Using FPGAs for Real-Time
Disparity Map Calculation

Carlos Resende
DEEC, Faculdade de Engenharia
Universidade do Porto
Porto, Portugal
Email: ee04022@fe.up.pt

Abstract—Real-time stereo image matching is an important
computer vision task. This paper presents the architecture and
implementation of an FPGA-based stereo image processor, that
produces 25 dense depth maps per second from pairs of 8-bit-per-
pixel gray-scale images. The system implements a modification of
a previously-reported variable-window-size method to determine
the best correspondence for each image pixel. The degree of
parallelism of the implementation can be adapted to the available
resources: increased parallelism enables the processing of larger
images (at the same frame rate). The proposed architecture
exploits the memory resources available in modern platform
FPGAs. Two prototype implementations have been produced and
validated: the smaller one can handle pairs of images of size
208 x 480 , while the larger one works for images of size
640 X 480 (both operate at 100 MHz). These results improve
on previously-reported ASIC and FPGA-based designs.

I. INTRODUCTION

Acquisition of three-dimensional information from im-
ages has important applications in computer vision [1] (e.g.,
in robotics, driver assistance and surveillance). When two
vertically-aligned cameras are available, their stereo images
can be used produce dense disparity maps. Taking one of
the images as reference, such a map gives, for each image,
the horizontal distance to the corresponding pixel in the other
image. This distance (the disparity) is inversely proportional
to the distance between cameras and the object (the depth).

The calculation of disparity maps requires the reliable
establishment of correspondences between the images [2]. The
computational effort of this task typically precludes achiev-
ing real-time performance with general-purpose processors in
embedded systems, and has led to the development of many
dedicated hardware systems [3]-[7].

A general approach to the determination of the correspon-
dences is to make a horizontal scan of the second image to
find a matching position for each pixel of the first image.
The matching pixel is the one whose neighborhood differs the
least from the neighborhood of the reference pixel (in the first
image). Various metrics have been proposed to evaluate the
similarity of the neighborhoods [8], but the one based on the
sum of absolute differences (SAD) of all the neighborhood
pixels is often chosen for hardware implementations due to its
simplicity.

The size of the neighborhood (the correspondence window)
has a large influence on the quality of the matching. If the

Joao C. Ferreira
INESC Porto, Faculdade de Engenharia
Universidade do Porto
Porto, Portugal
Email: jef@fe.up.pt

window is too small, the quantity of neighborhood information
used is too small, producing errors of correspondence in large
areas where pixel intensity is constant. On the other hand, if
the window is too large, the neighborhood may cover pixels
from objects at different depths, producing errors in the defi-
nition of the disparity near object boundaries. For this reason,
the use of an adaptive window has been proposed by [9], and
has been implemented in several dedicated systems [5], [10],
[11]. The most recent one uses an Altera FPGA to process
64 x 64 pixel gray-scale images well in excess of the target
frame rate of 30 fps (frames per second) [5].

The present work describes a new FPGA-based implemen-
tation of the same general approach, achieving a frame rate of
25 fps for gray-scale images of 208 x 480 pixels (on a Virtex-
4 FPGA) and 640 x 480 pixels (on a Virtex-5 FPGA). The
208 x 480 version has been used in a hardware prototype that
acquires images from two CMOS image sensors and displays
the calculated disparity map on a VGA monitor in real-time.

The paper is organized as follows. Section II describes the
correspondence algorithm. The main aspects of the imple-
mentation are presented in Section III. Section IV analyzes
the implementation results and compares them to previous
approaches. Section V concludes the paper.

II. THE IMAGE MATCHING ALGORITHM

The implementations presented in sec. III calculate dense

disparity maps using a variation of the algorithm from [5].
The modification restricts the quantity of neighborhood infor-
mation used, and enables a simplified hardware architecture,
with improved resource utilization and reduction of processing
time. Empirical tests show that the impact on map quality is
small (cf. sec. IV-A). The steps of the algorithm are:
1. [Initialization] The algorithm starts with a window of
size w = 8, as proposed by [5], who empirically determined
this value to be the best starting window size. The algorithm
divides the reference image in a grid and the candidate image
in horizontal sections. The former are the various reference
windows (RW in fig. 1), and the latter are the candidates
considered during the search (CW in fig. 1).

