
Run-time Generation of Partial Configurations for
Arithmetic Expressions

Miguel L. Silva
DEEC, Faculdade de Engenharia

Universidade do Porto
Porto, Portugal

Email: mlms@fe.up.pt

João Canas Ferreira
INESC Porto, Faculdade de Engenharia

Universidade do Porto
Porto, Portugal

Email: jcf@fe.up.pt

Abstract— Adaptive embedded systems can achieve enhanced
flexibility by performing run-time reconfiguration of hardware.
This paper describes a method to generate at run-time new
partial FPGA configurations corresponding to arithmetic expres-
sions. This is achieved by merging available partial bitstreams
of arithmetic components to produce a new partial bitstream for
a specific FPGA area. The connections among the components
are mapped to the switch matrices of the reconfigurable fabric,
and the corresponding information is added to the new partial
configuration. The proposed method was implemented for a
Virtex-II Pro FPGA with a 300 MHz PowerPC 405 CPU. It was
used to create partial configurations in less than 69 s for sets of
arithmetic circuits with up to 25 components and 208 connections.

I. INTRODUCTION

Embedded systems that are able to modify their behavior
in response to changes in the environment or in the system’s
goals are gaining in importance [1], [2]. Dynamically reconfig-
urable FPGAs are a natural implementation platform for such
systems, because they provide the basic capabilities required
for hardware modification at run-time. Embedded systems are
often resource-constrained, which makes adaptable hardware
support very attractive, even for operations done in software
in more powerful systems. By performing run-time reconfigu-
ration (RTR), hardware resources can be exploited according
to the immediate requirements of the executing application,
instead of being committed permanently to a single task.

Normally, RTR uses partial bitstreams created at design
time. Creation of configurations at run-time is justified when
there are too many possibilities, or when they depend on
information that only becomes available as the application
runs.

Usually, synthesis tools must be run (at design time) to cre-
ate each partial configuration. An alternative, simpler approach
based on building a partial bitstream by combining bitstreams
of smaller components is described by [3]. Since this approach
does not rely on the synthesis of logic descriptions, it is a good
candidate for use in run-time generation.

Configuration bitstreams target a specific FPGA area. If that
area changes after creation, the bitstreams must be relocated
to the new target area. This capability makes for more flexible
system deployment, so several approaches to the relocation of

partial bitstreams have been proposed [4], [5]. The same re-
quirement for relocation arises when bitstreams are combined.

The run-time generation of configurations in embedded
systems has been rarely addressed. A channel router for the
Wires-on-Demand RTR framework is described in [6]. It uses
a simplified resource database and simple algorithms to find
local routes between blocks using relatively few computational
resources. The possibility of running in an embedded system
is mentioned, but no results are reported.

A more primitive version of the bitstream assembly ap-
proach used in this work is described in [7], where inter-
module connections are selected from a table of predetermined
routes. Although fast, the approach has limited flexibility.

Here we address the problem of generating at run-time
partial configurations for sets of arithmetic expressions. We
avoid the use of a predetermined set of routes, and include
support for automatic placement of the components. The work
assumes the presence of a CPU, and the capability of loading
the partial bitstream to a specific FPGA area without disturb-
ing the operation of other parts of the system. A reserved
area of the FPGA should be set aside for hosting the RTR
circuits. For each component, an abstract description and a
partial bitstream must be available. The abstract description
specifies the component’s bounding-box, the position of the
I/O terminals at its periphery, and the internal location of any
special resources (e.g., dedicated multipliers).

The generation of partial configurations is, by necessity,
closely linked to the underlying reconfigurable fabric. For
our proof-of-concept implementation we used a Virtex-II Pro
FPGA [8], which supports active partial reconfiguration, and
has an internal access port for configuration.

The paper is organized as follows. Section II describes the
abstract model of the reconfigurable infrastructure resources.
Section III presents the main steps of run-time generation of
partial configurations. The results obtained with a proof-of-
concept implementation are described in section IV. Conclud-
ing remarks are presented in section V.

II. RESOURCE MODELING

The creation of a new configuration starts with a directed
acyclic graph (DAG) that describes the connections among

978-1-4244-7773-9/10/$26.00 ©2010 IEEE 117

the arithmetic components. If there are no common sub-
expressions, the description becomes a set of trees (one
for each arithmetic expression). The configuration generation
process treats components as black boxes: they cannot overlap,
and no interconnections can traverse them. In the present
approach, components are grouped in vertical stripes. The
position of a component inside a stripe and the width of
the stripe depend on the physical resources used by the
component. Only connections between components in adjacent
stripes are allowed. This restriction simplifies generation by
ensuring that the interconnections do not interfere with the
rest of the system, and by reducing the search space. There
may be empty CLB (Configurable Logic Block) columns
between stripes. The current implementation allows for only
one additional empty column to account for unused block
RAMs.

