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ABSTRACT: This work deals with the optimal short-term scheduling of general multipurpose batch plants, considering multiple
operational characteristics such as sequence-dependent changeovers, temporary storage in the processing units, lots blending, and
material flows traceability. A novel Mixed Integer Linear Programming (MILP) discrete-time formulation based on the State-
Task Network (STN) is proposed, with new types of constraints for modeling changeovers and storage. We also propose some
model extensions for addressing changeovers start; nonpreemptive lots; lots start and sizes; alternative task-unit and task-unit-
layout assignments. Computational tests have shown that the proposed model is more effective than a similar model based on the
Resource-Task Network (RTN).

1. INTRODUCTION

In the past decades many optimization approaches have been
developed to address supply chain, planning, and scheduling
problems. These developments are being motivated by the need
that industries have to reduce costs, increase revenues, and, in
general, to operate more efficiently. Consequently, the existing
gap between theoretical optimization models and real world
scheduling problems is gradually decreasing. This can be
somehow justified by the increasing number of works published
in the recent years that address practical optimization problems.
According to Grossmann,1 process industries are actively looking
for optimization approaches that can be integrated in key
decision-making processes so as to minimize costs and maximize
income, while increasing the system responsiveness. In the
particular case of the pharmaceutical industry, Varma et al.2 argue
on the importance of developing models that integrate decision-
making processes related to R&D, manufacturing, supply chain,
and marketing. An extensive review on the modeling approaches
for scheduling problems that tackle these issues is available in the
paper written by Mendez et al.,3 where the characteristics,
advantages, and disadvantages of the models are deeply
addressed.
Although a significant progress has been observed in this field,

new planning and scheduling models are still needed to tackle
existing complexities that remain unsolved and to address new
challenges that are becoming more relevant. In this paper, we
propose a short-term scheduling model for multipurpose batch
plants that addresses two critical modeling features of the
discrete-time models: the sequence-dependent changeovers and
the temporary storage in the processing units. We also discuss
lots blending and traceability requirements in the production
schedules. Particular emphasis is given to the performance of the
proposed model. The consideration of such aspects was
motivated by the resolution of a real case study within the
chemical−pharmaceutical industry that led to the design of an

illustrative problem instance, used to assess the developed
models.
The rest of the paper is structured as follows. In Section 2, we

describe an example to illustrate the impact of the definition of
lots in the production schedule, and in Section 3, a literature
review is presented. The problem statement is introduced in
Section 4, and it is followed by the mathematical formulations in
Section 5. Then in Section 6, we propose several model
extensions, and in Section 7, we compare the model perform-
ances. Finally, Section 8 provides some concluding remarks.

2. ILLUSTRATIVE EXAMPLE

This example is motivated by a case study occurring in a real
chemical−pharmaceutical industry where it is critical to consider
some production features such as sequence-dependent change-
overs, temporary storage in the processing units, lots blending,
and materials traceability.
Consider the determination of a production schedule for three

products: PA, PB, and PC. Task sequences and respective
alternative units are depicted in Figure 1. Products PA and PB are
produced from rawmaterials, while product PC is produced from
PA and PB. The objective is to maximize the overall profit by
determining a schedule that keeps record of the production lots
and involves sequence-dependent changeovers between prod-
ucts and lots.
A distinction is made between lots and task-batches. The former

have to do with the amount of stable intermediary or final
product produced through a known set of tasks, processing units,
and materials. The latter are related to the amount of material
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produced by each task that is limited by the capacity of the
processing unit and is part of the production of a lot.
In this way, lots traceability must be ensured for all products

considered in the production schedule. We must be able to trace
the proportions/quantities of the lots of PA and PB used to
produce each lot of PC. This means that lots blending may occur
and that the scheduling model must consider the amount of each
lot used to produce subsequent lots. Raw materials and
intermediaries must be also associated to lots. Generally, the
scheduling model must do the record (i.e., allow for traceability)
of the task-batching (materials splitting and mixing) and of the
lots blending process.
In order to illustrate the impact of production lots on

scheduling, we consider a small instance with product PB for a
scheduling horizon of 10 h. We want to determine a production
schedule in which the task-unit assignment accounts for a given
lot size and that the lots traceability is ensured. For that, we define
a fixed demand equal to 3000 kg that is produced assuming two
scenarios. The first is a base scenario where no lots are defined,
while in the second scenario we assume two lots of 1500 kg.
In Figure 2a, we show a schedule for the base scenario, and as it

can be seen, the tasks batch size is as large as possible, so as to
minimize the number of tasks and therefore the production costs.
The amount of material produced by two tasks TASK1 is split by
three tasks TASK2 and three tasks TASK3. Since lots were not
explicitly modeled, it is not possible to make a task−lot
assignment; thus, the schedule of Figure 2a does not account
for lot traceability.
On the contrary, the schedule depicted in Figure 2b results in

the same amount of final product but considers lots traceability.
The difference is in the number and respective batch sizes of the
tasks. To consider lots traceability the schedule must have unique
associations between tasks and lots. In our example, it can be seen
that the first task TASK1 and the two first tasks TASK2 and
TASK 3 are associated to lot L1, while the other tasks are

associated to lot L2. In this way, raw materials, intermediaries,
and final products are distinctively associated to each lot. The
impact of lots in scheduling would be higher if sequence-
dependent changeovers were considered.
In dynamic production environments lots are bound by

minimum andmaximum sizes, and the exact size of each lot is just
determined when performing scheduling. This is done to ensure
that the processing units are used as efficiently as possible.

3. BACKGROUND
Scheduling of process plants has received considerable attention
in the literature, with some relevant reviews on the topic.3−8

Scheduling problems can be classified in terms of the network
of processing tasks.3 The allowed material flow and unit specific
constraints strongly determine the modeling approach and,

Figure 1. Illustrative example.

Figure 2. (a) Schedule assuming a demand of 3000 kg with no defined
lots; (b) schedule with two lots of 1500 kg.
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consequently, the model performance and its complexity. In
general, we may have sequential or network processes.
In sequential processes the batch entity is preserved by

ensuring that the output of a batch is consumed by a single task
and the input of a batch is produced by a single batch. Within the
sequential processes, single and multiple stage topologies can be
defined. The former consists in production systems with just one
stage and may have parallel units, and the latter involves
production systems with more than one stage that may also have
parallel units. Sequential processes can either use precedence-
based or time-grid formulations. Precedence-based models have
been proposed by several authors9−12 and time-grid models for
sequential processes rely on time-slots.13−15