As shown in fig. 1, the reference window represents the
window (of the reference image) for which a correspondence
is sought, the candidate windows are situated along a scan-line

that covers the entire search area of the candidate image, and
MW is the matching window, i.e., the candidate window with
lowest SAD score.

Reference image Candidate image

Scan line

RW., cwW TMW] CW

MW = min(SAD(RW, CW|

Fig. 1. Reference and candidate windows (following [5]). RW is the reference
window, CW the candidate windows, and MW the matching window with the
lowest SAD (one of the CWs). The search for correspondence is made along
the full scan line to the right of the RW’s position.

2. [Select search area] Select the next section of eight lines.
This step represents the most significant difference between
our algorithm and the one in [5]. We apply the following
steps to independent sections of eight lines, restricting the
quantity of neighborhood information used to one section,
while the original approach applies them to the entire image. It
is assumed throughout that the cameras are vertically aligned.
3. [Find best candidate] Calculate the SAD between the
reference window and each candidate. Select the candidate
with the lowest SAD score (MW).
4. [Calculate disparity] Determine the disparity between RW
and MW. The disparity is given by the difference of the
horizontal coordinates of the two windows, RW and MW.
5. [Shrink window] If w # 1, the window size is reduced by
half horizontally and vertically. If w = 1, the desired disparity
has been calculated: go to step 7.

The new situation of the reference and candidate windows
is shown in fig. 2, where w = 8 and the new windows RW,
CW and MW have an horizontal and vertical size of 4. The
next search for the matching window will be limited by using
the neighborhood information of the present step.

For windows with w/2 = 4, the search will be restricted
to two neighborhoods with w = 8, which are the regions
represented by shifts of £d around the MW and CW windows,
so that all candidate windows of size 4 are inside the matching
window of size 8. The search is restricted to two regions,
because that is the maximum number of windows with w = 8
required to cover all windows with w = 4: sections have a
height of 8 lines, and therefore only neighbors on the left and
right sides of each window must be considered. For the cases
with w = 2 and w = 1, the number of neighbors of each
window increases to 4 (neighbors on the left, right, above and
below).

6. [Repeat with smaller window sizes] If w # 1, repeat from
step 3.

7. [Change reference window] Make w = 8, shift RW to
the right and repeat from step 3, in order to find the disparity
associated with the next pixel.

" ”
2 B
© W D2,2 D2,3 ©
e le——> s d c
o o2l |2 N WLd &
2 Wl RWI Mwi cw|™ O
[= (=
=] 3
{ =~ (=
o o
3 k]
] / @
3 / 2
wt N~
<>
W/2 W

MW = min(SAD(RW, CW))

Fig. 2. Reference and candidate windows of size w/2. The candidate
windows analyzed at the lower window size must be inside the four regions
that are within distance d from the position where the best correspondence
for window size w was found.

Reference Candidate
camera camera

SAD tree
Candidate and =~ ;=-----------, \
N e e 1""--------, reference windows; ' [SADand

! e Candidate pixels; control signals 4~ disparity
! Shift- __control signals o

1 [registers T

!]

calculation |,
I

SAD value and
corresponding
disparity

Reception of pixels | |

' and control
' -

i o

| -

! Block- [—

| RAM Reference pixels;

'

control signals

e LD

'
- 1 | Correspondence :
~~| calculation and
definition of the
search area

-:—> VGA monitor
i

Data acquisition and control

Calculation of
correspondence

Fig. 3. Top-level view of the image correspondence processor.

8. [Proceed to next section] After calculating the correspon-
dence for all pixels of a section, select the next one and repeat
from step 2. If all sections have been processed, stop.

III. SYSTEM ARCHITECTURE AND IMPLEMENTATION

The disparity processor implemented for this work is in-
cluded in a system constituted by: a pair of CMOS cameras
used to capture the images; a VGA monitor used to display
the disparity maps and the reference and candidate images;
and an evaluation board with the FPGA used to implement
the processor and to establish the communication with the
peripheral devices (CMOS camera and VGA monitor).

