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Extra virgin olive oils produced from three cultivars on different maturation stages were characterized
using Raman spectroscopy. Chemometric methods (principal component analysis, discriminant analysis,
principal component regression and partial least squares regression) applied to Raman spectral data
were utilized to evaluate and quantify the statistical differences between cultivars and their ripening
process.

The models for predicting the peroxide value and free acidity of olive oils showed good calibration
and prediction values and presented high coefficients of determination ( > 0.933). Both the R?, and the
correlation equations between the measured chemical parameters, and the values predicted by each
approach are presented; these comprehend both PCR and PLS, used to assess SNV normalized Raman
data, as well as first and second derivative of the spectra.

This study demonstrates that a combination of Raman spectroscopy with multivariate analysis
methods can be useful to predict rapidly olive oil chemical characteristics during the maturation process.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The quality of olive oil is influenced by a great number of factors,
namely the nature of the cultivar and geographic origin [1], the fruit
ripening degree [2,3], where important chemical changes occur, the
irrigation regimes [2], the oil extraction technology and the storage
of the oil [4]| and agricultural practices [5]. Nutritional and sensory
properties of extra virgin olive oils (EVOO) were also affected by
these factors. Thus, the European Community (EC) Council of
Regulation established standards on olive oil production regarding
labeling giving the origin for virgin and extra virgin olive oils to
avoid consumers being misled about their true characteristics and
origin [6]. Some of the important quality parameters consist on
peroxide value (PV) and free acidity (FA) determination [7]. How-
ever, these conventional measurements are time consuming and
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require large amounts of reagents and solvents, which are often
toxic, besides being very expensive.

Infrared (IR), mainly Fourier Transform Infrared (FTIR), and
Raman, are vibrational spectroscopic techniques widely used for
food and feed analysis [8,9]. These optical spectroscopic methods
provide information about the chemical composition of various
food and biological materials, and molecular structure, without
requiring large amount of samples or sample preparation and pre-
treatments [10]. Furthermore, these techniques have a great
potential due to their simplicity, rapidity, low-cost and reprodu-
cibility, besides being non-destructive [11].

Both techniques assess the same physical property — molecular
vibrations - but present different selection rules. In one hand, the
vibrational modes corresponding to a change in polarizability,
such as the symmetrical vibrations of covalent bonds in the non-
polar groups, (e.g. C=C bond stretching), give rise to intense
Raman bands. While in the other hand, IR absorption is related
to a change in the electrical dipole moment as the molecules
vibrate, with the vibrational modes involving polar groups, such as
C=0 and O-H, showing intense infrared absorption bands [12].
Therefore, one of the major advantages of Raman spectroscopy is
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the almost negligible influence of water and carbon dioxide on
Raman spectra, as opposed to IR absorption spectroscopy [13].
Additionally, as the infrared peaks are often broad, they tend to
overlap, being rather difficult to found isolated or well-defined
peaks, and these might be also influenced from the aforemen-
tioned atmospheric components, which display also broad peaks.
This problem is overcome in Raman, where a spectrum is normally
composed of isolated bands, besides the previously mentioned
advantage of the insignificant contributions from atmospheric
gases and water in the Raman spectra.

Furthermore, in Raman, if the excitation wavelength matches
the electronic absorbance of a chemical system, its Raman signal
will be enhanced by resonance, making this technique suitable for
monitoring particular compounds, or properties related to specific
constituents of a sample. Thus, Raman spectroscopy can provide
useful qualitative and quantitative information on chemical com-
position of olive oils. For instance, El-Abassy et al. (2009) took
advantage of the resonance phenomenon in carotenoids at
514.5 nm excitation, and their correlation with free fatty acid
(FFA) content, to assess the FFA percent values in distinct EVOO’s
using Raman spectroscopy. Actually, the concentrations of both
FFA, and carotenoids, change during the ripening process, with an
inversely proportional trend, therefore, the changes occurring in
those bands corresponding to carotenoids, can be (indirectly)
related to the variations in the FFA content [14].

In fact, in the last years, Raman spectroscopy combined with
chemometric data analysis methods allowed researchers to deter-
mine the total unsaturation in oils [15], the FFA contents [14,16], to
discriminate and classify oils [17], to detect oil adulteration [18],
and to distinguish the ripening stages of olive fruit [19]. Addition-
ally, the rapid spreading, and developments occurred, concerning
portable Raman devices, which are nowadays available with a
variety of excitation wavelengths (e.g. 1064, 785, 671 and 532 nm),
widen the potential of this technique, that can be now used In situ,
a major advantage regarding this kind of work.