On the contrary, network processes have an arbitrary topology
and are usually more complex than sequential processes, since
they deal with batch mixing and splitting and cyclic material
flows. For these reasons, models for network topologies require
resource balance constraints and are time-grid based, either
discrete-time or continuous-time. By definition models used for
network processes can also be applied to sequential processes,
since they can model all types of process configurations.
Continuous-time formulations may rely on unit specific
events16−19 or on global events.20−24 The major advantage of
the continuous-time formulations is that tasks may occur
anywhere in the scheduling horizon and thus these models are
considered more accurate. However, in terms of mathematical
programming, continuous-time models generally result in large
integrality gaps that tend to deteriorate computational times.
Discrete-time formulations assume that the scheduling

horizon has been divided into a finite number of time intervals
of fixed and equal duration. Tasks are allowed to take place just in
the boundaries of the time intervals, which makes it easier to
model inventory and units availability constraints. These models
deal easily with material balances and inventory costs and
multiple delivery dates and result into compact formulations. On
the other hand, they present some difficulties when modeling
variable processing times and sequence-dependent changeovers.
Moreover, we need to be aware of the trade-offs between
accuracy of the scheduling solutions, the time discretization, and
the scheduling horizon, since computational performance
strongly depends on the number of time intervals considered.
Both the State-Task Network (STN) representation suggested
by Kondili et al.25 and Shah et al.26 and the RTN representation
introduced by Pantelides27 have been widely used for modeling
schedule problems. For example, Barbosa-Povoa and Macchiet-
to28 developed the Maximal State-Task Network (m-STN)
representation that simultaneously considers operational and
design characteristics. Pinto et al.29 modified RTN to address
design and retrofit of batch plants with periodic mode operation.
Castro et al.30 solved an industrial scheduling problem from the
chemical−pharmaceutical industry by proposing a periodic RTN
formulation. Wassick and Ferrio31 proposed some extensions for
RTN. Sundaramoorthy and Maravelias32 developed a scheduling
framework that addresses the recipes structure in network and
sequential subsystems. And more recently, Moniz et al.33

proposed a sequential approach for the simultaneous scheduling
of regular and nonregular products in multipurpose-batch plants.
The integrated approach is based on RTN and is applied to a real
scheduling problem from the chemical−pharmaceutical industry.
For a comparison of discrete-time and continuous-time models,
see refs 34 and 35.

4. PROBLEM STATEMENT

In this paper, we address the short-term scheduling of
multipurpose batch plants dealing with products having arbitrary
network processes. All product recipes are given in terms of their
respective RTNs and may involve sequence-dependent change-
overs, materials storage, mixing and splitting operations, and
material recycles flows. Product/lots demands are defined for
multiple delivery periods and have an earliest and latest delivery
date. The characteristics of the processing units, maximum and
minimum capacity, operational costs, and the task-unit suitability
are assumed to be known. We also assume that the value of the
products and the storage costs for all materials (intermediaries
and products) are given. The raw materials are the exception,
since we consider that they are available as needed. All data is
assumed to be deterministic.
The objective is to maximize the economical result of the

global operation by determining the task-unit-layout assignment,
the tasks sequencing and corresponding batch size, the sequence-
dependent changeovers, the temporary storage in the processing
units and eventual lots blending needs.

5. MATHEMATICAL FORMULATIONS

5.1. Concepts and Notation. In order to compare the
effectiveness of the proposed formulation (denoted later in this
work by model M2), we present an additional mathematical
formulation (model M1) based on the RTN formulation of
Pantelides,27 where scheduling aspects studied by other authors
are incorporated in an integrated form. Variations of M1
formulation, in their discrete-time form, have been extensively
used by other authors such as Castro et al.,36 Castro et al.,30 and
Wassick and Ferrio.31

The key differences between the models are that M1 explicitly
models the changeover and storage tasks and does not account
for lots blending, while M2 implicitly considers changeovers and
storage and accounts for lots blending and traceability features.
Additionally, model M1 allows the definition of resource types;
thus, processing units with the same characteristics (e.g.,
minimum and maximum capacity) can be grouped, which leads
to a reduction of the number of binary variables, when compared
with model M2. Nevertheless, task-unit assignment variables in
M1 imply that tasks are performed by single units at each time
interval, therefore for handling alternative units they must be
considered individually.
Products can be delivered within a given time window, in

amounts modeled as “soft constraints” to ensure that feasible
schedules are always obtained.
The formulations use the indices, sets, parameters, and

variables presented in the Notation section. The exact meaning
of each element will be explained later with the formulations.

5.2. RTN Model (M1). We use a RTN discrete-time
formulation as basis for comparison with the model proposed
in this paper. Model M1 extends the RTN model of Pantelides27

by considering the temporary storage in the processing units
constraints defined by Kondili et al.,25 the changeover variables
proposed by Castro et al.,30 and the multiproduct delivery
extensions developed by Wassick and Ferrio.31 Moreover, in
Section 6, we also propose some extensions to address the start of
changeovers tasks, nonpreemptive lots, lots start and sizes, task-
unit-layout assignment, and alternative task-unit assignment.
We assume a scheduling horizon having a length equal to T

and divided into time intervals of fixed length. The model
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considers the following decision variables that are defined for
each time interval t ∈ H.

(a) The assignment of tasks to processing units decisions is
done by theNklt binary variables that are equal to 1 if task k
starts lot l at time interval t.

(b) The task batch size decisions are done through the ξklt
continuous variables that define the batch size of task k and
lot l at time interval t.

(c) Changeover tasks are defined by the binary variables Crll′t
that are equal to 1 if a changeover task occurs on resource
(processing unit) r between lots l and l′ at time interval t.

(d) Resources availability is given by the Rrlt continuous
variables that define the resource availability r at lot l and at
time interval t.

(e) Deliveries are modeled by the Πrlt continuous variables
that define the delivery of resource (final products) r of lot
l at time interval t. If the minimum demand is not fulfilled,
then the Πrld

slack continuous variables will have a value equal
to the amount that was not delivered.

Rrl
init variables are used to model the initial allocation of

processing units to lots. In the cases where changeovers are not
required, we use the Rrt continuous variables that define the
resource availability (processing units) r at time interval t.
Model M1 considers the processing units with changeovers

constraints A1 and the initial assignment of processing units to
lots constraints A2, or alternatively, the processing units balance
without changeovers constraints A3; materials balance con-
straints A4; minimum and maximum materials availability
constraints A5; minimum and maximum task batch size
constraints A6; temporary storage in the processing units
constraints A7; and demand constraints A8; delivery constraints
A9 and A10; tasks started must end within the time horizon
constraints A11 and variables domain constraints A12. Model
M1 formulation is given in the Appendix.
5.3. ProposedModel (M2).Discrete-timemodels efficiently

deal with resources balances, multiple delivery dates, and
inventory costs. However, the model size significantly increases
and the computational performance is seriously affected when
modeling variable processing times, temporary storage in the
processing units, and sequence-dependent changeovers.
The storage in the processing units is commonly used in many

industrial processes due to themultipurpose characteristics of the
units. In these situations, intermediaries can be stored
temporarily inside the processing units that have produced
them. In practice, this type of storage may be required for a
variety of reasons. Some of the possible cases are (a) the capacity
of the processing units that follow in the process may be low
when compared with the amount of material being stored; (b)
the lot may need to wait for quality approval; (c) scheduling
delays may occur, forcing intermediaries to wait temporally in the
processing units; or (d) maintenance tasks may be required, also
imposing scheduling delays.
Changeovers cannot be neglected since they often occupy

