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Abstract — This paper presents a new proposal for sensor 

fusion in power system state estimation, analyzing the case of data 

sets composed of conventional measurements and phasor 

measurements from PMUs. The approach is based on multiple 

criteria decision-making concepts. The equivalence of an L1 metric 

in the attribute space to the results from a Bar-Shalom-Campo 

fusion model is established. The paper shows that the new fusion 

proposal allows understanding the consequences of attributing 

different levels of confidence or trust to both systems. A case study 

provides insight into the new model. 
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I. INTRODUCTION 

The addition of synchrophasors (PMUs – phasor 
measurement units) to power systems is in general admitted to 
lead to a better state estimation (SE), but the accuracy of the 
measurement values received at the control center depends not 
only on the device but also on a transmission chain, which has 
its own reliability and is prone to error injection. These units 
provide voltage measurements, which are usually adopted as 
state variables, as well as phasor current measurements. An 
estimation procedure based on voltage and current 
measurements, when expressed in the appropriate coordinate 
reference and admitting that the system is observable, may be 
designed to be a linear model – therefore, leading to easier 
calculations.  

It may be foreseen that one day, all SE may be based solely 
on PMUs. However, in present days and for a number of years, 
one will have to live with both conventional and phasor 
measurements arriving at the control center. It is conceivable 
that one could profit from the combination of both sensor 
systems to perform a more accurate SE. Therefore, it is 
important to understand the properties and characteristics of an 
SE when information from both sources is merged. 

Several processes have been proposed, in order to achieve a 
convenient contribution of both conventional and phasor 

measurements (also called fusion) to power system state 
estimation. The hybrid simultaneous state estimation methods 
include the PMU measurements straightforwardly in the SE 
task, processing simultaneously both conventional and PMU 
measurements [1],[2]. The decentralized estimation fusion 
methods perform SE for both systems separately and then 
combine the resulting state estimates [3],[4]. These latter models 
are based on Multisensor Data Fusion Theory, a field already 
explored in other areas such as Aerospace, Information Theory 
and Signal Processing [5].   

In all those methods, cost functions are based on the least 
squares principle, i.e., on the minimization of the variance of the 
error distribution. However, this criterion is an optimizer only if 
the assumption that the error distributions are Gaussian is 
verified. In practice, it seldom is. This has motivated the 
proposal of other criteria based on Information Theory, such as 
Correntropy, which is particularly useful when the measurement 
set is contaminated with gross errors [6]. 

This paper provides an analysis of the properties of a state 
estimation procedure when a suitable combination of 
information provided by each sensor system (conventional and 
phasor measurements) is attempted. To avoid the contamination 
of a data set by any gross error contained in the other data set, an 
MCC – Maximum Correntropy Criterion – is adopted (instead 
of WLS – weighted least squares). Each sensor system data is 
affected by its own error weights but, on top of that,  a coefficient 
is defined in order to assign variable levels of relative 
importance to each sensor system.  

Adopting a multiple criteria point of view, the Pareto-
optimal border resulting from considering an independent MCC 
criterion for each system may be explored. Fusion, in this sense, 
corresponds to a balance or compromise between the importance 
given to one and the other system. In this paper, some properties 
for such compromise are investigated, under distinct 
assumptions.   

II.CONVENTIONAL POWER SYSTEM STATE ESTIMATION 

A. Gauss-Newton Solution Method 

The conventional power system SE solution relies on a 
system of overdetermined and inconsistent set of nonlinear 
equations given by: 

A. Simões Costa and V. Miranda acknowledge the support given by CNPq 

(Brazilian National Research Council), under project no. 400799/2014-6. 

B.Tavares and V.Miranda acknowledge the support of the ERDF – European 

Regional Development Fund (COMPETE 2020 Programme) and of FCT - 

Fundação para a Ciência e a Tecnologia (project POCI-01-0145-FEDER-

016731 INFUSE). 



𝒛 = 𝒉(𝒙) + 𝜼 (1) 

where 𝒙 is the 𝑛 × 1 state vector composed by bus voltage 
magnitudes and phase angles, and 𝒛, 𝒉(∙) and 𝜼 are 𝑚 × 1 
vectors containing the measurements, nonlinear functions 
relating measured quantities and states, and measurement errors, 
respectively. In the absence of bad data, 𝜼 is assumed to be 
normally distributed, zero mean, and uncorrelated, whose 𝑚 ×
𝑚 diagonal covariance matrix is denoted by 𝑹, with its 𝑖th entry 

equal to 𝜎𝑚,𝑖
2 , which is the variance of the error of measurement 

𝑖. 