The Virtex-II Pro FPGA has a segmented interconnection
architecture, where individual segments are used to connect
switch matrices [9]. Each switch matrix also connects to a
CLB or dedicated block. From the large number of available
routing resources, only a subset is used here:

• direct connections (vertical, horizontal and diagonal con-
nections to neighboring CLBs);

• double lines (connections to every first and second CLB
in all four directions);

• vertical hex lines (connections to every third or sixth CLB
above or below).

Long lines (wires that distribute signals across the full
device height and width) are not used, since they can interfere
with circuitry outside of the reserved area. Similarly, horizontal
hex lines would reach beyond the area between stripes. As a
result, the model of the switch matrix contains 116 pins:

• 16 direct connections to the 8 neighboring CLBs;
• 40 double lines: 10 in each of the four directions up,

down, left and right;
• 20 vertical hex lines: 10 upwards and 10 downwards;
• 8 connections to the outputs of the 4 slices in the

associated CLB;
• 32 connections to the inputs of the 4 slices in the

associated CLB.

III. GENERATION OF PARTIAL CONFIGURATIONS

The generation of a new partial configuration starts from
a component netlist, where each component represents an
arithmetic operator. The generation has two main stages:
1) assigning a location to each component; 2) creating the
connections from output to input terminals (including the
terminals on the interface of the reserved area).

The strategy for determining the location of a component is
to find an arrangement of components in columns (stripes), so
that directly connected components are adjacent to each other.
The arrangement in columns was chosen because it matches
the reconfiguration mechanism of Virtex-II-Pro FPGAs, where
the smallest unit of reconfiguration data applies to an entire
column of resources. This arrangement also fits naturally

Fig. 1. Location of components in stripes. (a) Typical placement for
components that only contain CLBs; (b) placement resulting from restrictions
imposed by the use of particular hardware resources, in this case BRAMs.

the tree-like structure of many arithmetic expressions. Two
examples of component placement inside a stripe are displayed
in figure 1.

The first step of the placement algorithm is to group the
components by topological level: the first level contains the
components whose inputs are connected to the interface of
the dynamic area; the second level contains that components
that have all their input terminals connected to first-level
components, and so forth. A component with more than one
input source will be assigned to the level following its highest-
numbered source.

Each level is examined in order to determine the set of con-
tiguous CLB columns (the stripe) that is able to accommodate
all components. The number of columns assigned to a stripe
is determined by the width of the components, and by the
compatibility of the component resources with the destination
area. The stripe may be wider than its widest component, if
a component has to be moved to an area that contains the
special resources that it uses, like block RAMs or embedded
multipliers (fig. 1b). Such components will not be necessarily
placed at the left edge of the stripe. Possibly unused spaces
in the stripe are filled with feed-through components. These
special components simply connect their inputs directly to
their outputs. They are also used to provide a path through
a stripe when connecting components that are not in adjacent
levels. Feed-through components are generated automatically
as necessary (no previous partial bitstream is required).

At this stage, an intermediate partial configuration is pro-
duced: it is created by merging the partial bitstream of the
empty reserved area with the relocated bitstreams of the
components (using the approach described in [3]).

The assignment of a component to a location will fail if
the total height of the components, including feed-through
components added while processing previous levels, is greater
than the height of the target area.

The second main stage of the generation procedure is
to create the connections among components. Physically,

118

component terminals are pins of the switch matrix of the
corresponding CLB. A connection is defined by the tree-like
sequence of switch matrix pins required to establish the desired
connectivity from source (an output terminal) to all sinks
(input terminals).

The switch matrix pins for each connection are found by a
breadth-first search of the area between two adjacent stripes.
This routing area is modeled by an array of switch matrices,
one for each matrix in the area. For directly abutting stripes,
two columns of switch matrices are necessary: one belonging
to the right border of the left stripe, and the other belonging to
the left border of the right stripe. An extra column of switch
matrices is included when there is an unused BRAM column
between the stripes.

The actual area searched starts as the smallest rectangle of
switch matrices that encloses all terminals of the connection
to be routed, and is reduced during the search, limiting the
number of segments to be considered. This approach causes
some segments not to be considered, but reduces the search
effort significantly.

The search starts from the source terminal and is progres-
sively expanded until a destination terminal is reached. Then,
a path to the signal source is found by retracing through the
sequence of examined interconnection segments. The search is
resumed until all sinks of the current connection are reached.