processing units during long time periods. We may have unit and
sequence-dependent changeovers, the latter being usually more
significant in terms of time. Sequence-dependent changeovers
can be modeled in the original RTN formulation through the
creation of changeover tasks, as done in model M1, or if it is not
relevant to determine the exact time of the changeover, we can
use changeover constraints.
In order to avoid increasing the number of binary variables of

the model, as a result of modeling temporary storage and

changeovers, we have developed a new discrete-time formula-
tion. The developed model also addresses lots blending and
traceability features.
This model explicitly considers the inventory carried out by

each production task. Following this approach, we can model the
temporary storage through a set of constraints instead of using
additional binary variables as done in model M1. Regarding
sequence-dependent changeovers, we have followed a similar
strategy. Changeover variables are replaced by a set of constraints
that inhibit the start of the production tasks for a time period
imposed by the changeover time of the tasks sequence.
Figure 3 shows the conceptual differences betweenmodels M1

and M2 for the resource availability variables. While in M1 all

resources are treated uniformly through the continuous variables
Rrlt, in M2 the continuous variables Rkrlt define the amount of
resource r (intermediaries or final products) available at time
interval t and produced by task k of lot l.
The relations between products, lots, tasks, and units sets are

illustrated in Figure 4. We assume that we have a set of products

P; in the example we have {PA1, PA2, PB}, associated with
recipes that describe the tasks sequence, the task-unit suitability,
the materials needs, and the storage policies. A recipe may
involve the production of one or more products. In the example
shown in Figure 4, products PA1 and PA2 are subproducts of a
unique recipe. Each product has at least one lot belonging to set
L. Production tasks are associated to processing units and belong
to set K and may execute any lot of the corresponding product.
Finally, processing units belong to set E and are associated to
different tasks, since they operate in a multipurpose way.
Model M2 is defined by task-unit assignment/sequencing

constraints 1; materials produced and consumed, constraints 2

Figure 3. Resource availability variables for models M1 and M2.

Figure 4. Relation between products, lots, tasks, and units sets.
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and 3 respectively; products blending constraints 4, materials
balance constraints 5, minimum and maximum materials
availability constraints 6; minimum and maximum task batch
size constraints 7; demand constraints 8; delivery constraints 9
and 10; temporary storage in the processing units without or with
changeovers, constraints 11 and 12, respectively; tasks started
must end in the time horizon constraints 13 and variables domain
constraints 14.
Constraints.
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Constraints 1 express the assignment of tasks to processing
units and state that at most one task k of lot l can start during the
time period corresponding to the task processing time. This is
implemented through a backward time aggregation for t′ = t − τk
+ 1 over the binary variablesNkit. Since constraints 1 are similar to
the STN constraints for handling task-unit allocation, M2 can be
classified as a STN model.
Materials production Rkrlt

p and consumption Rkrlt
c are defined

separately to address lots blending. Constraints 2 define the
amount of resource r (intermediaries or final products) produced
by task k of lot l at time interval t. Parameters vkrθ

p give the
production proportion of the batch size of task k for resource r.
Constraints 3 give the amount of resource r consumed by task k
of lot l at time interval t at the proportion vkrθ

c of the batch size ξklt.
Since resource r of lot l can be available from any tasks k∈Kr

p that
have produced r, the summation over Rkrlt

c in the left-hand side of
constraints 3 is required.
Constraints 4 define the special case of lots blending. In many

situations, it is common to produce several lots of stable
intermediaries that are used to produce other lots of final
products. In these cases, blending of lots is allowed but it is
necessary to ensure traceability, which is done by constraints 4.
These constraints are defined for the set of intermediaries/
products B whose lots can be blended.
Constraints 5 express the material r balance for each task k and

lot l by considering the material in the previous time interval, the
amount produced and consumed, and the material deliveries.
Constraints 6 define the minimum and maximum materials/lots
availability allowed for each time interval. Constraints 7 impose
the task-batch size limits.
Constraints 8 define multiple product/lot deliveries Πkrlt for a

given delivery time window DWrld. The amount of resource r of
lot l at delivery d is limited by the minimum Qrld

min and maximum
Qrld

max quantities. Production requirements are modeled as “soft-
constraints” so as to avoid infeasible solutions. Thus, missing
deliveries are expressed by the continuous variablesΠrld

slack and are
penalized in the objective function through coefficient crld

slack.
Constraints 9 and 10 express the fact that delivery variables Πkrlt
cannot take values for the time intervals out of the delivery time
window and for other resources than final products.
Constraints 11 define the temporary storage in the processing

units and state that if the binary variable Nklt is equal to 1, then
Rkrlt must be equal to 0. In other words, no task k of any lot l can
start in the processing unit r if unit r is temporarily storing
material from any other task. Note that the second term of the
left-hand side only occurs for tasks that produce intermediaries
subject to the Non-Intermediate Storage (NIS) policy, defined
by the set Ik

NIS. Constraints 12 extend constraints 11 to account
for sequence-dependent changeovers. In this way, tasks must
respect the sequence-dependent changeover time defined for
each unit and lot by the parameter crl′l and for possible storage
time in the processing units. Therefore, if task k of lot l occurs at
time t, then the first term of the constraint is equal to one, and the
second and third terms are forced to be zero for all tasks k′ and k″
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belonging to lots l′ and for the time intervals corresponding to t
− τk − θ + 1 for the production tasks and to t − θ for the
temporary storage.
Constraints 13 define that tasks must finish in the time horizon

of interest and constraints 14 state the non-negativity of the
continuous variables resource availability, production and
consumption, batch size, and missing delivery; the nonpositivity
of the delivery variables; and the integrality of the assignment/
sequencing variables.
5.4. Objective Function. The objective is to maximize the

economical result of the global operation (see expression (15))
by taking into account the value of the products (VP), the storage
costs (SC), the operational costs (OC), and the missing
deliveries costs (MC). Note that model M2 cannot take into
account changeover costs since there are no changeover
variables, and in order to make a fair comparison between
models M1 andM2, changeover costs were not considered in the
objective function.
Objective Function.

= −

−

−

Zmax value of the products (VP) storage costs (SC)
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missing delivery costs (MC) (15)
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The first term of the objective function defines the value of the
delivered products; see expression 15a. The second term
determines the storage costs, which are calculated differently
for models M1 and M2. So, for model M1 storage costs are
associated tomaterials stored under FIS andUIS policies that can
be expressed by the continuous Rrlt variables and by materials
temporarily held by the processing units; see expression 15b. For
model M2, storage costs are determined simply by the
continuous variables Rkrlt, since the availability of the materials
is only modeled through these variables; see expression 15c. The
fourth term of the objective function determines the operational
costs; see expression 15d. And the fifth term is a penalty cost
associated with the missing deliveries; see expression 15e.