 The conventional approach for power system SE is based on 
the weighted least-squares (WLS) method, which minimizes the 
weighted of squared residuals (weighted variance of the error 
distribution): 

min
𝑥

𝐽(𝑥̂) =
1

2
[𝒛 − 𝒉(𝒙)]𝑇𝑹−1[𝒛 − 𝒉(𝒙)].  (2) 

The above problem can be solved through the Gauss-Newton 
method, leading to an iterative process in which so-called 
normal equation is solved in each iteration [7]-[9]: 

𝑮𝚫𝒙 = 𝑯𝑇𝑹−1𝚫𝐳 (3) 

where 𝑮 = (𝑯𝑇𝑹−1𝑯)  is referred to as gain matrix; 𝑯 is the 

𝑚 × 𝑛 Jacobian matrix of 𝒉(𝒙) calculated at a given point 𝒙𝑘, 

and 𝚫𝐳 = 𝒛 − 𝒉(𝒙𝑘). 

 In the end of each major iteration, the solution of (3) yields 
vector 𝚫𝒙 of increments to the states, so that the updated state 
vector is obtained as 

𝒙𝑘+𝟏 = 𝒙𝒌 + 𝚫𝒙 (4) 

This process goes on until ‖𝚫𝒙‖ becomes smaller then a pre-
specified tolerance. The estimation error covariance matrix can 
be obtained at the state estimator convergence as [7]  

𝑷 =  𝑮−1 = (𝑯𝑇𝑹−1𝑯)−𝟏  (5) 

B. Power System SE Considering A Priori Information 

Prior knowledge about the state variables is often available, 
and can be taken into account in the estimation process as a 
priori state information. For that purpose, a degree of confidence 
should be assigned to such data, under the form of a covariance 
matrix. In PSSE problem, a priori information on the state 
variables can be modeled as an extra quadratic term added to the 
weighted least-squares criterion [10]. Therefore the problem in 
(2) becomes: 

min
𝑥

𝐽(𝑥̂) =
1

2
[𝒛 − 𝒉(𝒙)]𝑇𝑹−1[𝒛 − 𝒉(𝒙)] +

1

2
(𝒙 −

𝒙)𝑇𝑷𝟎
−1(𝒙 − 𝒙)  

(6) 

where 𝒙̅ denotes the 𝑛 × 1 vector of a priori state values and 𝑷𝟎 
is the 𝑛 × 𝑛 corresponding covariance matrix. 

The optimality conditions for problem (6) lead to the 
following extended version of the normal equation [10]: 

(𝑯𝑇𝑹−1𝑯 + 𝑷𝟎
−1)𝚫𝒙 = 𝑯𝑇𝑹−1𝚫𝐳 +  𝑷𝟎

−1𝚫𝒙  (7) 

where 𝚫𝒙 = 𝒙 − 𝒙𝒌. 

III.INFORMATION THEORETIC STATE ESTIMATION 

A. Correntropy and Induced Metric 

In [6], a new performance criterion for State Estimation was 
proposed, inspired in developments in Information Theoretic 
Learning: this criterion is the Correntropy of the error 
distribution. Correntropy is a function that considers all even 
moments of a probability distribution function (pdf). 

The Correntropy C estimation of an error distribution, 

representing k errors in a N dimension error space in State 
Estimation, is  

𝐶 =
1

𝑁
∑ 𝐺(𝑘,2𝐼)

𝑁

𝑘=1

 (8) 

where G is the Gaussian kernel with standard deviation   (I is 

an identity matrix, implying independence among errors). 
 Maximizing Correntropy has the effect of searching for a 

pdf that has a maximum value at the origin (x = 0). Therefore, 
by maximizing Correntropy, one achieves a result usually very 
close to minimizing the Entropy of a same distribution with 
mean equal to zero. The Entropy of an error distribution is a 
measure of the information contained by the pdf of the errors, in 
a non-parametric way. The classic approach to State Estimation 
uses regression in a Least Squares (LS) sense, but this model, in 
fact, is assuming that the error distribution is Gaussian. Actually, 
this classical approach relies solely on minimizing the Variance 
of the error distribution – and this is only an optimal model if the 
Gaussianity assumption remains valid, which is usually not the 
case. 

