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Abstract— This paper presents a model predictive control 

(MPC) framework for battery energy storage systems (BESS) 

management considering models for battery degradation, 

system efficiency and V-I characteristics. The optimization 

framework has been tested for microgrids with different 

renewable generation and load mix considering several 

operation strategies. A comparison for one-year simulations 

between the proposed model and a naïve BESS model, show an 

increase in computation times that still allows the application of 

the framework for real-time control. Furthermore, a trade-off 

between financial revenue and reduced BESS degradation was 

evaluated for the yearly simulation, considering the degradation 

model proposed. Results show that a conservative BESS usage 

strategy can have a high impact on the asset’s lifetime and on 

the expected system revenues, depending on factors such as the 

objective function and the degradation threshold considered. 

Keywords— battery degradation, battery energy storage 

systems, linear model, microgrid, model predictive control. 

NOMENCLATURE 

Indices and sets 

𝑡 ∈ 𝑇 
Set of time intervals within the optimization 

horizon. 

𝑠 ∈ 𝑆 
Set of piecewise segments approximating 

the BESS efficiency curve. 

Parameters 

휀
𝑏

(. ), 휀𝑏(. ) 
BESS dynamic maximum/minimum energy 

content [Wh]. 

𝐸
𝑏

, 𝐸𝑏 
BESS absolute maximum/minimum energy 

content [Wh]. 

�̂�𝑁,+, �̂�𝑁,− Nominal charge and discharge voltage [V] 

�̂�𝑏,+, �̂�𝑏,+  
Line parameters for dynamic energy content 

linearization when charging 

�̂�𝑏,−, �̂�𝑏,−  
Line parameters for dynamic energy content 

linearization when discharging 

�̂�𝜂,+, �̂�𝜂,+  
Line parameters for inverter efficiency 

linearization when charging 

�̂�𝜂,−, �̂�𝜂,−  
Line parameters for inverter efficiency 

linearization when discharging 

𝑃
𝑏,+

, 𝑃
𝑏,−

 
BESS charge/discharge power rate limit 

[W]. 

�̂�𝑏,+, �̂�𝑏,− BESS charge/discharge efficiency. 

�̂�𝑏,𝑁 BESS nominal capacity [Wh] 

�̂�𝑑𝑒𝑔 Slope of degradation curve’s linearization 

𝐸
𝑑𝑒𝑔

 Limit for the BESS daily degradation [Wh] 

�̂�𝑡
𝑚𝑘 , �̂�𝑡

𝑓𝑖
 

Forecasted market prices/feed-in tariffs for 𝑡 

[€/Wh]. 

�̂�𝑡
𝐿 Cost of load curtailment for 𝑡 [€/Wh]. 

�̂�𝑡
𝐺 Forecasted RES generation during 𝑡 [W]. 

�̂�𝑡
𝐿 Forecasted load demand during 𝑡 [W]. 

𝑃
𝐺,𝑐𝑢𝑡

 Maximum curtailable RES capacity [W]. 

𝑃
𝐴𝐶,+

, 𝑃
𝐴𝐶,−

 
Inverter charge/discharge power rate limit 

[W]. 

∆𝑡 Length of the optimization time step [h]. 

�̂�𝑑𝑒𝑔,𝑇1

 
Degradation observed in previous steps of 

current day [Wh] 

𝑃𝑠

𝑏,+
, 𝑃𝑠

𝑏,−
 

BESS maximum charge/discharge power 

rate limit for segment 𝑠 [W]. 

𝑃𝑠
𝑏,+, 𝑃𝑠

𝑏,−
 

BESS minimum charge/discharge power 

rate limit for segment 𝑠 [W]. 

Variables 

𝑝𝑡
𝑏,+, 𝑝𝑡

𝑏,−
 

BESS charge/discharge setpoint during 𝑡 

[W]. 

𝑒𝑡
𝑑𝑒𝑔

 
Battery’s degraded capacity at the end of 𝑡 

[Wh]. 