6. MODELS EXTENSIONS
We have also investigated some extensions of these models to
address the start of changeovers tasks, nonpreemptive lots, lots
start and sizes, task-unit-layout assignment, and alternative task-
unit assignment.
Changeovers Start (M1). In model M1, as stated by

constraints A1, changeover tasks may occur in any time interval
between the start of the tasks associated to lots l and l′. However,
a common industrial practice is to perform the changeover as

soon as the task finishes. We illustrate this situation in Figure 5,
with (a) showing the time range where the changeover tasks may

occur if constraints A1 are used. However, the desirable
scheduling solution is the one presented in (b), since the
changeover occurs immediately after the storage tasks.
Constraints 16 force changeovers to occur immediately after a

production or storage task. Another relevant point is that
constraints 16 help in reducing the model degeneracy.

∑ ∑− ≥ ∀ ∈ ∈ ∈τ
∈

−
′∈

′N C r E l L t H0 , ,
k K

kl t
l L

rll t r,

r

k

r

(16)

Non-Preemptive Lots (M1). It is also a common practice in
many chemical batch plants that lots once started in one unit
cannot be interrupted to allow the production of a different lot.
Constraints 17 define that if a changeover from lot l′ to lot l
occurs in unit r, then no changeover can occur in that unit from l
to l′.

∑ ∑ ∑ ∑+ ≤ ∀ ∈ ∈
′∈ ∈
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Lots Start (M1 andM2).Constraints 18 state that lot l is only
executed if the previous l− 1 is also executed. Thus, if task k of lot
l is performed at time t, then the same task k of lot l − 1 should
have started previously or any alternative tasks Ak to k should
have started at the time intervals between t′ = 0 and t. This allows
different lots to be produced in parallel.
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Lots Sizes (M1 and M2). If we want to define lots with
exactly the same amount of material, constraints 19 and 20 may
be applied. Constraints 19 impose that the total amount
produced by tasks of different lots must be the same and
constraints 20 state that the number of tasks must be the same
among the lots.

∑ ∑ξ ξ= ∀ ∈ ′ ∈ ≠ ′ ∈
∈ ∈

′ k K l l L l l t H, , , ,
t H

klt
t H

kl t k

(19)

∑ ∑= ∀ ∈ ′ ∈ ≠ ′ ∈
∈ ∈

′N N k K l l L l l t H, , , ,
t H

klt
t H

kl t k

(20)

Task-Unit-Layout Assignment (M1 and M2). For
processes with many alternative units it may be preferable to

Figure 5. Start of production, storage, and changeover tasks (Model
M1).
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do the task-unit assignment taking into consideration the
physical layout of the units. Figure 6 depicts the plant layout

and the allowed connections between units for the processes of
Figure 1. For example, unit U1 can only transfer/receive
materials to/from U2, U5, F1, and also D1.
This approach helps in the definition of physical aligned

processes, leading in practice to several operational advantages.
To model this requirement, we have created new binary

variables Xkl that are equal to 1 if task k is assigned to lot l, see
expression 21.

= ∀ ∈ ∈
⎧⎨⎩X

k l
k K l L

1 if task is assigned to lot

0 otherwise
,kl k

(21)

If task k and k′ use processing units that are connected, then
(k,k′) ∈ S. Constraints 22 define that if task k is assigned to lot l,
then task k′ cannot be assigned to the same lot, since k is not
connected to k′. Constraints 23 ensure that if∑t∈HNklt > 0 then
Xkl = 1 and constraints 24 guarantee that if∑t∈HNklt = 0, then Xkl
= 0.

+ ≤ ∀ ′ ∉ ∈′X X k k S l L1 ( , ) ,kl k l (22)

∑ ≤ ∀ ∈ ∈
∈

N X M k K l L,
t H

klt kl k
(23)

∑ ≥ ∀ ∈ ∈
∈

N X k K l L,
t H

klt kl k
(24)

Alternative Task-Unit Assignment (M1 and M2).
Moreover, we may want to ensure that from the alternative
units available for each task only one is assigned. Constraints 25
guarantee that from the alternative tasks Ak to k only one is
selected.

∑+ ≤ ∀ ∈ ∈
′∈

′X X k K l L1 ,kl
k A

k l k
k (25)

7. NUMERICAL RESULTS

In order to show how general model M2 is and to compare its
effectiveness, we consider four different chemical processes.
Process 1 was first addressed by Kondili et al.,25 Process 2 was
published by Kallrath,37 Process 3 was proposed in the paper of
Papageorgiou and Pantelides,38 and finally Process 4, depicted in
Figure 1, is proposed by us. The first three processes are
benchmark problems from the literature and fairly represent the
existing scheduling complexities of the multipurpose batch
plants. The last process is intended to allow an analysis of lots
blending and traceability features and the model extensions.
We present the solution statistics (integer and continuous

variables, nodes, iterations, linear relaxation at the root node,
integrality gap, objective function value, and CPU time) of
models M1 and M2 for four scheduling horizons (24, 48, 120,
and 240 h) and for different time grids, whenever this is
applicable.
Model M1 is defined by constraints A3 to A12, if changeovers

are not present, and by constraints A1, A2, and A4 to A12, if
changeovers are modeled. Model M2 is defined by constraints 1
to 11, 13, and 14, if changeovers are not required, and by
constraints 1 to 10 and 12 to 14, if changeovers are needed. The
objective function is to maximize the economical result of the
global operation and is the same for both models, despite the
modeling differences in the storage costs discussed in section 5.4.
The models were implemented using ILOG/CPLEX version

12.5, running on an Intel Xeon X5680 at 3.33 GHz with 24 GB of
RAM. We have considered the time limit of 3600 s and the
integrality gap of 5% as stopping criteria, so as to evaluate the
models performance respecting the time to obtain solutions and
their quality. The networks of processes P1, P2, and P3 and
respective data tables are given in the Supporting Information.

7.1. Process 1. Process 1 is the network published by Kondili
et al.25 This process involves a cyclic material flow, alternative
processing units, and different storage policies. Additionally, we
have performed a slight modification of the network by
considering the NIS policy for the intermediaries HOTA,
INTBC, and IMPE. Because Process 1 has a unique network, no
changeovers were defined.Moreover, we assume a single lot, thus
lots blending are not considered and materials traceability is
implicitly ensured.
Numerical results for Process 1 are depicted in Table 1 for the

case where the stopping criterion is the time limit equal to 3600 s
and in Table 2 where the stopping criterion is the integrality gap
of 5%. As expected, model M2 always has less binary variables
and more continuous variables and constraints when compared
with model M1. This is because M1makes use of binary variables
tomodel storage tasks, whileM2 implements storage through the
set of constraints 11.

Figure 6. Location of processing units: (a) plant layout; (b) allowable
connection between units.