However, to the best of our knowledge, no comprehensive
study has been undertaken involving chemometric analyses of the
Raman spectra, combined with analytical parameters (peroxide
value and free acidity), to discriminate varietal origin of olive oil
and different maturation stages of cultivars ‘Cobrangosa’, ‘Galega’
and ‘Picual’ growing in Alentejo region.

Moreover, the vast majority of the aforementioned works have
been undertaken with resort to excitation wavelengths within the
NIR range (mainly the 1064 radiation from the Nd:YAG), while
some authors have more recently used excitation wavelengths
within the visible range for the study of olive oils, with optimal
performance [14,20]. Therefore, the aim of this study was to use
short wavelength Raman spectroscopy (488 nm excitation) asso-
ciated with chemometrics in order to differentiate EVOQ’s pro-
duced with olives from three cultivars on three different
maturation stages. Discrimination was achieved using an unsu-
pervised method, principal component analysis (PCA).

Furthermore, quantitative models for the rapid prediction of
the peroxide value and acidity of EVOO's based on Raman spectral
data and on its 1 and 2™ derivatives were developed using the
principal component regression (PCR) and the partial least square
regression (PLS-R) methods.

2. Material and methods
2.1. Sampling
The present work was carried on monovarietal extra virgin

olive oils from three cultivars (cv. ‘Cobrancosa’, ‘Galega’ and
‘Picual’). The olive fruits were obtained from a certified olive

orchard, at the National Plant Breeding Station, at Elvas (Portugal)
during the crop season 2012/2013.

Only healthy olive fruits, without any kind of infection or
physical damage, were collected from ten different trees of
comparable age and vigor and located in distinct points of the
same growing area. Thus, differences in climate conditions, agri-
cultural practices and geographical were excluded. Olives were
handpicked at three ripening stages, except Picual cultivar olives
that were picked during two harvesting periods. The harvesting
dates are presented in Table 1. For the classification of the
maturity index, the olives were evaluated according to their skin
and pulp color [21]. The ripeness index (RI) values range from 0
(100% intense green skin) to 7 (100% purple flesh and black skin).

After harvesting, the olive fruits were immediately transported
to the laboratory mill where they were processed within 24 h. For
the production of each olive oil, three kilos of fresh olive fruits
were used using an Abencor system (INIA LP., Elvas, Portugal)
where olives were crushed with a hammer crusher and the past
mixed at 25 °C for 30 min, centrifuged without addition of warm
water and then filtered and transferred into dark glass bottles
without headspace and stored in the dark at 4 °C until analysis. All
samples were classified as extra virgin olive oils according to the
EU regulations [7].

2.2. Quality chemical indices determination

For all the samples, the determination of the physicochemical
quality indexes, free acidity (expressed as % of oleic acid) and
peroxide value (expressed as meq O,/kg), were performed accord-
ing to the official method described in the EEC Reg. No. 2568/91
and subsequent amendments, which focus on the characteristics
of olive oil and olive-residue oil and on relevant methods of
analysis [7].

2.3. Raman spectra measurement

The Raman spectra were collected in the 250-3050 cm ™! spectral
range, at room temperature, with a T64000 Jobin-Yvon triple
spectrometer, coupled to a liquid-nitrogen-cooled CCD detector.
The excitation line was the 488 nm of an Ar laser, and the incident
laser power was kept below 100 mW on the sample, to avoid self-
heating. A confocal Olympus microscope equipped with a 100X
objective (NA=0.95) was used to focus the laser radiation on the
sample and for collecting the Raman scattered signal in a back-
scattering geometry. Under these conditions, which were maintained
for all experiments, the spectral slit width was about 2.0 cm~'. A
substrate of crystalline silicon was used under the same conditions
as an external standard for calibration, by recording the position of
its well-defined Raman band at 520.0 cm~".

For the measurement, a drop of olive oil was placed directly on
a special microscope slide with a small concavity by pipetting a

Table 1
Description of olive fruits at each sampling date.