It has been shown that a SE procedure, under a Correntropy 
criterion, is very good at treating gross errors in data as outliers 
(and therefore ignoring them), contrary to any LS formulation, 
where any gross error may severely contaminate a subset of the 
estimates. It has also been shown that there is a geometric 
interpretation for the use of a Correntropy criterion, which links 
this function to a specific metric in space called CIM – 
Correntropy Induced Metric. CIM, in the form of distance to the 
origin, has the expression 

𝐶𝐼𝑀() = (𝐺(0,2𝐼) − 𝑉())
1

2⁄
  (9) 

It becomes obvious that minimizing CIM is tantamount to 
maximizing Correntropy. Therefore, a State Estimation 
procedure adopting a Maximum Correntropy Criterion (MCC) 
is just searching for a an error vector as small as possible, in the 
CIM sense, while a procedure adopting a LS criterion is 
searching for a vector as small as possible in the Euclidean sense 
(sum of the squares of the coordinates). 

B.  State Estimation Based on Correntropy 

If instead of attempting to minimize the variance, one goes 
for minimizing the correntropy of the error distribution, one has 
an Information Theoretic State Estimation procedure [11], 
which can be described as follows. 

The MCC method aims act to extracting the maximum 
amount of information from the residual distribution with regard 
to the available measurement set. This is accomplished through 
correntropy concepts, which measures the similarity between 



measured and the estimated values within a given “observation 
window”. The latter is defined on the basis of the Parzen window 
technique [12]. The state estimates are obtained by maximizing 
the following objective function: 

𝐽𝑀𝐶𝐶 = max
𝑥 

∑ G(𝑧𝑖 − ℎ𝑖(𝑥̂), 𝜎𝑖
2)𝑚

𝑖=1    (10) 

A desirable feature of correntropy is that it is able to take into 
account all even moments of the residual function 𝑧 − ℎ(𝑥̂), 
depending on the width σ of the Parzen window. Such parameter 
plays an important role to the optimization process. For initially 
large σ values, the MCC method is basically equivalent to the 
WLS approach, since the correntropy reduces itself to the 
familiar Euclidian norm (L2) of the residuals. When σ is 
progressively reduced during the optimization procedure, the 
residuals with large magnitudes are most affected, substantially 
reducing their influence on the final estimation solution.  

In this paper, one will not enter into technical details on how 
to reach the solution. It is important to notice that the structure 
of matrices is preserved and the MCC solution can be guaranteed 
by solving equations whose form is similar to the conventional 
Gauss-Newton solution [11],[13]. 

IV.BAR-SHALOM-CAMPO FUSION IN STATE ESTIMATION 

A. Bar-Shalom-Campo fusion  

The Bar-Shalom-Campo fusion formula [14] may be applied 
when there are two distinct sensor systems. Its application is 
particularly attractive when the correlation between the 
estimation errors relative to the sensor systems can be neglected. 
Both conditions apply to the problem addressed in this paper, 
since we are considering only two systems: conventional and 
phasor measurements. Simply said, the optimal global state 
estimates  𝒙∗  may be calculated [5] as a linear combination of 
the individual estimates 𝒙𝑖  as  

𝒙∗ = 𝑾𝐶
𝑇  𝒙𝐶 + 𝑾𝑷

𝑇  𝒙𝑃 (11) 

where 𝑾𝐶 , 𝑾𝑃  are weighting matrices and the indices C, P 

relate to conventional and phasor measurements. These 

weighting matrices W are calculated from solving the following 

optimization problem: 

min
𝑾

𝐸[(𝑾𝑇𝒙𝑎 − 𝒙)(𝑾𝑇𝒙𝑎 − 𝒙)𝑇] 