Table 1. Process 1 Solution Statistics (Stopping Criterion Is the Time Limit of 3600 s)

model/process/horizon/grid int. variables/cont. variables/constraints nodes iterations LP relaxation gap (%) objective CPU time (s)

M1/P1/24/1 325/732/1334 5,331 314,722 30,673.1 0.00 28,709.6 3
M2/P1/24/1 200/1303/1635 6,278 310,912 31,389.1 0.00 28,709.6 2
M1/P1/48/1 637/1430/2607 149,480 17,765,652 62,828.7 0.00 60,380.9 287
M2/P1/48/1 392/2553/3196 118,801 9,257,543 63,033.6 0.00 60,380.9 189
M1/P1/120/1 1,573/3520/6472 354,705 37,582,562 152,026.4 1.05 148,434.4 3,600
M2/P1/120/1 968/6299/7925 639,012 69,419,840 152,115.5 1.20 148,295.2 3,600
M1/P1/240/1 3133/7002/12929 111,232 19,898,360 290,651.7 2.06 283,334.0 3,600
M2/P1/240/1 1928/12541/15822 203,522 37,267,461 290,570.4 1.46 285,068.8 3,600
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For the 24 h scheduling horizon both models proved
optimality relatively fast. However, in the 48 h instance, the
solution time of M2 is lower than the time required by M1 to
prove optimality. The same happens when trying to obtain a
solution within the margin of 5% of the integrality gap.
In the 120 and 240 h instances none of the models succeeded

to prove optimality. In the horizon of 120 h, M1 is slightly better
than M2, and in the 240 h instance, the solution of M2 is better
thanM1. Assuming amargin of 5% for the integrality gap, the 120
h instance ofM1 reached a solution in 201 s, whileM2 took 381 s.
However, in the 240 h instance, M2 reached a better solution in
just 460 s, while M1 required 2053 s.
Globally, model M2 ran very well and outperformed model

M1 in most of the instances.
7.2. Process 2. Process 2 was published by Kallrath37 and is

being extensively used as a benchmark problem because of its
complexity. The process suggested by the author accounts for
flexible output proportions for intermediaries, several storage
policies, a cyclic material flow, and a considerable number of
states, units, and tasks. In this paper, we do not consider flexible
output proportions; therefore, the proportion of material going
to State3 was fixed to 0.3 and the proportion of material going to
State4 was fixed to 0.7. Again, we assume a single lot and that
there are no sequence-dependent changeovers.
The solution statistics presented in Table 3 show that model

M2 performed better than model M1 in all instances. In the 48 h
horizon, M1 proved optimality in 233 s, whileM2 just took 101 s.
With the increase of the model size, both models had difficulties
in reaching an optimal solution; however, M2 obtained always
the best solution within the specified time limit. In the 120 h
horizon, the solution obtained byM1was within a gap of 12.86%,
while the solution retrieved by M2 ensured a gap of 3.11%.
In this process, we have opted not to test the stopping criterion

of the 5% of integrality gap, because the larger instances showed
to be very hard to solve with both models.
7.3. Process 3. Process 3 is from Papageorgiou and

Pantelides38 and is defined by three parallel production lines
that share almost all processing units. The processes have several
storage policies, including ZW andNIS, and have tasks with small
and large processing times. Here, we consider sequence-

dependent changeovers between products that have a single
lot, and we test these processes with time grids of 1 and 5 h.
In Table 4, we show the results with a time grid of 5 h and for

scheduling horizons of 120 and 240 h. It is not possible to run
Process 3 for smaller time horizons, because tasks have large
processing times. Model M2 outperformed model M1 in both
instances. In the 120 h horizon, M1 proved optimality in 5 s,
which required 18 s. And in the 240 h horizon, M2 proved
optimality in just 476 s, while M1 needed 677 s. The number of
nodes and iterations of the branch-and-bound for model M2 are
also significantly smaller when compared with those of model
M1. Considering the stopping criterion of 5% in the integrality
gap, Table 5, model M1 obtained a solution in just 10 s, while M2
required 58 s.
By assuming a time grid of 1 h, the model size naturally

increased in a significant way and none of the models proved
optimality; see Tables 6 and 7. M2 performed better than M1 in
all instances, always reaching an integrality gap within 5%, with
the exception of one instance.
In this process, model M2 had better performance in all

indicators, suggesting that model M2 works well in instances
having multiple processes, with sequence-dependent change-
overs and different storage policies.

7.4. Process 4.We now consider the network defined by the
three processes depicted in Figure 1. Products PA and PB are
produced from raw materials, while Product PC is produced
from PA and PB. Moreover, we are given the unit’s physical
layout shown in Figure 6. This process is used to test the
performance of both models and also to address new modeling
features only possible to be treated with model M2 with the
extensions proposed in Section 6.
First, we test Process 4 assuming sequence-dependent

changeovers and single lots without blending. Since model M1
cannot address lots blending and traceability features, we slightly
change the recipe of product PC by imposing that the materials
required to produce PC are raw materials and not the products
PA and PB as defined in Figure 1. The numerical results for this
scenario are presented in Tables 8 and 9. Second, we define
multiple lots and assume that lots blending may happen. Thus,
here only model M2 is tested. We analyze lots traceability,
sequence-dependent changeovers, temporary storage in the
processing units, task-unit-layout, and alternative task-unit
assignments. The numerical results for this case are shown in
Table 12.

Single Lots without Blending. As it can be seen in Tables 8
and 9, the results obtained by model M2 are superior to the
results retrieved by model M1. For example, in the 48 h horizon
instance, the solution time of M2 is 651 s, while M1 required
1996 s.
In the 120 and 240 h horizons, none of models could prove

optimality for the CPU time limit of 3600 s. Nevertheless, the
solutions obtained by M2 are always better, achieving integrality

Table 2. Process 1 Solution Statistics (Stopping Criterion Is
the Integrality Gap of 5%)

model/process/
horizon/grid nodes iterations

gap
(%) objective

CPU
time (s)

M1/P1/48/1 12,084 1,706,400 5.00 59,090.5 32
M2/P1/48/1 9,562 953,946 4.81 59,427.9 17
M1/P1/120/1 19,637 2,160,873 4.33 144,776.6 201
M2/P1/120/1 55,064 8,342,967 4.28 144,811.8 381
M1/P1/240/1 53,307 9,155,148 4.15 277,682.5 2,053
M2/P1/240/1 45,036 5,870,111 3.24 280,300.0 460

Table 3. Process 2 Solution Statistics (Stopping Criterion Is the Time Limit of 3600 s)

model/process/horizon/grid int. variables/cont. variables/constraints nodes iterations LP relaxation gap (%) objective CPU time (s)

M1/P2/48/1 1421/3632/6759 29,345 93,866,983 5,269.3 0.00 4,802.8 233
M2/P2/48/1 1176/6278/8577 20,788 3,992,399 5,247.9 0.00 4,802.8 101
M1/P2/120/1 3509/8965/16696 15,464 26,488,007 16,725.8 12.86 14,495.0 3,600
M2/P2/120/1 2904/15499/21178 55,076 21,512,065 16,611.9 3.11 15,440.1 3,600
M1/P2/240/1 6989/17850/33305 1,088 8,328,162 33,261.4 17.37 27,734.6 3,600
M2/P2/240/1 5784/30864/42227 14,876 12,549,594 32,925.6 11.59 28,519.4 3,600
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gaps that are less than 5% and that are less than half of the gaps
obtained by M1.
With an integrality gap of 5% as stopping criterion, model M2

also performed better than M1, as it can be seen in Table 9. The
solution times of M2 are considerably smaller than the solution
times required by M1 (except for the 24 h instance). In the 120 h
horizon, M1 required 2554 s and M2 required 51 s, and in the
240 h instance M1 needed 10 370 s, while M2 just needed 267 s.
The performance of the extensions, on changeovers start and

nonpreemptive lots, expressed by constraints 16 and 17,
respectively, is assessed by the numerical results of Table 10.
Constraints 17 impose that lots cannot be interrupted to produce
other lots, thus limiting the profit of the schedule when compared
with the profit values shown in Table 8. The computational
performance of the model M1.1 tends to decrease with the
increase of the time horizon, as can be seen by the large
integrality gaps of the 120 and 240 h instances.
On the Changeover Costs. In order to reflect the changeover

costs on the schedule solutions, we have added expression 26 in
the objective function of model M1. The cost structures of the
resultant modelM1.2 and of modelM2 are illustrated in Figure 7.