Cultivar Maturity stage Sample code Harvest date RI?
Cobrangosa Green Cob G 02/10/2012 0.4
Semi-ripe Cob SR 12/10/2012 21

Ripe Cob R 08/11/2012 55

Galega Green Gal G 02/10/2012 04
Semi-ripe Gal SR 12/10/2012 21

Ripe GalR 08/11/2012 5.5

Picual Green Pic G 02/10/2012 0.4
Ripe Pic R 08/11/2012 55

¢ Ripening Index.
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few drops. The integration time was set to 20 s and each recorded
Raman spectrum is the average of five accumulations. The time
necessary for acquire one spectrum was about 4 minutes. For each
olive oil sample, four replicates were measured in identical
conditions, for each one the microscope was focused on two
different points and the corresponding Raman spectra recorded,
therefore, retrieving eight spectra for each sample.

2.4. Mathematical treatment of data set

The Raman spectral data can be considered as a multidimen-
sional set of variables where each spectrum consists of hundreds
of variables, corresponding to the Raman intensities (counts)
recorded at the different Raman shifts (cm~'). These data sets
were then analyzed by a multivariate analysis method as
described below.

A principal component analysis (PCA) was applied to inspect
differences between samples. The PCA transforms a large number
of potentially correlated factors into a smaller number of uncorre-
lated factors (principal components, PCs), and thus reduces the
size of the data set.

For qualitative analysis, principal components contributing to
the variance of the data set were subjected to discriminant
analysis (DA) in an attempt to predict the likelihood of a sample
belonging to a previously defined group. Since the raw spectral
data could not be used because of the strong correlation between
the wavenumbers, uncorrelated PCs resulting from PCA were
employed. DA is a statistical method used to find a linear
combination of structures, which characterizes or separates classes
of objects or observations. The resulting arrangement may be used
as a linear classifier or dimensionality reduction priori to
classification.

Both PCR and PLS regression methods are utilized to model a
response variable when a biological system is analyzed through a
large number of predictor variables that are highly correlated or
even collinear [22]. Both methods give rise to new predictor
variables, usually known as principal components (PC) or latent
variables that are linear combinations of the original predictor
variables. Those components are calculated in different ways, PCR
creates PC's to explain the observed variability in the predictor
variables, without considering the response variable. In PLS-R the
response variable is taken into account and, consequently, leads to
models that can fit the response variable with fewer factors [23].
Whether or not it ultimately translates into a useful model
depends on the specific biological system.

2.5. Treatment of spectral data

Pre-treatment of the raw spectral data included several steps.
To subtract the fluorescence background the baseline of each
spectrum was approximated by a fourth-order polynomial. After
smoothing the spectra were normalized using the standard normal
variate (SNV) method [24,25]. First and 2" derivatives were
determined by the Savitzky-Golay method [26].

The Raman spectra were collected in the 250-3050 cm™
spectral range. However, it was found that well-defined Raman
bands associated with free fatty acids and with changes due to
oxidation could be observed in specific regions. The most relevant
spectral region that can be linked to free acidity and to the
peroxide value is the region between 950-1800 cm~!, in accor-
dance with El-Abassy et al. (2009) [14]. The inclusion of irrelevant
spectral information in the Chemometrics procedures yields an
over-fitting model.

1

2.6. Model selection

For quantitative analysis of chemical parameters of olive oil
samples, factors considerably contributing to the variance of the
data set were regressed using principal component regression
(PCR) and partial least squares regression (PLS-R) onto the referred
variables. This multivariate calibration technique, sometimes
called factor analysis, transform the original variables (Raman
spectra) into the new ones (known as factors), which are linear
combination of original variable.

The method relied on two steps, so-called calibration and
validation. In the calibration step, a mathematical model was built
to establish a correlation between the matrix of Raman spectra
(predictor variables) and the concentration of analytes of interest
(response variables) used a set of observations usually named
calibration set. In the validation step, the developed calibration
model was used to calculate the concentration of samples not used
to set-up the model [26].

The quality of the fitting was scrutinized by the root mean
square error of calibration (RMSEC), multiple coefficient of deter-
mination or regression coefficient (R?, where R is the correlation
factor) and by the root mean square error of cross validation
(RMSECV). The optimum number of factors either for PLS-R or PCR
models was determined using Leave-One-Out (LOO) cross-
validation method. The optimal number of factors is the one that
minimizes the RMSECV.

PCA, DA, PCR and PLS-R calculations were performed using the
XLSTAT-v2006.06 package (Addinsoft, Inc).

3. Results and discussion
3.1. Chemical analysis

The regulated quality indices studied in this work (free acidity
and peroxide value) are displayed in Table 2. In all samples of cv
Cobrancosa, Galega and Picual olive oils, analytical parameters
were widely within the limits established in the European Legisla-
tion for EVOO [27].