𝑠. 𝑡.   ∑ 𝑾𝑖
𝑁𝑠
𝑖=1 = 𝑰   

(12) 

where 𝐸[⋅] is the expectation operator, 𝒙 is the vector of true 

values for the state variables and 𝑰 is an identity matrix. 
It is possible to show that the optimal estimate is given by: 

𝒙∗ = (𝑷𝑃𝑃 − 𝑷𝑃𝐶)(𝑷𝐶𝐶 + 𝑷𝑃𝑃 − 𝑷𝐶𝑃 − 𝑷𝑃𝐶)−1 𝒙𝐶  

+(𝑷𝐶𝐶 − 𝑷𝐶𝑃)(𝑷𝐶𝐶 + 𝑷𝑃𝑃 − 𝑷𝐶𝑃 − 𝑷𝑃𝐶)−1𝒙𝑃 
(13) 

where P are the estimation error covariance matrices as in (5). 

This expression is known as the Bar-Shalom-Campo formula. 
With uncorrelated errors, this expression  reduces to:  

𝒙∗ = 𝑷𝑃(𝑷𝐶 + 𝑷𝑃)−1 𝒙𝐶 + 𝑷𝐶(𝑷𝐶 + 𝑷𝑃)−1𝒙𝑃 (14) 

However, (14) is not amenable for application to large 
networks. Therefore, an alternative form to prevent those 
computational difficulties is using (5) to define the conventional 

and PMU measurement based state estimators gain matrices 𝑮𝑆 
and 𝑮𝑃. Consequently, it is possible to rewrite (14) as proposed 
by Simoes Costa et al. in [4]. 

(𝑮𝑆 + 𝑮𝑃)𝒙∗ = 𝑮𝑆 𝒙𝑆 + 𝑮𝑃𝒙𝑃 (15) 

Since the gain matrices 𝑮𝑆 and 𝑮𝑃 are available from the 
individual estimator solutions, (15) can be efficiently solved by 
sparse triangular factorization and forward/backward 
substitution. Equation (9) will be referred to as Gain matrix-
based fusion formula. 

B. Equivalence of the Gain matrix-based fusion formula  and 

Hybrid SE  

Expression (15) may be proven equivalent to the classical SE 
such as in (2) if one considers that both conventional and phasor 
data are simultaneously processed by a single LS state estimator, 
often referred to as a hybrid estimator. In fact, replacing in (15) 
the previous definition of matrices G with the appropriate 
subscripts, one has 

(𝑯𝑪
𝑻𝑹𝑪

−1𝑯𝑪 + 𝑯𝑷
𝑻 𝑹𝑪

−1𝑯𝑪)𝒙∗

= 𝑯𝑪
𝑻𝑹𝑪

−1𝑯𝑪𝒙𝐶 + 𝑯𝑷
𝑻 𝑹𝑪

−1𝑯𝑪𝒙𝑃 
(16) 

Furthermore, one may write, from (3), that 

𝒙𝐶 = (𝑯𝑪
𝑻𝑹𝑪

−1𝑯𝑪)
−𝟏

𝑯𝑪
𝑻𝑹𝑪

−1𝒛𝑪 = 𝑮𝑪𝑯𝑪
𝑻𝑹𝑪

−1𝒛𝑪 

𝒙𝑃 = (𝑯𝑷
𝑻 𝑹𝑷

−1𝑯𝑷)
−𝟏

𝑯𝑷
𝑻 𝑹𝑷

−1𝒛𝑷 = 𝑮𝑷𝑯𝑷
𝑻 𝑹𝑷

−1𝒛𝑷 

(17) 

Then, replacing (17) into (16), we get an expression with the 
general format  

(𝑯𝑇𝑹−1𝑯)𝒙∗ = 𝑯𝑇𝑹−1𝒛 (18) 

where matrix H (R) contains matrices HC and HP (RC and RP) as 
partitions. Likewise, z contains vectors zc and zp. Equation (18) 
is the basic equation behind the WLS method considering a 
hybrid estimation structure. Therefore, the fusion process based 
on the Bar-Shalom-Campo formula provides the same solution 
as a hypothetical hybrid estimator which would simultaneously 
process both conventional and phasor measurements, with error 
distributions assumed Gaussian. 