∑ ∑ ∑ ∑=
∈ ∈ ′∈ ∈

′ ′c CGC ( )
r E l L l L t H

rll rll t
r r (26)

It can be seen that in the 24 h instance bothmodels had storage
costs equal to 3032 m.u. In the 48 h storage costs increased to
6463 in model M2, while model M1.2 storage costs (SC)
increased to 6807. Regarding the operational costs (OP),M2 had
always inferior costs thanM1.2. It is important to note that, when
changeover costs (GC) are considered in the objective function
the trade-offs between task-unit allocation, storage, and change-
over costs pass to exist.
The computational results of model M1.2 are shown in Table

11. As expected, the profit obtained by M1.2 is always inferior to
the profit obtained by models M1 and M2 (see Table 8) due to
the changeover costs. Model M1.2 demonstrated worse
performance than M1, particularly in the larger instances. For
example, in the 240 h instance, M1.2 had 28.23% of integrality
gap, in contrast to M1 that had 8.96%.

Looking into the scheduling solutions (see Figure 8), we can
analyze how changeover costs affect the task-unit assignment.
The schedule solution of M1.2 has a total of 3 changeovers,
resulting into a cost of 800 m.u. and an idle time of 11 h.
AlthoughM2 does not model changeover tasks, costs and time of
the changeovers can be derived by analyzing the schedule
solution. In this way, the schedule solution of M2 has a total of 7
changeovers that result into a cost of 1800 m.u. and an idle time
of 25 h. Processing units are used less efficiently in M2, which
concerns to the total changeover time and costs. Nevertheless,
the profit of M2 is 99.8% of M1.2, discounting the changeover
cost of 1800 m.u. to the profit obtained by M2. Thus, although
M1.2 and M2 schedules are slightly different, they deliver the
same amount of products and have a similar profit. In practice,
since changeover constraints lead to a more efficient model, they
can be used instead of changeover tasks if (a) the exact time of
the changeover is not relevant; (b) utilities/materials con-
sumption during changeovers can be disregarded; and (c)
changeover costs are not significant.

Multiple Lots with Blending. Now, we use the processes as
shown in Figure 1 to obtain schedules with multiple lots per
product and with blending operations. We considered the
production of two lots of PA, two lots of PB, and a single lot of
PC, in a time horizon of 48 h. The aim is to define production
schedules in which the traceability of lots is kept during the entire
horizon and the tasks-units assignment is done by assuming the
physical layout limitations shown in Figure 6. For that we
consider the extended model M2.1 by adding constraints 22 to
25 to model M2. Moreover, we also include the lot sizes
extensions in model M2.2 that are defined by constraints 19 to
25.
Figure 9 shows the schedule for a 48 h horizon, having an

objective value of 340 442.2 m.u., relative to a delivery of 7000 kg
of product PC. Lot L1 of product PA starts first in units U2 and
F1, while lot L2 of the same product is processed in units U4 and
F2. We can see that the physical layout limitations expressed in
Figure 6 were followed by both lots. Regarding the production of
PB, lots L1 and L2 were produced in units U3, U3, and F2.
Although model M2.1 does not explicitly give the start of the

temporary storage tasks in the processing units and the sequence-
dependent changeovers, those can be directly deduced from Rkrlt
andNklt variables. Thus, it can be seen that intermediary PA_S3 is
temporarily stored in unit U3 in all occurrences of TASK3 of
product PA. Concerning the sequence-dependent changeovers,
we can see changeovers between lots of different products and
changeovers between lots of the same product. This latter case
happens in unit U3 at the time interval 9.

Table 4. Process 3 Solution Statistics (Time Grid Is 5 h)

model/process/horizon/grid int. variables/cont. variables/constraints nodes iterations LP relaxation gap (%) objective CPU time (s)

M1/P3/120/5 1550/1720/2841 17,969 1,413,603 5,387.3 0.00 5,066.0 18
M2/P3/120/5 575/2879/5086 5,893 297,682 5,392.2 0.00 5,066.0 5
M1/P3/240/5 3038/3355/5541 330,548 40,797,510 10,774.7 0.00 10,184.8 677
M2/P3/240/5 1127/5642/9946 199,201 21,796,427 10,784.5 0.00 10,184.8 476

Table 5. Process 3 Solution Statistics (Time Grid Is 5 h and
Stopping Criterion Is the Integrality Gap of 5%)

model/process/
horizon/grid nodes iterations

gap
(%) objective

CPU
time (s)

M1/P3/240/5 18,539 2,565,141 4.30 10,000.6 58
M2/P3/240/5 4,771 446,278 5.00 9,966.8 10

Table 6. Process 3 Solution Statistics (Time Grid Is 1 h and Stopping Criterion Is the Time Limit of 3600 s)

model/process/horizon/grid int. variables/cont. variables/constraints nodes iterations LP relaxation gap (%) objective CPU time (s)

M1/P3/120/1 7502/8248/13653 178,586 72,707,311 5,317.2 13.34 4,587.7 3,600
M2/P3/120/1 2783/13919/30346 168,092 25,231,890 5,321.2 9.09 4,768.5 3,600
M1/P3/240/1 14942/16411/27165 56,025 26,545,793 10,634.3 11.18 9,457.9 3,600
M2/P3/240/1 5543/27722/60418 59,941 17,039,145 10,642.4 5.80 9,920.5 3,600
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Finally, lots traceability is ensured for all products. The
amounts produced of PA and PB of each lot are consumed by
product PC and are directly traceable. For example, at the time
interval 27, the amount of lot L1 of product PB is 2500 kg and of
L2 is 833.3 kg, and because the amount of L1 of PB is not
sufficient to feed the batch of TASK2 of PC, it is necessary to
blend lots. This situation can be seen in Figure 10, at time 28,
where lots L1 and L2 of PB are consumed simultaneously by
TASK2 of product PC.
Table 12 shows the computational results for modelsM2.1 and

M2.2. M2.1 obtained a profit equal to 340 442.2 after 3,600 s. But
assuming an integrality gap of 5%, a solution was retrieved in just
31 s. Model M2.2 takes into account the lot sizes constraints 19
and 20, and it can be seen that M2.2 and M2.1 performances are
comparable for the tested instance.