The PV is useful once it's an indicator of the initial stage of
oxidation, where the primary oxidation products are measured. As
can be seen, PV decreased as the maturation stage increased and
were significantly lower in Galega and Picual olive oils in the first
and latest ripening stage than in Cobrangosa olive oils. This
behavior can be explained by a decrease in the activity of
lipoxygenase enzyme [28]. Furthermore, for each cultivar studied,

Table 2

Means and standard deviations for peroxide value and free acidity of olive oil
samples from cv's Cobrangosa, Galega and Picual in three maturation stages, for
four replicates (n=4).

Cultivar Peroxide value Free acidity
(meq O,/kg) (% oleic acid)

Cobrangosa Green 8.33%A +0.42 0.29°*+0.01
Semi-ripe 6.69"* + 0.42 0.24"* +0.01
Ripe 497 +0.25 0.31°4 +0.02
p <0.001 <0.001

Galega Green 6.66%% +0.33 0.21°B + 0.01
Semi-ripe 7.50°® +0.37 0.17°% +0.01
Ripe 3.34% + 017 0.24 +0.01
p <0.001 <0.001

Picual Green 8.27% +0.41 0.31% +0.02
Ripe 3.33%% £ 017 0.17°¢ +0.01
p <0.001 <0.001

For each cultivar, means with different lower case letters differ significantly. For
each maturation stage, means with different capital letters differ significantly.
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significant differences of PV were evident during the maturation
process.

Regarding free acidity, this percentage didn’t show a trend
during fruit ripening of cultivars studied. For Cobrangosa and
Galega samples, free acidity decreased from the first to the second
maturation stage and then increased in the ripe stage. However,
olive oil samples from Picual cultivar presented free acidity values
ranged between 0.31+0.02 to 0.17+0.01% in green and ripe
stages, respectively. Usually, olives at a later stage of ripening
originate oils with higher levels of acidity due to a progressive
enzymatic activity, especially by lipolytic enzymes, and are more
sensitive to pathogenic infections and mechanical damage [28].
This increase has been observed for Cobrancosa and Galega
cultivars, but not for Picual olive oils that revealed a significant
decrease of free fatty acids during maturation, in agreement with
previously reported data by Garcia et al. (1996) [29].

3.2. Raman spectra of olive oil

Representative Raman spectral data in the range of 950 and
1800 cm ! together with its 1°* and 2" derivatives are shown in
Fig. 1 for EVOO from cv Cobrancgosa in three maturation stages.

The Raman spectrum includes bands that can provide informa-
tion on biochemical changes occurring during the maturation of
olives used to produce the olive oils [19]. Some of these bands are
displayed in the aforementioned region and correspond to the
peaks: at 1749 cm™!, associated to the ester stretching mode v
(C=0), at 1651 cm~!, due to stretching mode v (C=C) of the cis
double bond, at 1439 cm~! and 1303 cm~!, assigned to the
methylene (CH;) scissoring and twisting deformations, respec-
tively, and at around 1267 cm~!, related to the scissoring defor-
mation in the cis unsaturated moiety é (=C-H) [30]. These bands
are assigned to fatty acids, both free and in triacylglycerols,
therefore, being directly related to the fatty acid content of each
sample. It must be mentioned that the band at 1267 cm ™! is very
week under 488 nm excitation. This band has been pointed out by
Baeten [30], and more recently by Machado [31], which related its
intensity loss to the degradation of the cis-unsaturated moiety,
occurring during the peroxidation process, therefore, being pro-
posed for monitoring the oxidation status.
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Fig. 1. Raman spectra between 950 and 1800 cm ! of extra virgin olive oil from cv
Cobrancosa in three maturation stages together with its 1°¢ and 2" derivatives.

Regarding the spectral changes due to compositional differ-
ences, there are three more bands to be pointed at around
1009 cm~ !, 1150 cm~ ! and 1523 cm ™!, attributed to carotenoids,
and assigned to the (C-CH3) deformation, v (C-C) and v (C=C)
mode, respectively [32]. These compounds are natural antioxi-
dants, responsible for different characteristics of distinct EVOQ's,
and their quantity changes during the maturation process [19].
Their bands are not observed in investigations using laser excita-
tion wavelengths within the Infrared range (e.g. 785, 1064 nm),
however, they became visible under shorter excitation wave-
lengths, such as the 488 nm laser line presently used. Therefore,
short wavelength excitation improves differentiation between
olive oils produced using distinct cultivars, in different maturation
stages. Similar results were reported in El-Abassy et al. (2009)
using 514.5 nm excitation [14].