V.MULTI-CRITERIA SENSOR SYSTEM FUSION 

A State Estimation procedure, acting on measurements 
captured by a sensor system, is a form of building an inner 
(coherent) map of the reality, as perceived by the noise-affected 
sensor signals. When two sensor systems capture signals, two 
different images may be built – and which one is closer to the 
reality it is supposed to represent? If one has two sources of 
information, in which one to trust the most? Eventually, on some 
weighted combination of both. 

While recent proposals for hybrid simultaneous state 
estimation methods focus only on sensor precision, the method 
discussed in this paper makes a distinction at the level of sensor 
systems, assigning more or less credibility (or trust) to a 
measurement depending on its original system and keeping 
explicit the performance of each system, in order to contribute 
to the global state estimation.  



Assume that this performance is evaluated for system x by a 

cost criterion Jx(), with  being the vector of measurement 
errors associated with such system x. A global performance 
criterion J, for two measurement systems (assumed based on 
conventional and phasor measurements) will be given by 

𝐽 = ∑ 𝐽𝐶(𝑖)

𝐶

𝑖=1

+ ∑ 𝐽𝑃(𝑘)

𝑃

𝑘=1

 (19) 

with C,P being the number of conventional and phasor 

measurements and , being the credibility factors for each 

system, such that  +   = 1. Without loss of generality, let’s 

assume that each performance criterion Jx should be minimized. 
The variation of the parameters α and β will influence the 

compromise reached. Thus, when α is 1 only the measurements 

from System 1 are considered. By optimizing J with varying  
values, we may explore the Pareto-optimal border, defined by 
the two criteria JC and JP, such as illustrated in Fig. 1. 

 
Fig. 1 – Illustration of a Pareto front obtained with the minimization of J under 

α variation, in an attribute space defined by JC and JP. 

The ideal point [15], in the attribute space defined by JC and 
JP, would be a point with coordinates (min JC, min JP), i.e. the 

coordinates obtained when  = 1 or  = 1. Such point is 
unfeasible, as it represents “the best of two worlds”: the best 
image provided solely by the first system and the best image 
provided by the second system, when considered separately. 

A compromise solution, taken as the fusion result, should 
therefore be a point over the Pareto front yet somewhere close 
to the Ideal. The concept of “closeness” is related to the metric 
adopted to define such distance dn. If any metric Ln is adopted, 

with n  {1,2,…,}, the compromise solution will result from 

min 𝑑𝑛 = (𝐽𝐶() − 𝑚𝑖𝑛(𝐽𝐶())𝑛

+ (𝐽𝑃() − 𝑚𝑖𝑛(𝐽𝑃())𝑛 
(17) 

For metric L1 (n = 1), the result is simply given by 

min 𝑑 = 𝐽𝐶() + 𝐽𝑃() (18) 

which is the result obtained with setting  =  = 0.5. This means 
that a classical State Estimation procedure, acting upon a single 
objective function by putting together both sensor systems, is 
tantamount to finding the point over the Pareto front nearest to 
the Ideal, in the L1 metric sense. The question then arises as 
whether this is the best fusion point.  

Such solution, minimizing (according to some metric) the 
distance between the Ideal and the Pareto front, will correspond 

to a specific pair of (, ) values. In concept, such values could 
be derived from historical data providing some measure of 
probability, denoting on which measurement system in a better 
image of the real system resulted. This may not be easy to define 

– it is therefore important to investigate some of the properties 
of the Pareto front and its relation with the credibility 
coefficients.  

In the formulation above, the coefficient  represents the 
level of trust or credibility given to the inner map (or image of 

the reality) built from the conventional measurements – and  = 

1 -  is associated with the complementary trust assigned to the 
phasor measurements. This model is flexible, in the sense that it 
does not require observability for any of the sensor systems, only 
for the set of both systems.  

If one of the systems still makes the power system 
observable, say the conventional measurement, then one may set 

 = 1 and still solve the problem. However, if the phasor system 
is insufficient to render the power system observable, one cannot 

solve the problem for  = 0  (or  = 1) – but we still can define 
an image of reality, given by this system, as the limit of the State 

Estimation when   0, because the power system will be 

mathematically observable for any value of  > 0. Another way 
to define the Ideal, for the case when one sensor system by itself 
does not provide observability, is to consider a priori 
information, such as presented in Section V.B. It is in this sense 
that one may define an Ideal point for the 2-criteria problem, as 
referred to previously. 