The current implementation adopts the policy of not search-
ing for alternatives when a connecting path cannot be found
(for instance, by undoing previous connections and retrying
the search), in order to limit the computational effort. In this
way, it is possible to create new configurations in a relatively
short time. However, the process does not ensure that a global
optimum for the complete circuit is obtained, since each one
is handled in isolation, without considering the impact on
subsequent connections.

After all connections are processed, the partial configuration
is updated with the new data for the switch matrices. The
resulting partial configuration can then be used to reconfigure
the target area of the FPGA.

IV. EXPERIMENTAL RESULTS

For evaluation purposes, the approach described previously
was applied to circuits for several arithmetic expressions (on 8-
bit data). The structural details of each circuit are summarized
in table I. The six circuits tg01-tg06 come from [10]. The
corresponding expressions are:

• tg01 = (a× b) + (c× d+ e)
• tg02 = ((a+b)+(c+d))×(((e×f)+(g+h))×(i×j))
• tg03 = ((a× b) + (c× d))× (e+ f)
• tg04 = (a+b)×((c+d)×((e+f)×((g×h)×(i+j))))
• tg05 = ((a+b)×(c×d))×(((e+f)+(g+h))×(i+j))
• tg06 = (((a× b)× c) + ((d+ e)× f)) +

(((g + h) + (i× j)) + (k × l ×m))

Each expression is mapped to a binary tree, whose leaf
nodes are the expression variables and whose root node
represents the result of the expression. All internal nodes
specify binary operations.

TABLE I
BASIC STRUCTURAL CHARACTERISTICS OF THE EXAMPLE CIRCUITS

Circuit # inputs
(bits)

outputs
(bits)

levels # 8-bit
modules

nets

tg01 40 8 4 9 72
tg02 80 8 5 19 152
tg03 48 8 4 11 88
tg04 80 8 6 19 152
tg05 80 8 5 19 152
tg06 120 8 5 25 200

duo01 48 16 3 7 128
duo02 40 16 4 10 160
duo03 48 16 3 9 144

trio 32 24 5 15 208

Instances tg01 to tg06 are from [10].

Fig. 2. Component placement for dual01 circuit. (Mult: 8-bit multiplier,
Sum: 8-bit adder, Feed: 8-bit feed-through.)

The other benchmark circuits implement more than one
expression simultaneously:

• duo01: tg01 and tg03;
• duo02: tg01 and F;
• duo03: tg03 and G;
• trio: F, G and H (with shared common sub-expressions);
where
• F = a× b+ 3× (c+ d)− (a ≪ 2) + b;
• G = 3× a× b+ ((b− c) ≪ 4);
• H = 5× (b− c) + ((c+ d) ≪ 2)− b.
The program used to run the benchmarks was written in C

and compiled with the GNU Compiler version 3.4.1 included
in EDK 8.2. The resulting program has 105 kB of instructions
and 1597 kB of static data. As an example, figure 2 shows the
floorplan obtained for the “dual01” circuit.

Table II summarizes the results obtained by the proposed
procedure for generation of partial configurations, showing the
total time required for bitstream generation, the number of
levels of the corresponding circuit, the smallest rectangular
area occupied by the resulting circuit, the number of feed-
through CLBs added during routing, and the number of CLBs
taken up by all components (including feed-throughs).

For Virtex-II Pro FPGAs the size of the partial bitstream,
and therefore the time taking for partial reconfiguration, is
proportional to the number of columns occupied by the circuit.

119

TABLE II
RESULTS OF THE EXECUTION OF THE PLACEMENT AND ROUTING

ALGORITHMS (300 MHZ POWERPC 405, XC2VP30-7 FPGA)

Circuit Time
(s)

Bounding box
(Cols×Rows)

Feed-
throughs

Component
area (CLBs)

tg01 18.84 10x11 0 71
tg02 57.78 13x17 0 151
tg03 22.03 10x18 0 96
tg04 54.87 16x17 0 166
tg05 55.69 13x17 0 151
tg06 66.94 13x27 0 211

dual01 47.56 10x20 2 84
dual02 59.34 12x23 5 120
dual03 54.48 10x22 1 108

trio 68.75 15x31 10 180

All examples fit in the reserved area of our demonstration
system, which is 22 columns by 32 rows.

The example circuits contain from 7 to 21 components
(average: 14 components), and from 72 to 208 connections.
For this set of circuits, the complete process of bitstream
generation takes between 19 s and 69 s (average 48 s) on a
PowerPC 405 microprocessor clocked at 300 MHz.

The running time is completely determined by the routing
stage. The most time-consuming placement took only 52 ms
(for the “trio” circuit). For a circuit with L levels, the pro-
cedure for interconnection generation is called L − 1 times
for the connections between stripes, and two more times to
connect primary inputs and outputs to the fixed circuitry.