3.3. Supervised olive oil maturation monitoring using Raman
spectral data

3.3.1. Preliminary analysis of the spectral data set

Standardized (SNV) Raman spectral data collected between 950
and 1800 cm ™! of the 64 spectra (8 spectra for each maturation
stage, resulting in 24 spectra from Olive cv Cobrancosa and Galega,
in three maturation stages, and 16 from Picual cv in two matura-
tion stages) were subjected to PCA. It was found that the variance
of the data set, based in 425 original variables (wavenumbers), is
described by 47 principal components but 95% of the total variance
is explained by the first 11 principal components.

In statistics, communality is defined as the sum of the squared
factor loadings for all factors for a given original variable. It is the
variance in that variable accounted for by all the factors. In other
words, the communality measures the percentage of variance in a
given variable explained by all the factors jointly and may be
interpreted as the consistency of the indicator [33]. By definition,
the initial value of the communality in PCA is 1. Small commun-
alities values after extraction indicate variables that do not fit well
the factor solution and should be dropped from the analysis [34].
According to Stevens (2002), a lower limit of 0.6 should be used
[35].

Wavenumbers (variables) for which the communality value of
each principal components out of the eleven was higher or equal
to 0.6 were considered as meaningfully explaining the variance of
the spectral data set and then were considered as prospective
wavenumbers associated with the biochemical changes happening
during maturation of olives used to produce the olive oil samples.
These wavenumbers are in agreement with the above mentioned
bands related to compositional differences, and belong to the
following intervals: 997 to 1023 cm~!, 1139 to 1161 cm !, 1295 to
1309 cm~!, 1425 to 1455cm~', 1511 to 1537 cm~', 1631 to
1665 cm~! and 1737 to 1761 cm ™. This new set of 86 variables,
each one corresponding to a Raman intensity, collected from the
above-mentioned intervals (one registered for each 2 cm™!), was
then selected for additional analyses. The band at 1267 cm ™!, used
by other authors, has been left out after this selection procedure of
intervals for DA. This is probably due to the low intensity of this
band, under the presently used excitation of 488 nm, which led its
variation to be insignificant for this analysis.

A new PCA performed on this reduced spectral data set showed
that 89% of the variance could be explained by five principal
components. These variables were then subjected to a discrimi-
nant analysis based on the known membership (maturation stage)
of each sample analyzed, constituting the dependent variable.

The observation diagram represented in 2 is defined by
discriminant factors F1 and F2, which explained the total variance.
The cultivars of green ripening stage are in the lower left side of
the plot, with exception of Picual, placed near the center. EVOO's
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of Cobrancosa and Galega cultivars in semi-ripe stage are mostly
located in positive part of F2 axis and negative part of F1 axis.
EVOO' samples in ripe stage are located in the right side of the
F1/F2 plane. The classification in Table 3, resulting from the
discriminant analysis, provided 96.5% correct classification for
the calibration set and 81.9% correct classification when cross-
validated. A high degree of correct classification (91.7%) is achieved
for ripe EVOO, as opposed to the semi-ripe group that has 25%
probability of being classified as green. Thus, though not being
suitable for the discrimination between green and semi-ripe
EVOO's, discriminant analysis allows the possibility to distinguish
EVOO samples obtained from ripe fruits.

3.3.2. PCR and PLS-R models for prediction of peroxide value and free
acidity

PLS-R and PCR calibration models were carried out in order to
determine a relationship between predictor variables (Raman
scattering intensities) and the chemical characteristics of olive oils
referred above. Specifically, the main goal was to develop a model
able to predict the peroxide value and free acidity, considering the
high relevance these parameters for consumers of EVOO.