8. CONCLUSIONS

In this work, we propose two general discrete-time scheduling
models for multipurpose batch plants (models M1 and M2). We
first use a RTN discrete-time formulation (M1) as basis for
comparison with a more innovative model (M2). The first model
(Model M1) extends the RTN model of Pantelides,27 by
considering explicitly and in an integrated way scheduling
features already treated in the literature, such as temporary
storage in the processing units,25 sequence-dependent change-
overs,30 and multiproduct delivery extensions.31 This model is
then generalized by considering the start of changeovers tasks
and nonpreemptive lots, as well as alternative task-unit and task-
unit-layout assignments.

Table 7. Process 3 Solution Statistics (Time Grid Is 1 h and Stopping Criterion Is the Integrality Gap of 5%)

model/process/horizon/grid nodes iterations gap (%) objective CPU time (s)

M1/P3/120/1 578,271 296,170,781 7.84 4,795.6a 14,400
M2/P3/120/1 566,936 131,212,184 4.78 4,912.4 14,400
M1/P3/240/1 341,515 136,133,027 10.24 9,496.7a) 14,400
M2/P3/240/1 129,924 44,592,826 4.98 9,978.7 7,125

aStopping criterion is the time limit of 14,400 s.

Table 8. Process 4 Solution Statistics (Stopping Criterion Is the Time Limit of 3600 s)

model/process/horizon/grid int. variables/cont. variables/constraints nodes iterations LP relaxation gap (%) objective CPU time (s)

M1/P4/24/1 1750/1771/3103 9,259 607,242 515,216.8 0.01 511,167.8 9
M2/P4/24/1 500/2704/6331 1,945 84,077 515,295.8 0.01 511,167.8 6
M1/P4/48/1 3430/3454/6064 315,067 91,541,309 1,030,433.6 0.01 1,022,336.5 1,996
M2/P4/48/1 980/5299/12388 72,764 5,372,800 1,030,591.7 0.01 1,022,336.5 651
M1/P4/120/1 8470/8497/15025 53,326 18,026,661 2,545,650.8 4.25 2,430,807.0 3,600
M2/P4/120/1 2420/13078/30637 89,081 13,183,238 2,548,144.6 1.27 2,499,456.8 3,600
M1/P4/240/1 16870/16900/29986 20,785 17,080,636 5,008,652.8 8.96 4,572,396.1 3,600
M2/P4/240/1 4820/26041/61078 46,029 12,090,984 5,015,842.1 3.52 4,809,863.8 3,600

Table 9. Process 4 Solution Statistics (Stopping Criterion Is the Integrality Gap of 5%)

model/process/horizon/grid nodes iterations gap (%) objective CPU time (s)

M1/P4/24/1 76 26,378 0.52 511,067.8 3
M2/P4/24/1 287 24,182 0.59 511,075.8 6
M1/P4/48/1 12,359 3,340,246 4.14 985,409.0 91
M2/P4/48/1 2,055 150,354 3.71 991,374.5 14
M1/P4/120/1 53,308 18,026,661 4.39 2,427,689.0 2,554
M2/P4/120/1 1,762 269,770 3.99 2,441,242.8 51
M1/P4/240/1 55,073 43,710,694 4.27 4,775,346.8 10,370
M2/P4/240/1 6,889 931,290 3.90 4,806,198.8 267

Table 10. Process 4 Solution Statistics, Assuming
Changeovers Start and Non-Preemptive Lots Constraints

model/process/
horizon/grid constraints gap (%) objective

CPU time
(s)

M1.1/P4/24/1 3,545 0.00 501,290.0 10
M1.1/P4/48/1 6,914 0.57a 998,965.5 3,600
M1.1/P4/120/1 17,099 23.02a 2,060,248.0 3,600
M1.1/P4/240/1 34,100 34.94a 3,692,146.0 3,600

aStopping criterion is the time limit of 3,600 s.

Figure 7. Cost structure for models M1.2 and M2 (SC, storage costs;
OC, operational costs; GC, changeover costs).
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Model M2, based on STN, can be viewed as an innovative
contribution in the area, explicitly modeling the inventory carried
out in each task by adding a task index to the resource availability
variables. This approach allows the development of new types of

constraints for modeling sequence-dependent changeovers and
temporary storage in the processing units. Moreover, we address
lots blending, lots start, and alternative task-unit and task-unit-
layout assignments. Lots blending and traceability are two

Table 11. Process 4 Solution Statistics, Assuming Changeovers Costs

model/process/horizon/grid nodes iterations LP relaxation gap (%) objective CPU time (s)

M1.2/P4/24/1 4,291 476,489 515,200.6 0.01 510,167.8 8
M1.2/P4/48/1 300,486 130,181,404 1,030,401.2 0.11 1,019,193.5 3,600
M1.2/P4/120/1 52,633 35,118,731 2,545,454.9 5.14 2,408,360.0 3,600
M1.2/P4/240/1 12,733 12,292,104 5,007,848.3 28.23 3,884,643.0 3,600

Figure 8. Scheduling for 24 h instance: (a) model M1.2 and (b) model M2 (CO = changeover).

Figure 9. Scheduling for instance M2.1/P4/48/1a).

Figure 10. Inventory for lots of products PB and PC.
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requirements introduced in this work that are common in the
chemical and biochemical−pharmaceutical industries, consid-
ered here with the purpose of keeping record of the blending
processes during the production.
We compare the effectiveness of both models using three

benchmark problems from the literature and one scheduling
problem proposed in this paper. Experimental results have
shown that model M2 is computationally more effective for the
instances tested. In the larger or more complicated instances,
both models had difficulties in proving optimality. However,
model M2 always reached a solution within 5% of the integrality
gap, except for the 240 h scheduling horizon of Kallrath37

network. Model M1 had worse performance in most of the cases.
Two critical modeling features of the discrete-time formula-

tions (sequence-dependent changeovers and temporary storage
in the processing units) have been addressed, the proposed
modeling alternative being computationally more efficient. An
interesting and challenging issue for future research is the
modeling of variable processing times with discrete-time
formulations.

■ APPENDIX: RTN MODEL (M1)
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Constraints A1 express the availability of the processing units
for each lot and time interval. So the unit availability Rrlt is equal
to the availability in the previous time interval Rrl,t−1 plus the
availability resulting from the unit’s allocation/release to/from
the production or changeover tasks at time interval t. For the
production tasks, this is done through coefficient μkrθ that defines
the unit r allocation/release done by task k at time θ relative to
the start of the task. And for changeover tasks, we have
introduced the changeover coefficient αrl′l″lθ that defines the
allocation/release of unit r from lot l′ to l″, at the current lot l and
at time θ relative to the start of the changeover task. The
changeover time is given by parameter crl′l″. Constraints A2 do
the initial assignment of processing units to lots. A simplified
version of constraints A1 can be written if changeovers between
lots are not required; see constraints A3. In these cases, we just
have the resource balance for the production tasks and the index l
of the resource availability variables is removed. Because
constraints A1 or A3 ensure that no processing units are
eliminated or created, we do not need to define lower or upper
bounds for this type of resources. Note that Rrlt or Rrt variables do
not need to be integer variables, since the resource balance
equation ensures that these variables take always integer values.
The materials balance constraints A4 are similar to the units

balance constrains A1 or A3. The difference is that constraints A4
handle intermediaries and final products and not processing
units. Materials are consumed and produced at the proportion
νkrθ of the batch size ξklt. The continuous variablesΠrlt express the
deliveries of product r of lot l at the time interval t and will always
have non-positive values; thus, no material receipts are expected
to occur during the scheduling horizon. We opted not to model