Image capture is done using two OV7620 CMOS cameras
from OMNIVISION, which are controlled through an I12C in-
terface. The evaluation board includes a Virtex-4 LX60 FPGA
from Xilinx and all the peripherals used to communicate with
the cameras and monitor. The interface with the VGA monitor,
where the disparity maps are displayed, is made through
an adapter card that takes care of all the synchronization
necessary to correctly communicate with the VGA monitor.

A. Top-level Organization

The system implemented on FPGA has three top modules,
as shown in fig 3: a) data acquisition and control; b) SAD
tree; c) calculation of correspondences. The last two modules
together comprise the unit for the calculation of disparities.
Depth map construction is done concurrently with image
capture, and starts as soon as one image section is available.

The module for data acquisition and control receives the
pixels from the cameras and saves them in memory (shift-
registers and block RAMs), controls of the size of the cor-
respondence window and keeps track of its position in the
image. This information allows the other modules to identify
the current phase of the disparity calculation, and to update
the control signals of their state machines accordingly.

The pixel intensity information and the control data con-
cerning the windows being analyzed are sent to the module
SAD trees, where the SAD metric is applied to the multiple
pairs of reference and candidate windows. The module also
calculates the disparity associated with each one of these pairs.

The control data associated with the reference and candidate
windows, and the associated disparity information are sent
to the module for calculation of correspondences, which is
responsible for defining the search area and for determining
the best match amongst the candidate windows. The disparity
for the matching window is stored in internal memory (block
RAM).

The disparity values calculated for the various windows are
stored in block RAMs, whose depth and width depend on the
associated window sizes. When the disparity values for all the
pixels of a section have been calculated, they are sent to the
output (a VGA monitor in our demonstration system), while
at the same time calculating and storing, in the same block
RAMs, the intermediate disparities (disparities for windows of
size 8, 4 and 2) of the next section. When the disparities for
the windows of size 1 of the new section start to be calculated,
the block RAMs used to store the disparities of windows of
size 1 of the previous section are already free, and can be used
to store the new values.

The implementation uses two different clock frequencies:
12.5MHz for the acquisition of pixel data from the CMOS
cameras, and for sending the disparity information to the
VGA interface; 100 MHz for the core that processes the stereo
images and determines the disparity information.

For the implementation of these modules various resources
available on the FPGA are used: block-RAMs and shift-
registers are employed for the memory structures used to
save the images and the disparity information obtained for
each window size; adders are used for the implementation of
the SAD modules; and one digital clock manager is used to
generate the clock signals. A more detailed analysis of each
of these units follows.

B. Management of Image Data

The image acquisition module uses two types of memory
structures: shift registers for the pixels of the candidate image,
and block RAMs for the pixels of the reference image. This
difference is due to the different behavior of the two window
types. Reference windows are shifted by at least eight positions
and can, therefore, be efficiently stored in block RAM. (The
precise shift amount depends on the quantity of parallelism
used: for the implementation being discussed they are shifted
by 16 pixels, because the correspondence is made for two
reference windows simultaneously). Candidate windows are

Shift- Shift-
registers | we low; we high; registers
1-8 ce always ce active once 1-8
T~ active every 8cycles
calculation? —

~we high; welow; T~
Sh\';t— ce active once ce always SH‘ift-
registers every 8 cycles active registers
9-16 9-16

(a) Shift-register access.

Section being received

Yes
Pixel count == 16? '

No

Fd
« >
<
=

I
we=1; ! Block-
write address

22 half

Block-
RAM n

Section being calculated
No

I
1
'
- n we=1; !
Start calculation Yes No Read address
of the a new set . : ' SRR
of windows? i

Yes

12 half
Block-
RAM n

22 half
1
! [] odd section

(b) Block-RAM access.

Fig. 4. Coordination of the access to internal image data.

shifted by one pixel, which is hard to implement with block
RAM, but easy to do with shift registers. The implementation
of [5] which uses shift-registers for both images, resulting in
a significant increase in the number of logic blocks used.

Although the pixel rate is 12.5 MHz for the image sources,
both memory structures operate at 100 MHz, since the memory
units must provide image data at this rate to the disparity
calculation modules.

In order to guarantee that the read and write accesses to
the memory modules are done without collisions, different
approaches are used for the two types of memory structures,
as shown in fig. 4. In the figure, the CE and WE symbols
represent the chip enable and write enable signals of the shift-
registers and block RAMs, respectively. The word "section"
always refers to the section of eight lines mentioned in the
algorithm description.