VI.QUALITY OF AN ESTIMATED VECTOR 

One way to assess the quality of a State Estimation result is 
to establish an index denoting the similarity between the vector 
V of estimated nodal complex voltages, and the vector Vcalc of 
“exact” voltages (calculated by a power flow routine). This is 
possible in case studies, when the measurement vectors are built 
from power flow cases, by adding noise to the calculated values. 
According to this idea, the following quality criterion MV may 
be used [16]: 

𝑀𝑉
2 =

1

𝑁
∑|𝑽𝑖 − 𝑽𝑖

𝑐𝑎𝑙𝑐|
2

𝑁

𝑖=1

 (19) 

It is the length, in a Euclidean norm, of the vector that has, 
in each component, the module of the difference of the complex 
voltages (estimated and real) in each node. This index will be 
used in the following section. 

VII.CASE STUDIES 

In the following sections, numerical examples will be 
presented, based on the IEEE 30-bus system. An assumed 
measurement set includes 97 conventional devices measuring 
active, reactive and current values and 8 PMUs, measuring 
voltage and current phasors. The measurement values were 
built from a power flow solution by adding Gaussian errors to 
the calculated values. The error variances for conventional 
measurements are defined as 1 x 10-3 p.u. and for phasor 
measurements as 1 x 10-6

 p.u., to present a case where two 
sensory systems display radically different error distributions.  

In this paper, it is assumed that all Gaussian errors related 
to each sensor provide sound measurements. However, it is well 
known that gross errors in the measurement sets may interfere 

JP 

JC 



in the fusion process and will be the subject of further studies 
to assess bad data effects in the fusion method. 

SE is performed using both methods (WLS criterion and 
MCC). It is a theoretical result that both methods will give the 
same solution, if no gross errors or outliers are present in the data 
set. In all tested cases of this nature, this has been confirmed – 
therefore, the distinction of which method is used to calculate 
which result is a secondary matter. 

A. Pareto front and the Ideal Solution Point 

The Pareto front was obtained by successively solving the 
SE problem, varying α from 0 to 1, in steps of 0.001. Fig. 2 and 
Fig. 3 show the Pareto front in the plane (JC, JP) for both WLS-
based and MCC-based estimators. This latter figure would be 
the same as the former, if a representation of the minimization 
of the CIM metric had been used, instead of the maximization of 
correntropy, because the data set was prepared without gross 
errors. The figures confirm that, in the absence of gross errors, 
the Pareto front is smooth and convex. 

The location of the ideal solution point may be also seen in 
both figures. In this case, its coordinates correspond: 

a) In the JC axis, to the best estimate with  = 1 

b) In the JP axis, the best estimate with  = 0.001 (not 0, 
because the system is not observable only with PMU 
measurements). 

 
Fig. 2. Pareto front in the plane (JC, JP), for the WLS-based estimator 

 
Fig. 3. Pareto front in the plane (JC, JP), for the MCC-based estimator 

B. Fusion points for distinct metrics 

Based on Section V, the location of a compromise solution 
over the Pareto front, closest to the Ideal, was attempted for L1, 

L2 and L metrics – the set [L1, L] on the Pareto front is called 

“the compromise set” by Zeleny [15]. Also, the evaluation of the 
solutions on the Pareto front was made using the MV 
performance criterion. The functions JC and JP evaluate solutions 
based on the similarity between the perceived image from the 
reality and the built inner map – i.e. between the measurement 
vector and the estimated results (usually called residuals and 
many of them related to power values). The MV criterion (that 
can be computed only in experimental studies) evaluates 
solutions based on the similarity between the “real world” 
voltage values and the inner map constructed by the SE 
procedure.  

Fig. 4 provides a plot of the value of the MV criterion over 

the range [0,1], i.e., over all the Pareto front. Remember that 

 = 0 means that only phasor measurements are considered, 

while  = 1 means that only conventional measurements are 
taken in account. The most similar estimated voltage vector, in 
relation to the calculated voltages (assumed “exact” values) is 

obtained at a value of  = 0.3650 – this means that a stronger 
than average contribution of phasor measurements is being used 
to build the estimated image of reality. 