Actually, as the olive oil Raman spectrum contains contribu-
tions from different species, each observable band might either
correspond to a specific component, or to a sum of different
contributions (bands) arising from distinct chemical systems.
Thus, Raman is suitable for the assessment of these chemical
parameters - peroxide value and free acidity - due to the different
contributions of the samples’ constituents, which vary, and also to
the chemical modifications related to these parameters, which are
reflected in the behavior of certain bands. For instance, some
Raman signs are specifically related to the peroxide value, such as
the vibrational modes due to the conjugated (C=C-C=C) system
formed due to the peroxidation process (stretching ~1660 cm™1),
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Fig. 2. Observations diagram from a principal component analysis of extra virgin
olive oil samples from cv's Cobrangosa, Galega and Picual in three maturation
stages, using the normalized (SNV) Raman spectral data.
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or the loss of intensity in bands corresponding to the intact fatty
acids, such as the band at 1267 cm~"! [30,31].

Furthermore, triacylglycerides represent different chemical
systems, respecting free fatty acids or glycerol molecules. For
example, the band at 1749 cm~!, is raised by the carbonyl v
(C=0) mode, either from the free fatty acids (carboxylic group), or
from the triglyceride bonded fatty acids (ester group), displaying
slightly different frequencies. Thus, the shape of this band, and
Raman features on the corresponding interval (1737-1761 cm™1),
retrieve information on the free acidity. Moreover, fatty acids
might undergo structural changes when inserted in a triglyceride,
these conformational changes are reflected in the frequency of the
Y(C=C) mode [36]. Therefore, the band at 1651 cm ™!, correspond-
ing to the Y(C=C) modes of the fatty acids, arises as meaningful for
the assessment of free acidity. Additionally, in our case, the three
bands of carotenoids (1009, 1150 and 1523 cm~ '), whose inten-
sities are known to be inversely proportional to the FFA content
[14], can be detected. Therefore, there is a rational relationship
between Raman obtained data, and these chemical parameters,
both free acidity and peroxide value, thus, this spectroscopic
technique displays the potential for their assessment.

PLS regression method is able to collect information from large
spectral intervals, correlating changes therein to the concentration
of specific constituents, and concomitantly consider other possible
contributions to these changes not related to the sample constitu-
tion [37]. On the other way, in PCR method the spectral and
concentration information are incorporated into the model in one
step [38].

The results achieved for the PLS-R and PCR calibrations of
peroxide value and free acidity in terms of R%, RMSEC and
RMSECV, either for normal spectra, from 950 to 1800 cm~!, and
its 15t and 2"¢ derivatives are presented in Table 4. The high value
of R? and the lowest of RMSEC and RMSECV indicate the good
performance and precision of the models. Furthermore, to obtain a
good calibration model, the number of regression factors used
should be the lowest as possible [39]. The plot of the measured
concentrations of the chemical parameters against the predicted
values based on Raman scattering intensities reveals the quality of
the models. To illustrate the quality of the models established in
this work, PLS-R calibrations are presented in Fig. 3a) and b).

Moreover, though some authors undertook previous works
resorting to spectral intervals bellow 1600 cm~! [14], the useful-
ness of the bands in the 1600-1800 cm~! interval, which reached
a relative intensity high enough for its variations to be considered
in the model, has been observed in the present study, also Korifi
has previously considered these bands, in a study conducted with
the 532 nm excitation [20] Therefore, it can be elated that, besides
the enhanced intensity of these bands, the improved sensitivity
due to the use of a lower excitation wavelength, allows the
retrieval of useful information from the shape of these bands,
which are raised by contributions from different chemical systems.

For both chemical parameters under analysis, the multivariate
calibrations showed, in general, the highest value of R? and the
lowest of RMSECV when using the 1°* derivative of the spectral

Confusion matrix for the training and for the cross-validation sets based on the maturation stage. Observed classifications in the rows. Predicted classifications in columns.

From/To Calibration Cross-validation

Green Semi-ripe Ripe Total % correct Green Semi-ripe Ripe Total % correct
Green 23 1 0 24 95.8 19 5 0 24 79.2
Semi-ripe 1 15 0 16 93.8 4 12 0 16 75.0
Ripe 0 24 24 100 2 0 22 24 91.7
Total 24 16 24 64 96.5 25 17 22 64 81.9
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Table 4

Partial least squares and principal component regressions based calibrations for quantification of peroxide value and acidity, using the Raman spectral data and its 1°t and 2™

derivatives.