The memory organization for candidate images uses two
sets of shift registers: one set is used to store the section of
eight image lines being analyzed at the moment, while another
set is used to store the image lines being acquired at the same
time. This is why the number of 8-bit-wide shift registers used
in the implementation is 16. Figure 4(a) shows that the odd
sections of eight lines are saved in the first eight shift-registers,
and the even sections in the other eight. The depth of the
shift registers is equal to the width of the images. For write
operations each shift register is only active every eighth cycle
of the 100 MHz clock. Read operations are done on every
cycle, so that the pixels of the new candidate windows are
sent to the SAD tree at the correct rate of 100 MHz.

For the block-RAM-based reference window, the data for
the section being currently processed and the section being
acquired share the same physical memory, so access syn-

chronization is more elaborate. As shown in fig. 4(b) each
block RAM is divided in two halves: one half is used to
save the pixels of the section being analyzed, while the other
half is used to save the pixels of the section being received.
Read access is only permitted when no write signal is active.
This is done without delaying the calculation of disparities,
since the write signal is only active once every 16 cycles
of the 12.5MHz clock. For each write operation, 16 pixels
are committed to one memory position. Thus, each memory
position will contain all the pixels of a line of two reference
windows.

The number of single-port block RAMs used for this
approach (parameter ‘n’ in fig. 4(b)) depends on the amount
of parallelism used in the calculation of correspondences. In
each cycle of the 100 MHz clock, a number of pixels equal to
8 x 8 x p (where p is the amount of parallelism supported) must
be read from memory. Since the width of each block RAM is
limited and it can only be accessed one position at a time, it
is necessary to use several block RAMs in parallel, so that a
single read access provides the number of pixels required to
exploit a processing core with parallelism of order p.

C. Calculation of Disparities

The unit responsible for the calculation of disparities is
organized in two levels.The first level contains the modules
(SAD trees) that calculate the SAD values (using a WPPP
architecture with parallel processing of both reference and
candidate windows [5]) and the corresponding disparity. The
number of SAD trees used is determined by the amount of par-
allelism of the implementation. The second level determines
the search area and calculates the correspondence for each
reference window.

Figure 5(c) shows the structure of each SAD tree: R; ; and
C;,; represent the intensity of pixel (4,7) from the reference
and candidate windows, respectively; the block IS_j is the
element that calculates SADs for windows of size one (the
absolute difference of two pixel values), as shown in more
detail in Figure 5(b); and the rest of the SAD tree is com-
posed of adders that combine the various absolute differences
according to the window size. The example in the figure has
an initial window size of four, but the analysis is valid for any
size that is a power of two.

Figure 5(a) represents a general correspondence window
(candidate or reference). Establishing a correspondence be-
tween this window and the SAD tree of fig. 5(c) shows that, for
the different sizes of their sub-windows, the pixels considered
in the calculations have always the same position in the SAD
tree, which eliminates the need to use multiplexers between the
memory modules and the calculation modules. This happens
because the operations used for SAD calculation are only
additions and subtractions, which can be re-ordered for each
different window size in such a way that the pixels at the
inputs of each IS_j block are always the same.

The direct connection between memory modules and SAD
units solves one of the major problems of this type of im-
plementation, i.e, the need for multiplexers between memory

w=2 =
= w=1
= WA = =

13[14]15[16]17[18

. w=1
23(24)25(26(27 (28 it

31(3,2)33|35]35|36(3,7(38

41(42(a3(44]a5(a6[4a7[s8

51(5,2|53|54(55|56|57(58

cL,1;¢1,2 w=1
61(62(63|64(65(66[67[68 C12

71(7,2173|74(75|76|7,7(78

81(82(83(84|85(86[87[8s

(b) Basic block of the SAD tree. This
block calculates the SAD for two win-
dows o size one.

(a) Window under anal-
ysis (candidate or refer-
ence).

R1,1;R1,2
ciicl2

R1,3;R1,4
€1,3;CL,4

R2,1;R2,2
€2,1;C2,2

R2,3;R2,4
€2,3;C2,4
R3,1;R3,2
€3,1;C3,2

R3,3;R3,4
3,4;C3,4

R4,1; R4,2
c4,1;C4,2

R4,3;R4,4
C4,3;C4,4

(c) SAD tree for windows of size 4. This block calculates
the SAD for 1 window of size 4, 4 windows of size 2,
or 16 windows of size 1.