Table I includes the best compromise solution, in terms of 

the mix of sensor systems defined by the  credibility 
coefficient, according to the metric or criterion used.  

TABLE I. BEST FUSION SOLUTION, ACCORDING TO DISTINCT CRITERIA 

Metric/criterion Credibility coefficient  

L 0.945 

L2 0.768 

L1 0.5 

MV 0.365 

 

Fig. 5 shows the location, over the Pareto front, of the three 
compromise solutions and the MV solution, or four alternative 

fusion outcomes. Recall that the fusion obtained at  = 0.5 is the 
same as the one given by the Bar-Shalom-Campo fusion. 

It becomes clear that the criterion MV is proposing a fusion 
point that is outside the compromise set and on the side of a 
“fractional metric” (n < 1). Mind that fractional norms do not 
induce proper metrics, because the triangular inequality is not 
observed – however, it does not seem relevant in this case. What 
is obvious is that, depending on the L (or other) norm used to 
estimate the minimum distance of the Pareto front to the Ideal, 
the proposed fusion point will change.  

 
Fig. 4. Plot of the value of Criterion MV for the whole range of [0,1]. The 

best solution under this criterion is marked on the graph with  = 0.3650. 



 
Fig. 5. Location over the Pareto front of the fusion or compromise solutions 

proposed by the different criteria 

The compromise set lies between the solution for L1 and for 

L. In this case, it is suggesting that more relevance should be 
given to the conventional measurements, if one wishes to have 
an image of the reality with an evaluation as close as possible to 
the best that could be provided by any of the systems 
(conventional or PMUs). This may be reasonable, because only 
8 PMUs are being used and the image of the system state will be 
foggy for nodes other than the ones being monitored. However, 
in the sense of the MV index, something else is being suggested. 
The relation between the characteristics of the measurement sets 
and the Pareto front deserve further investigation. 

VIII.CONCLUSIONS 

Fusion is a process of combining information from different 
sensor systems, so that a consistent inner map of an outer reality, 
perceived with added noise, may be built. Sensor systems may 
display very diverse characteristics – a trait found in robotics and 
navigation, where images provided by acoustic and optic sensors 
must be combined to build a map of the landscape. The growing 
existence of conventional analog devices and PMUs in a power 
system provides inspiration to treat the information 
independently collected as a process requiring information 
fusion. This can be traditionally dealt with the Bar-Shalom-
Campo fusion formula, which has recently been restated in terms 
of more familiar power system State Estimation quantities. 

This paper studies some consequences of adopting a 
different point of view to achieve sensor signal fusion: a multiple 
criteria framework where one seeks to maximize the similarity 
of the perception (measurements) and inner map (estimation of 
state variables, usually voltages) for both sensor systems 
simultaneously. This problem displays a domain in the attribute 
space of the criteria related to the residuals, which exhibits a 
Pareto optimal front of non-dominated solutions: to improve the 
similarity of the estimated state to the measurement set of one 
sensor system, one must accept a reduction in the similarity of 
the same estimated state to the other sensor system. To each 
system, a credibility coefficient is associated, reflecting factors 
like the trust or confidence in such measurement process or 
historical analysis on which system is providing more accurate 
estimations. This confidence, therefore, is a factor independent 
of statistical modeling of error distributions in each device. The 
variation of these coefficients allows exploring the Pareto front. 

The new fusion concept becomes defined as follows: find, in 
the Pareto front, the fusion solution that is closest to the Ideal 
(best image from each system). The paper shows that the 

conventional SE procedure, as well as the information fusion in 
the Bar-Shalom-Campo sense, are just expressions of having 
equal confidence in both sensor systems – and that such fusion 
point corresponds to the minimum distance to the Ideal when a 
L1 metric is used.  

Other metrics were explored. Of particular interest has been 
the observation that the best result, evaluated under a measure of 
similarity between the estimated state and the “exact” or “real” 
values, diverges from the conventional solution and solutions 
proposed by other L metrics – in fact, suggesting a fractional 
metric. The reasons for this behavior will be analyzed in a future 
work. 
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