Chemical parameter Regression method Factor Spectra Equation R2 RMSE
Calibration Validation Calibration ~ Validation  Calibration  Validation
Peroxide value PLS-R 4 Normal y=0.83 x+1.23 y=0.82 x+1.27 0.979 0.966 0.80 0.85
4 1st der y=1.01 x-0.02 y=1.04 x+0.10 0.986 0.971 0.68 0.72
5 2nd der y=0.99 x+0.04 y=0.98 x+0.07 0.965 0.956 0.74 0.81
PCR 5 Normal y=1.01 x—0.08 y=104 x-0.17 0.975 0.968 0.84 0.89
3 1st der y=0.90 x+0.61 y=0.93 x+0.42 0.989 0.981 0.72 0.77
5 2nd der y=1.01 x—0.08 y=1.04 x-0.17 0.937 0.888 0.77 0.83
Free acidity PLS-R 4 Normal y=0.93 x+1.19 y=113 x-0.11 0.992 0.987 0.02 0.03
3 1st der y=1.01 x+0.04 y=1.04 x-0.01 0.994 0.988 0.01 0.02
4 2nd der y=0.98 x+0.59 y=111 x+0.31 0.981 0.952 0.02 0.03
PCR 4 Normal y=0.83 x+1.23 y=1.02 x—0.05 0.988 0.984 0.02 0.04
4 1st der y=0.97 x+0.03 y=1.05x-0.32 0.991 0.990 0.02 0.02
5 2nd der y=0.88 x+0.61 y=0.97 x+0.24 0.969 0.933 0.03 0.04

RMSE of Peroxide value in meq O,/kg; RMSE value of Acidity in %.

a

10 ﬁ

A Calibration

W Validation

Predicted Peroxide value
(meq O, kg), LV-4

Linear (Calibration)

———- Linear (Validation)
3 L . L L . L .
3 4 5 6 7 8 9 10
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(meq O, kg?), LV-4

0.35
0
> 030 f
)
o
©
Q
)
5 025
xX
z
5 A Calibration
Q
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[
fre Linear (Calibration)
———-Linear (Validation)
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Free acidity (% oleic acid), LV-3

Fig. 3. PLS-R calibration models for the relationship between measured values and
Raman predicted values of: a) peroxide values and of b) free acidity of olive oil.

data. In general, PLS-R offers enhanced results compared to others
regression methods, such as PCR [40] or multiple linear regression
(MLR) for quantitative analysis of chemical parameters [23]. In our
study, despite both calibration models presented good prediction
values, it was also PLS-R method that showed the best results,
displaying good performances for both the prediction of peroxide
value, and free acidity.

The relationship between measured values of the chemical
parameters predicted values based on Raman scattering intensities
showed R? values ranging from 0.937 to 0.994 using the calibration
set and from 0.933 to 0.990 when cross validated. The RMSECV were

as low as 0.72 meq O,/kg for the peroxide value, when using the 1%
derivative and a PLS model with 4 factors. However, a slightly higher
value of 0.77 meq O,/kg was attained for a simpler 3 factor PCR
model. For the free acidity the lowest RMSECV value was 0.02%
attained for both PCR and PLS-R models, the latter being simpler (3
factors) than the former.

4. Conclusion

In the present work, Raman spectroscopy, alongside with
multivariate analysis methods, has been successfully used, in order
to monitor free acidity and peroxide values in EVOO's, as well as to
distinguish ripe from non-ripe oils. Since each Raman spectrum is
constituted of several different contributions, arising from distinct
constituents, these unique Raman features, corresponding to each
species, render a possibility to the assessment of the samples’
content through this methodology.

Furthermore, the use of a short wavelength excitation, 488 nm,
allowed, not only, to observe bands due to carotenoids, which are
important for these assessments, but also to register good quality
spectra, so as to retrieve information from bands raised by distinct
constituents.

In order to correlate the Raman spectra with the quality para-
meters assessed, as well as to evaluate the best approach to do so,
the present work has been conducted with resort to two distinct
approaches, PCR and PLS-R. Both have shown good results, and best
performance when applied to the first derivative of the spectra, for
the prediction of either peroxide value, or free acidity. In the latter
case both approaches, PCR and PLS-R, retrieve similar results,
presenting R? values of 0.990 and 0.988, respectively, and equal
errors for cross-validation. In the case of peroxide value, PLS-R
displays somewhat lower errors of validation in comparison to PCR
(0.72 vs 0.77 meq O,/kg) therefore, the former being proposed as the
most suitable for these determinations.

Additionally, Raman shows some advantages over Infrared
technique, which are exploited by the advent of the Raman
portable devices, bringing the hot prospect of the in situ monitor-
ing of these quality parameters. Therefore, this methodology
represents an important trend, respecting the assessment of these
quality parameters in field.
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