Fig. 5. General architecture used for SAD calculation

modules and the processing units to allow a correct analysis
of pixels when the window size is reduced.

Due to the block-RAM-based memory access scheme, dis-
parity values are not obtained at a constant rate, since the
speed of calculation depends on the number of cycles spent
waiting until a read access is granted. In this case, the various
registers keep their values until the pixels of the new window
are read and the calculation is restarted. However, despite the
variable data rate, a frame rate of 25 frames/second can still
be guaranteed.

D. Determination of Processing Time

For the proposed implementation (100 MHz main clock and
12.5 MHz pixel clock), the processing time T, is given by:

Tproc = Tstore + Li + Tearc + Lf7

where Tgiore is the storage time for the pixels of a new
section, L; is the latency before the calculation, T¢yc is the
time taken by the disparity calculation, and L is the latency
after the beginning of calculation (before the first SAD value
is produced). As discussed before, T, is variable due to the
block RAM memory access scheme.

This results in a minimum processing time of 0.242 ms and
a maximum of 0.246 ms for our Virtex-4 implementation. This

processing time, together with the frame rate restriction of the
external hardware (CMOS cameras and VGA monitor) allows,
as already stated, an image processing rate of 25 frames per
second.

E. Expansion of the Architecture

The size of the image processed is highly dependent on the
amount of resources available to implement the architecture
presented in section III.

There are three units that may limit the size of the images
processed, due to lack of FPGA resources. They are: the shift-
registers used to store the pixels of the candidate images; the
adders used to implement the SAD tree; and the logic path
(number of slices) used to define the search area. The last
two unit types are fundamental to implement the parallelism
necessary to satisfy the real-time requirements of the task.

Thus, to increase the image dimensions it is necessary to
have enough resources to: a) increase the depth of the shift-
registers used to save the pixels from the candidate image;
b) increase the quantity of parallelism used to calculate the
disparities; and c) increase the number of block RAMs used
to store the pixels from the reference image and the disparities
calculated for the various window sizes. Although the block
RAMs are a fundamental unit of the correspondence processor,
they do not represent a limitation in this case, since their
utilization is below 50% (cf. tab. I).

An expanded version of the proposed architecture was im-
plemented in a Virtex-5 LX330. The new version is capable of
handling images of size 640 x 480. The amount of parallelism
necessary to cope with the larger image size can be obtained
by equating the storage time for one section with the maximum
time for disparity calculation, since one image section must
be processed while the next one is being loaded:

640 x 8
12.5 x 10

4 4
—(64()><60><4+60><8><4>><108
p p

Here, p is the amount of parallelism, i.e., the number of
pixels analyzed concurrently (8 per window). In our case, p =
40.5, so it is necessary to process 6 reference windows in
parallel (40.5/8 = 5.06 — 6).

Since 640 is not evenly divisible by 6, our expanded
implementation processes eight candidate windows in parallel,
which simplifies the circuitry to control the displacement of the
reference windows. The expanded version has been validated
for images with 640 x 480 pixels, but it is able to process
1016-pixel wide images. Only the depth of the shift-registers
and block RAMs needs to be increased appropriately (which
is feasible for the Virtex-5 LX330).

IV. DISCUSSION

The stereo image processor presented in this paper was
validated by software and hardware analysis. The software
validation confirmed the results obtained by our processor by
comparison with the results obtained by the reference one.
While the hardware validation confirmed the functionality of
the processor with real video images.