𝑝𝑡
𝑎𝑏𝑠 , 𝑝𝑡

𝑖𝑛𝑗
 

Absorption/injection setpoint at the PCC 

during 𝑡 [W]. 

𝑝𝑡
𝐿,𝑐𝑢𝑡

 Load curtailment setpoint during 𝑡 [W]. 

Δ𝑒𝑡
+, Δ𝑒𝑡

− 
Positive/negative energy imbalance at 𝑡 

[Wh]. 

𝑝𝑡
𝐺,𝑐𝑢𝑡

 RES curtailment setpoint during 𝑡 [W]. 

𝑒𝑡
𝑏 BESS energy content at the end of 𝑡 [Wh]. 

𝛿𝑡
𝑃𝐶𝐶 , 𝛿𝑡

𝑏 
Binary variables to avoid simultaneous 

inverse power flows during 𝑡. 

𝑒𝑡
𝐷𝐴, 𝑒𝑡

𝑃𝐶𝐶  
Energy scheduled/effectively injected (< 0)/ 

absorbed (≥ 0) at the PCC, during 𝑡 [W]. 

∆𝑒𝑡
𝑏 

Change in BESS energy content in 𝑡  as a 

result of the applied power 𝑝𝑡
𝑏,+/−

 [Wh]. 

𝑧𝑡
𝑏,+, 𝑧𝑡

𝑏,−
 

BESS charge/discharge setpoint (DC side) 

in the 1st line segment, during 𝑡 [W]. 

𝑝𝑡,𝑠
𝑏,+, 𝑝𝑡,𝑠

𝑏,−
 

BESS charge/discharge setpoint (AC side) 

in the 𝑠th line segment, during 𝑡 [W]. 

𝛿𝑡,𝑠
𝑏,+, 𝛿𝑡,𝑠

𝑏,−
 

Binary variable for enabling BESS 

charge/discharge within segment 𝑠 , during 

𝑡. 

I. INTRODUCTION  

The operation of renewable-based power systems 
increasingly relies on the optimal exploitation of battery 
energy storage systems (BESS) and flexible loads. Optimal 
scheduling of BESS has been widely covered in literature, 
integrated for example in microgrids, energy communities and 
renewable power generation plants. The use of model 
predictive control (MPC) as, for example, showed in [1], 
presents an adequate framework for real-time, on-line 
scheduling of BESS, being able to compensate at each time 
step for real-time disturbances or forecast errors. 

In most cases, a simplified BESS modelling approach is 
considered, adopting constant battery charging/discharging 
powers and efficiency. This naïve model can be found on most 
optimal BESS control strategies, as highlighted in [2]. In [3], 
the authors have tested the impact of modelling battery 
dynamics and electrochemical degradation in the optimal 
control strategy of BESS, demonstrating that a simplified 
model could, although, lead to an erroneous techno-economic 
performance assessment. Also, [4] and [5] analyse the impact 
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of the operation strategy in BESS lifetime selected, that in 
most dispatch problems is neglected. 

This paper proposes an enhanced BESS modelling 
approach for an MPC framework, that aims at balancing 
computational tractability with accuracy, based on three 
fundamental characteristics: battery degradation, system 
efficiency and V-I characteristics. To the extent of our 
knowledge, no other work has proposed such a complete and 
tractable model, applicable to Mixed Integer Linear 
Programming (MILP) formulations. Considering this 
framework, an analysis is performed over the impact of 
adopting distinct BESS usage strategies on different systems 
and objective functions. 

II. BESS LINEAR MODEL 

A linear model of BESS is considered, specifically 
designed for Li-ion technologies, and focused on three 
fundamental characteristics: V-I characteristics, system 
efficiency and degradation. 