Table 12. Process 4 Solution Statistics

model/process/horizon/grid int. variables/cont. variables/constraints nodes iterations gap (%) objective CPU time (s)

M2.1/P4/48/1a 1650/8875/30554 36,169 31,493,851 0.61 340,442.2 3,600
M2.1/P4/48/1b 1650/8875/30554 935 233,990 2.36 338,356.4 31
M2.2/P4/48/1a 1650/8875/30580 57,805 34,439,408 0.14 338,787.2 3,600
M2.2/P4/48/1b 1650/8875/30580 236 181,674 4.13 332,480.2 34

aStopping criterion is the time limit of 3,600 s. bStopping criterion is the integrality gap of 5%.
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raw materials since it can be assumed, without loss of generality,
that raw materials are available when needed. Constraints A5
define the minimum and maximum materials availability allowed
for each time interval. These constraints also permit the
definition of different storage policies depending on the value
of parameters Rrt

max. Thus, Rrt
max take the value 0 for Non-

Intermediate Storage (NIS) or Zero-wait (ZW) and takes a value
greater than zero if there is Finite Intermediate Storage (FIS) or
Unlimited Intermediate Storage (UIS). In the latter case the
value should be sufficiently large to account for unlimited storage
capacity. Constraints A6 define that the batch size ξklt must be
within the minimum Vkrl

min and maximum Vkrl
min allowed capacities

of resource r and task k of lot l.
Constraints A7 were first proposed by Kondili et al.25 to model

temporary storage done by the processing units (NIS policy) and
ensure that the intermediary is held by the unit in which it was
produced. These constraints require the creation of additional
storage tasks to model the NIS policy and impose that the batch
size of a storage task is less than or equal to the previous amount
stored plus the amount produced at each time interval. If the
batch size of a storage task is greater than zero, then the
assignment binary variable for the storage task must be one by
constraints A6. Parameters νkrθ

p give the production proportion of
the batch size of task k for resource r, and INIS is a subset of I that
has the intermediaries subject to the NIS policy. Note that
storage tasks have duration equal to one since materials
availability needs to be checked at every time interval. These
constraints are only required in the cases that the alternative units
suitable to perform a given task are dissimilar. In these situations,
constraints A7 guarantee that the unit allocated during the
storage period is the same unit that has produced the material
being held.
Multiple product deliveries are defined by constraints A8. The

delivery time windows DWrld are defined by fixed time intervals
in which the product deliveries can happen. Constraints A9 and
A10 set the delivery variables to zero for the time intervals out of
the delivery time window and for other resources rather than final
products.
Constraints A11 define that tasks must finish in the time

horizon of interest. Finally, constraints A12 guarantee the non-
negativity of the continuous variables resource availability, batch
size, and missing deliveries; the nonpositivity of the delivery
variables; and the integrality of the assignment/sequencing
variables and sequence-dependent changeovers.
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■ NOTATION

Indices
d delivery period
l lot
k task
p product
r resource (processing unit, intermediary, or final product)
t time interval
Sets
Ak alternative tasks for task k
B resource r (intermediary or final product) in which the

lots that can be blended
Br lots from resource r (intermediary or final product) that

can be blended
Dr delivery periods of resource r (final product)
DWrld delivery window of lot l and resource r (final product) at

delivery period d
E processing units
f l
r tasks associated to processing unit r and lot l
H scheduling horizon
I intermediaries
INIS intermediaries subject to a nonintermediate storage

policy
Ik
NIS intermediaries produced by task k and subject to a

nonintermediate storage policy
L lots
Lr lots associated with resource r
Lk lots associated with task k
Kr tasks that require resource r (processing unit, interme-

diary, or final product)
Kr
c tasks that consume resource r (intermediary or final

product)
Kr
p tasks that produce resource r (intermediary or final

product)
Kr
sto storage tasks associated with intermediary r

P products
R production resources
S task k that follows task k′ at adjacent processing units
Parameters
αrl′l″lθ allocation/release changeover coefficient of re-

source r (processing unit) from lot l′ to l″ being at
lot l and at time θ relative to the start of the
changeover task

μkrθ allocation/release coefficient of resource r (pro-
cessing unit) in task k at time θ relative to the start
of the task

τk processing time of task k
νkrθ, νkrθ

p , νkrθ
c production/consumption proportion of resource

(intermediary or final product) r in task k at time θ
relative to the start of task

Cr
sto cost of storage of products and intermediaries r

Ck
op operational costs of task k

Crld
slack missing deliveries cost for material r of lot l and

delivery d
Crll′ changeover time in processing unit r from lot l to

lot l′
Qrld

minQrld
max minimum and maximum amount of lot l and

product r at delivery d
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Rrt
max maximum resource availability of resource r

(intermediary or final product) at time interval t
Rrl
init(m) resource r (intermediary or final product)

availability of lot l in the beginning of the planning
horizon

Rrl
init(m) resource r (intermediary or final product)

availability of lot l at task k in the beginning of
the planning horizon

T length of the scheduling horizon
Tld
ed earliest time interval of lot l at delivery d

Tld
ed latest time interval of lot l at delivery d

νr value of product r
Vkrl
min, Vkrl

max minimum and maximum capacity of resource r
(processing unit) for task k of lot l

Variables
ξklt batch size of task k and lot l at time interval t (continuous)

(models M1 and M2)
Πrlt delivery of resource (final products) r of lot l at time

interval t (continuous) (model M1)
Πkrlt delivery of resource (final products) r of lot l at time

interval t available from task k (continuous) (model M2)
Πrld

slack missing delivery d of lot l of product r (continuous)
(models M1 and M2)

Crll′t binary variables that are equal to 1 if a changeover task
occur on resource (processing units) r between lots l and
l′ (model M1)

Nklt binary variables that are equal to 1 if task k starts lot l at
time interval t (models M1 and M2)

Rrl
init allocation of resource r (processing unit) at the beginning

of the scheduling horizon (continuous) (model M1)
Rrlt resource availability r at lot l and at time interval t

(continuous) (model M1)
Rrt resource availability (processing units) r at time interval t

(continuous) (model M1)
Rkrlt resource r (intermediaries or final products) availability,

produced by task k of lot l at time interval t (continuous)
(model M2)

Rkrlt
c amount of resource r (intermediaries or final products)

consumed from task k of lot l at time interval t
(continuous) (model M2)

Rkrlt
p amount of resource r (intermediaries or final products)

produced by task k of lot l at time interval t(continuous)
(model M2)

Xkl binary variables that are equal to 1 if task k is assigned to
lot l (models M1 and M2)
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