TABLE I
RESOURCE UTILIZATION FOR BASELINE AND EXPANDED PROCESSORS

Resources Utilization (number)

Virtex-4 LX60 (208 x 480 pixels)

Utilization (%)

Slices 20101 75
Block-RAM 64 40
Virtex-5 LX330 (640 x 480 pixels)
Slices 50340 24
Block-RAM 168 58
TABLE 11

COMPARISON BETWEEN THE PROPOSED IMPLEMENTATIONS AND
PREVIOUS SYSTEMS REPORTED IN THE LITERATURE

System Image size Max. window Freq. Time

¥ e ! size (MHz) (ms)
Ref. [10] 512 x 512 25 x 25 200 60
Ref. [11] 320 x 240 15 x 15 125 100
Ref. [5] 64 x 64 8x8 86 0.19
Impl. 1 (V4) 208 x 480 8 x 8 100 40
Impl. 2 (VS) 640 x 480 8 x 8 100 40

The first two systems are implemented with CMOS ASICs: 0.5 um
and 0.18 um technologies, respectively. Implementation [5] uses an
FPGA from Altera (APEX20KE). The last two lines summarize the
implementations described in this paper. All systems process 8-bit
gray-scale images.

A. Disparity maps

The modified version of the of the correspondence algorithm
does not result in a serious impact on the resulting disparity
map. This was confirmed by comparing each pixel of the
disparity map obtained by the original algorithm with the
corresponding pixel of the disparity map obtained by the
modified algorithm. This evaluation was made using images
from the database presented in [12] (after conversion to gray-
scale).

We compared the results of our implementation of the
original algorithm in Matlab with the outputs of the Verilog
description of the matching processor (as obtained from a
functional simulation of the Verilog source code). The dis-
parity maps produced by the Verilog version were compared
pixel by pixel with the results produced by the Matlab version.
For a set of four pairs of images, the mean absolute difference
of disparities was very low, ranging between 1.3 and 3.2.

B. Resource Utilization

Table I summarizes the utilization of FPGA resources for
the two versions of the image matching processor. Comparison
of the slice utilization in the two processors cannot be made
directly, since slices in the Virtex-4 architecture (two flip-flops
and two 4-input look-up tables) are different from slices in the
Virtex-5 architecture (four flip-flops and four 6-input look-up
tables). The high-level synthesis maximized clock frequency
at the expense of FPGA occupation.

Analyzing the occupation of the Virtex-4 LX60, the high
utilization of slices is mainly due to the shift registers used
for storage of two sections of 208 x 8 pixels of the candidate

image, and to the quantity of parallelism used in the calcula-
tion of the disparities. The quantity of block RAM used is due
to the storage of the reference image and the disparity values
for each window size.

For the larger implementation on the Virtex-5 LX330, the
number of slices used is determined by the shift registers, but
also by the amount of parallelism used in this implementation,
which is 4 times higher than for the implementation on the
Virtex-4 LX60. The number of block RAMs also increases
greatly for the same reason, because the only way to increase
the quantity of information available in each instant is to
instantiate more block RAMs.

We can be concluded that the resource utilization depends
on the size of the images analyzed and on the frame rate
required. Images with large dimensions require deeper shift-
registers in order to store the sections of eight lines of the
candidate image. Higher frame rates require more parallelism,
which implies: a) the use of more block RAMs, needed to
save all the reference windows analyzed at each instant; and
b) the increase of slice utilization to implement the SAD and
all the logic necessary to achieve the required parallelism.

C. Comparison with Other Approaches

The comparison of resource utilization between the our
processor and the implementation of [5], needs to be done
carefully, since the types of FPGA used are different. The
implementation of [5] has higher resource utilization, since
it uses 42,508 logic elements of an APEX20KE from Altera
(each consisting of a 4-input look-up table and one flip-flop),
while the smaller of our implementations uses 19978 slices
of a Virtex-4 (two 4-input look-up tables and two flip-flops),
for a total of 31880 look-up tables and 16951 flip-flops).

The lower resource usage of the proposed architecture is
due mainly to the reduction of neighborhood information
processed, and to the use of block RAM for storing the pixels
of the reference image (instead of shift-registers).

Table II compares image size and processor speed for
designs with different architectures. Column “time” shows
the time required to process one frame. Note that a direct
comparison is complicated by differences in technology. For
both implementations proposed in this paper, on Virtex-4
(Impl. 1 (V4)) and on Virtex-5 (Impl. 2 (V5)), the processing
time is 40ms, since both target a frame rate of 25 frames
per second. Both are faster than the previously-reported ASIC
implementations ([10], [11]), but support a smaller maximum
window size. However, as occurs with the comparison with
the implementation of Ref. [5], these results are influenced
not only by the algorithm and its implementation, but also by
the technology used. FPGA technology and organization differ
significantly from ASICs, a factor that influences the com-
parison results. Comparing with the FPGA implementation of
Ref. [5], our implementations are able to process much larger
images, while still satisfying real-time requirements.