A. V-I characteristics 

We adapted the model presented at [6](recently described 
as the C/L/C model at [7]), that adds to the MILP formulation 
the possibility to adjust the battery energy content limits as a 
function of the power setpoints’ magnitude imposed at each 
time step. The definition of dynamic energy content limits, 

휀𝑏(. ) and 휀
𝑏

(. ), stems from the fact that the battery cannot 

charge or discharge completely (i.e., reach the absolute, static, 

energy content limits, 𝐸𝑏  and 𝐸
𝑏

) when subjected to high 

charge and discharge currents, respectively, due to the voltage 
spike/drop associated. These limits represent the energy 
content of the battery when its voltage limits are reached, 
being more restrictive when higher discharge or charge 
currents are applied, respectively. We establish therefore the 

chain of magnitude 𝐸𝑏 ≤ 휀𝑏 (
𝑝𝑡

𝑏

𝑉𝑁,−) ≤ 𝑒𝑡
𝑏 ≤ 휀

𝑏
(

𝑝𝑡
𝑏

𝑉𝑁,+) ≤ 𝐸
𝑏
. 

The definition of the BESS nominal charge ( �̂�𝑁,+ ) and 

discharge ( �̂�𝑁,− ) voltages, along with the parameters for 

휀𝑏(. )  and 휀
𝑏

(. )  linearization (slopes �̂�𝑏,+/−  and origins 

�̂�𝑏,+/− ) can be achieved through a combination of the 
manufacturer’s information and relatively simple tests, 
whose methodology can be consulted at [6]. 

B. System efficiency 

BESS inverters’ efficiency is nonlinear for small output 
powers (see Fig. 1). A 2-step piecewise model was defined to 
linearly approximate the charge and discharge efficiency 
curves for output powers below and above an empirical 
threshold (10%) of the inverter’s rated power. The 
computational burden of considering additional steps for 
higher output powers does not justify the decrease of the 
approximation error. The parameters for the first line segment 

(slopes �̂�𝜂,+/−  and origins �̂�𝜂,+/− ), are obtained by 
performing a least squares approximation of the available test 
values below the rated power’s threshold. In order to embed 
this model in the MILP, the line parameters for charging and 
discharging must be obtained for different curves than the one 
depicted in Fig. 1: the line’s abscissa corresponding to the 

rated power intervals ]0, 0.1 × 𝑃
𝑏,+

]  and ]0, 0.1 × 𝑃
𝑏,−

] , 
respectively; the line’s ordinates to the DC-side power 

setpoints from the experimental trials, 𝑃𝑏,+ × �̂�𝑏,+(𝑃𝑏,+) and 
𝑃𝑏,−

�̂�𝑏,−(𝑃𝑏,−)
, respectively. This linear approach converts an AC 

to a DC-side power setpoint, avoiding a non-linearity that 
would result from multiplying the calculated efficiencies by 
the AC-side power setpoints. The second segment is obtained 
by averaging the observed efficiencies for values above the 
10% threshold. This segment is then extended backwards until 
the intersection point with the first one, avoiding possible 
large discontinuities in the vicinity of the threshold. Equation 
(1) is used to obtain this new power threshold between 
segments, either for charging or discharging. 

 𝑃𝑠=1

𝑏,+/−
=  𝑃𝑠=2

𝑏+/−
=

(�̂�𝑏+/−×0.1×𝑃
𝑏,+/−

−�̂�𝜂,+/−)

�̂�𝜂,+/− . (1) 

 

Fig. 1. Typical inverter’s charge efficency curve (adapted from [8]). 

The two-step piecewise linearization proposed is depicted in dashed 

red. 

C. Degradation 

BESS degradation can be accounted for by limiting its 
total allowed value within the optimization’s horizon, based 
on the discharging cycles imposed. Starting from the battery’s 
degradation curve provided by the manufacturer (Fig. 2), 
which relates the depth of discharge (DOD) with the total 
number of cycles until the end-of-life (EOL) criterion is met 

(e.g., 70% of the initial battery’s capacity �̂�𝑏,𝑁) a relationship 
is established between DOD and the corresponding 
percentage of cycle life loss (i.e., loss of storage capacity; see 
Fig. 3). The conversion between curves is performed by 
applying (2). The cycle life loss curve is linearized by a least 
squares’ approximation, forcing it to intersect the origin. The 

line’s slope �̂�𝑑𝑒𝑔 is used to estimate the degradation caused 
by each discharge cycle using (3). The EOL criterion can then 
be used to define a maximum daily capacity degradation value 

𝐸
𝑑𝑒𝑔

, using (4). 