A one-time reduction in running time can be obtained by
using both CPU cores available on the FPGA: since the routing
areas between stripes can be processed independently, routing
may be performed concurrently by both processors. If partial
configurations are reused during the same application run, the
use of a configuration cache will avoid repeated generation.

There are several application scenarios that can accom-
modate delays in the range under discussion. They include
applications that must adapt to relatively slow-changing envi-
ronments (like exterior lighting conditions or temperature) or
that may operate temporarily with reduced quality. Another
scenario involves adaptive systems that use learning (for
instance, of new filter settings) to improve their performance:
the time required for generating new configurations may be
only a fraction of the time necessary to learn the new settings
and to take the decision to switch configurations.

V. CONCLUSION

This paper describes and evaluates a method to generate
partial bitstreams at run-time for the dynamic reconfigura-
tion of sections of a Virtex-II Pro platform FPGA. With
the goal of obtaining useful solutions in a short time, the
proposed approach applies a placement heuristic based on
the topological order of arithmetic operators. A router based
on breadth-first search over restricted areas determines routes

for the interconnections. A partial bitstream implementing
arithmetic expressions is constructed by merging together a
default bitstream of the reconfigurable area, the relocated
partial bitstreams of the components, and the configuration of
the switch matrices used for routing. The computational effort
is kept in bounds by the use of coarse-grained components,
together with a simplified resource model, a direct placement
procedure, and the restriction of routing to limited areas.

The proof-of-concept implementation described here shows
that run-time generation of configurations is a feasible tech-
nique for use in embedded systems, where it can provide
tailored hardware support to tasks whose computational needs
exceed the capabilities of the CPU. The time required for
processing the interconnections makes the current version
of this approach unsuitable for applications requiring very
fast generation of bitstreams, but several other classes of
applications may be able to accommodate the delays involved
and profit from the increased flexibility.

Future work includes devising better ways of meeting the
conflicting goals of shorter running time and more flexible
placement and routing, and of accounting for timing con-
straints.

ACKNOWLEDGMENTS

The authors would like to thank C. Ababei for providing
some of the benchmarks used in section IV.

This work was partially supported by contract PTDC/EEA-
ELC/69394/2006 from the Foundation for Science and Tech-
nology (FCT), Portugal. Miguel L. Silva was funded by FCT
scholarship SFRH/BD/17029/2004.

REFERENCES

[1] M. French, E. Anderson, and D. Kang, “Autonomous system on a chip
adaptation through partial runtime reconfiguration,” in 16th Intl. Symp.
on Field-Programmable Custom Comp. Mach., 2008, pp. 77–86.

[2] K. Paulsson, M. Hiibner, J. Becker, J. Philippe, and C. Gamrat, “On-
line routing of reconfigurable functions for future self-adaptive systems
- investigations within the ÆTHER project,” in Intl. Conf. Field Pro-
grammable Logic Appl., 2007, pp. 415–422.

[3] M. L. Silva and J. C. Ferreira, “Generation of hardware modules for
run-time reconfigurable hybrid CPU/FPGA systems,” IET Computers &
Digital Techniques, vol. 1, no. 5, pp. 461–471, 2007.

[4] E. L. Horta, J. W. Lockwood, D. E. Taylor, and D. Parlour, “Dynamic
hardware plugins in an FPGA with partial run-time reconfiguration,” in
Proc. 39th Design Automation Conference, 2002, pp. 343–348.

[5] Y. Krasteva, E. de la Torre, T. Riesgo, and D. Joly, “Virtex II FPGA
bitstream manipulation: Application to reconfiguration control systems,”
in Proc. Intl. Conf. Field Programmable Logic Appl., 2006, pp. 1–4.

[6] J. Suris, C. Patterson, and P. Athanas, “An efficient run-time router for
connecting modules in FPGAS,” in Proc. Intl. Conf. Field Programmable
Logic Appl., 2008, pp. 125–130.

[7] M. L. Silva and J. C. Ferreira, “Generation of partial FPGA configura-
tions at run-time,” in Proc. Intl. Conf. Field Programmable Logic Appl.,
2008, pp. 367–372.

[8] Virtex-II Platform FPGA User Guide, Xilinx, Nov. 2007, version 2.2.
[9] Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data Sheet,

Xilinx, Nov. 2007, version 4.7.
[10] C. Ababei and K. Bazargan, “Non-contiguous linear placement for

reconfigurable fabrics,” Intl. J. Embedded Systems, vol. 2, no. 1/2, pp.
86–94, 2006.

120