V. CONCLUSION

This paper described and evaluated a hardware architecture
for the calculation of dense depth maps from a pair of stereo

images. The architecture is based on a modification of a
previously reported variable-window-size method [5]. Empir-
ical tests indicate that the simplification introduced does not
degrade the quality of the resulting depth maps. The proposed
architecture exploits the resources of modern platform FPGAs,
and allows the creation of implementations with a variable de-
gree of parallelism, depending on the available resources. The
management of image data uses different memory resources
for reference and candidate images in order to take advantage
of the different access patterns.

Two versions of the architecture with different resource
requirements were implemented. Both produce dense depth
maps in real-time (25 maps per second). The smaller im-
plementation targets a Virtex-4 LX40 device and handles
208 x 480 images, while the larger one uses a Virtex-5 LV330
device (less than 60% of resource occupation) and handles
640 x 480 images. Both are capable of finding a maximum
disparity of 255. They are faster than the previously reported
ASIC implementations [10], [11], but support a smaller maxi-
mum window size. They are able to process in real-time much
larger images than the FPGA implementation of Ref. [5].

ACKNOWLEDGMENT

The present work was partially supported by research con-
tract PTDC/EEA-ELC/69394/2006 from the Foundation for
Science and Technology (FCT), Portugal.

REFERENCES

[11 M. Z. Brown, D. Burschka and G. D. Hager, Advances in computational
stereo, IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol.25, no.8, pp. 993-1008, Aug. 2003.

[2] D. Scharstein and R. Szeliski, A Taxonomy and Evaluation of Dense
Two-Frame Stereo Correspondence Algorithms, International Journal of
Computer Vision, vol. 47, Abr. 2002, pp. 7-42.

[3] M. Kuhn, S. Moser, O. Isler, F. Gurkaynak, A. Burg, N. Felber, H.
Kaeslin and W. Fichtner, Efficient ASIC implementation of a real-time
depth mapping stereo vision system, Proc. IEEE Intl. Symp. Micro-
NanoMechatronics and Human Science,vol. 3, 2003, pp. 1478-1481.

[4] J. Woodfill, G. Gordon and R. Buck, Tyzx DeepSea High Speed Stereo
Vision System, Computer Vision and Pattern Recognition Workshop
CVPRW 04, 2004, p. 41.

[5] M. Hariyama and Y. Kobayashi and H. Sasaki and M. Kameyama,
FPGA implementation of a stereo matching processor based on window-
parallel-and-pixel-parallel architecture, IEICE Trans. Fundam. Electron.
Commun. Comput. Sci. E88-A (2005) 3516-3522.

[6] S. Lee, J. Yi and J. Kim, Real-Time Stereo Vision on a Reconfigurable
System, Embedded Computer Systems: Architectures, Modeling, and
Simulation, 2005, pp. 299-307.

[7]1 L. Mingxiang and J. Yunde, Stereo Vision System on Programmable
Chip (SVSoC) for Small Robot Navigation, IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2006, pp. 1359-1365.

[8] R. Porter and N. Bergmann, A generic implementation framework for
FPGA based stereo matching, Proc. IEEE Region 10 Ann. Conf. Speech
and Image Tech. for Comp. and Telecom., vol. 2, 1997, pp. 461-464.

[9] T. Kanade and M. Okutomi, A stereo matching algorithm with an

adaptive window: theory and experiment, /[EEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 16, 1994, pp. 920-932.

M. Hariyama, T. Takeuchi and M. Kameyama, VLSI processor for

reliable stereo matching based on adaptive window-size selection, Proc.

IEEE Intl. Conf. Robotics and Automation, vol. 2, 2001, pp. 1168-1173.

M. Hariyama and M. Kameyama, VLSI processor for reliable stereo

matching based on window-parallel logic-in-memory architecture, Di-

gest of Technical Papers Symp. on VLSI Circuits, 2004, pp. 166-169.

D. Scharstein and R. Szeliski, Middlebury Stereo Vision, June 2009,

http://vision.middlebury.edu/stereo/data/

[10]

(1]

[12]