 𝐶𝑦𝑐𝑙𝑒 𝑙𝑖𝑓𝑒 𝑙𝑜𝑠𝑠 (𝐷𝑂𝐷) =
100−𝐸𝑂𝐿

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑦𝑐𝑙𝑒𝑠(𝐷𝑂𝐷)
 (2) 

 𝑒𝑡
𝑑𝑒𝑔

= �̂�𝑑𝑒𝑔  
𝑝𝑡

−

�̂�𝑏,− , 𝑒𝑡
𝑑𝑒𝑔

∈ ℝ0
+ (3) 

 𝐸
𝑑𝑒𝑔

=
(100−𝐸𝑂𝐿)�̂�𝑏,𝑁

100×365
. (4) 
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Fig. 2. Typical manufacturer’s degradation curves for Li-ion batteries. 

 

Fig. 3. Cycle life loss curves resulting from adapting the curves in Fig. 

 . A depiction of each curve’s linearization is provided as dashed 

lines. 

III. PREDICTIVE ENERGY MANAGEMENT ALGORITHM 

This section describes the proposed optimal operation 
scheduling algorithm for a microgrid integrating BESS, 
different types of renewable energy sources’ (RES) generation 
and load assets (flexible and non-controllable). The algorithm 
is aimed at running in real-time, based on an MPC framework. 
The provided outputs include the BESS active power 
schedules and setpoints for renewable generation and load 
curtailment, when required. For the sake of simplicity, the 
equations presented assume a single aggregated representation 
per asset type (renewable generation, load demand and BESS) 
but can easily be adapted to consider multiple assets per type. 

The problem was formulated as a MILP with two optional 
objective functions: price arbitrage (OF1) described in (5) and 
minimizing energy deviations (OF2) described in (6) from a 
pre-defined schedule (e.g., resulting from market clearing or 
central dispatch). 

 𝑀𝑖𝑛 ∑ (𝑝𝑡
𝑎𝑏𝑠�̂�𝑡

𝑚𝑘 − 𝑝𝑡
𝑖𝑛𝑗

�̂�𝑡
𝑓𝑖

+ 𝑝𝑡
𝐿,𝑐𝑢𝑡�̂�𝐿,𝑐𝑢𝑡)𝑡∈𝑇 ∆𝑡 (5) 

 𝑀𝑖𝑛 ∑ (Δ𝑒𝑡
− + Δ𝑒𝑡

+ + 𝑝𝑡
𝐿,𝑐𝑢𝑡�̂�𝐿,𝑐𝑢𝑡)𝑡∈𝑇  (6) 

Note that when Δ𝑒𝑡
∆,− > 0 there is a deficit of injected energy 

and if Δ𝑒𝑡
∆,+ > 0 , there is an excess of injected energy 

regarding the day-ahead scheduled value for time step 𝑡. Both 

deviations are penalized in (6). A load curtailment cost (�̂�𝐿,𝑐𝑢𝑡) 
is also defined, typically high to ensure its use as a last resort. 

The constraints applied in the general formulation include: 
(7), an equilibrium equation; (8) to limit, when applicable, 
RES curtailment; (9) and (10) to limit power throughput rates 
at the BESS; (11) to update the energy content of the BESS 
between steps; and (12) to bound that energy content within 
the battery’s limits. If the objective function chosen is ( ), then 
(13) and (14) must also be added to calculate the energy 
imbalances. 

