (with
1 or 2 bad correspondences) and the resulting error was less
than 2 pixels, as seen in Fig. 5. In previous works [4, 5], the
authors did not present the systems’ precision for maximum
vertical disparity of the rectified images.

The interpolation resulted in a visually-lossless rectified
image when compared to the original images.

7. CONCLUSIONS

The proposed solution for the correspondence problem is re-
liable, even with such a small instruction memory.The new
formulation of the transformation matrices is very useful for
stereoscopy, preserving depth information and maximizing
the common image area. Unlike previous implementations,
and thanks to the combination of software and hardware solu-
tions on the same FPGA platform, we were able to calculate

205

Fig. 4. Unrectified images (overlayed) Fig. 5. Rectified images (overlayed).

the transformation matrices that rectify every non-radial im-
age distortion.

However, the execution time of the first phase could be
greatly improved with faster processors, like the PowerPC
present in Virtex-4 FPGAs. The availability of a large on-
chip data memory would allow a greater number of corre-
spondence pairs to be considered and more advanced algo-
rithms to be used, such as correspondences finding methods
with sub-pixel accuracy.

The implemented rectification module is capable of recti-
fying the videos in real-time, with good precision even though
a simple bi-linear interpolation is performed. The 2 pixels
of maximum error is good enough to practically reduce the
search area to a line, and thus very useful for stereoscopic
applications.

We showed that a good and reliable stereo images rectifi-
cation process can be implemented in a single FPGA, using
only 64 KB of memory (not including the memory required
to store one pair of images). A system like this could be used
in low-cost, portable 3D-cameras that save rectified 3D video
in real-time, or in advanced real-time 3D security systems.
Although in these cases the movement of the cameras can
change their relative positions, our system can periodically
freeze 2 video frames in separate sections of memory and re-
calculate the rectification matrices, while still performing rec-
tification on new frames using the old transformation values.

8. REFERENCES

[1] Andrea Fusiello, “Epipolar rectification,” March 2000,
http://profs.sci.univr.it/˜fusiello/
rectif_cvol/rectif_cvol.html.

[2] Richard I. Hartley, “Theory and practice of projective
rectification,” Intl. J. Comp. Vision, vol. 35, no. 2, pp.
115–127, Nov. 1999.

[3] Roger Mohr and Bill Triggs, “Projective geometry
for image analysis: A tutorial given at ISPRS,” July
1996, http://lear.inrialpes.fr/people/
triggs/pubs/isprs96/isprs96.html.

[4] Yunde Jia, Xiaoxun Zhang, Mingxiang Li, and Luping
An, “A miniature stereo vision machine (MSVM-III)
for dense disparity mapping,” in 17th Intl. Conf. Pattern
Rec., 2004.

[5] Xinting Gao, R. Kleihorst, and B. Schueler, “Im-
plementation of auto-rectification and depth estimation
of stereo video in a real-time smart camera system,”
in IEEE Conf. Comp. Vision Pattern Rec. Workshops,
2008, pp. 1–7.

[6] Xilinx, Spartan-3 Generation FPGA User Guide, Dec.
2009.

[7] Dan Kalman, “A singularly valuable decomposition:
The SVD of a matrix,” The College Math. Journal, vol.
27, no. 1, pp. 2–23, 1996.

[8] D. Scharstein, R. Szeliski, and R. Zabih, “A taxon-
omy and evaluation of dense two-frame stereo corre-
spondence algorithms,” in Proc. IEEE Work. Stereo and
Multi-Baseline Vision, 2001, pp. 131–140.

[9] Ramin Zabih and John Woodfill, “Non-parametric lo-
cal transforms for computing visual correspondence,” in
ECCV ’94: Proc. 3rd Euro. Conf. Comp. Vision, 1994,
pp. 151–158.

[10] William Press, Saul Teukolsky, William Vetterling, and
Brian Flannery, Numerical Recipes in C, Cambridge
University Press, Cambridge, UK, 2nd edition, 1992.

[11] Sean McHugh, “Digital photography tutorials,” Feb.
2009, http://www.cambridgeincolour.com/
tutorials.htm.

206