 𝑝𝑡
𝑎𝑏𝑠 − 𝑝𝑡

𝑖𝑛𝑗
= 𝑝𝑡

𝑏,+ − 𝑝𝑡
𝑏,− − �̂�𝑡

𝐺 + 𝑝𝑡
𝐺,𝑐𝑢𝑡 + �̂�𝑡

𝐿 − 𝑝𝑡
𝐿,𝑐𝑢𝑡 ,

∀ 𝑡 ∈ 𝑇, 𝑝𝑡
𝑎𝑏𝑠 , 𝑝𝑡

𝑖𝑛𝑗
∈ ℝ0

+  (7) 

 𝑝𝑡
𝐺,𝑐𝑢𝑡 ≤ 𝑃

𝐺,𝑐𝑢𝑡
, ∀ 𝑡 ∈ 𝑇 (8) 

 0 ≤ 𝑝𝑡
𝑏,+ ≤ 𝑃

𝐴𝐶,+
𝛿𝑡

𝑏 , ∀ 𝑡 ∈ 𝑇 (9) 

 0 ≤ 𝑝𝑡
𝑏,− ≤ 𝑃

𝐴𝐶,−
(1 − 𝛿𝑡

𝑏), ∀ 𝑡 ∈ 𝑇 (10) 

 𝑒𝑡
𝑏 = 𝑒𝑡−1

𝑏 + (𝑝𝑡
𝑏,+�̂�𝑏,+ −

𝑝𝑡
𝑏,−

�̂�𝑏,−) ∆𝑡, 𝑡 ∈ 𝑇  (11) 

 𝐸𝑏 ≤  𝑒𝑡
𝑏 ≤ 𝐸

𝑏
 (12) 

 𝑒𝑡
𝑃𝐶𝐶 1

∆𝑡
= 𝑝𝑡

𝑎𝑏𝑠 + 𝑝𝑡
𝑖𝑛𝑗

, ∀ 𝑡 ∈ 𝑇 (13) 

 Δ𝑒𝑡
− − Δ𝑒𝑡

+ = 𝑒𝑡
𝑃𝐶𝐶 + 𝑒𝑡

𝐷𝐴, ∀ 𝑡 ∈ 𝑇, Δ𝑒𝑡
−, Δ𝑒𝑡

+ ∈ ℝ0
+

 (14) 

The MILP general formulation further includes the 
possibility to dispatch curtailable loads, introducing 

restrictions related to the maximum downtime (�̂�𝑀𝐷) followed 

by a minimum uptime ( �̂�𝑚𝑈 ). Rebound effect is not 
considered. 

A. Considering a limit to BESS daily degradation 

To consider a daily limit to BESS degradation, as 
explained in section II.C., (15) must be included in the MILP 
formulation. Since the algorithm was designed to be 
implemented within an MPC framework, if 𝑇 > 12ℎ , the 
optimization horizon of MILPs at a certain iteration of the 
MPC will encompass not only steps within the day being 
optimized (𝑡 ∈ 𝑇1), but also steps of the next day (𝑡 ∈ 𝑇2). 
Please note that {𝑇1, 𝑇2} = 𝑇  and that if 𝑇 ≤ 12ℎ ⇒ 𝑇1 = 𝑇 . 

𝑒𝑡
𝑑𝑒𝑔

 needs to be reset for 𝑡 ∈ 𝑇2  which is achieved by 

implementing (16). Note that the BESS degradation since t=1, 

�̂�𝑑𝑒𝑔,𝑇1

, is given by previous iterations of the MPC. 

 ∑ 𝑒𝑡
𝑑𝑒𝑔𝑇1

𝑡 ≤ 𝐸
𝑑𝑒𝑔

− �̂�𝑑𝑒𝑔,𝑇1

 (15) 

 ∑ 𝑒𝑡
𝑑𝑒𝑔𝑇2

𝑡 ≤ 𝐸
𝑑𝑒𝑔

 (16) 

B. Considering V-I characteristics 

To consider variable energy content limits, (12) must be 
replaced by (17). 

 �̂�𝑏,− 𝑝𝑡
𝑏,−

�̂�𝑏,− + �̂�𝑏,− ≤  𝑒𝑡
𝑏 ≤ �̂�𝑏,+𝑝𝑡

𝑏,+�̂�𝑏,+ + �̂�𝑏,+, ∀ 𝑡 ∈ 𝑇 

  (17) 

C. Considering a linear approximation to the inverter’s 

efficiency curve 

First, the terms 𝑝𝑡
𝑏,+�̂�𝑏,+ and 

𝑝𝑡
𝑏,−

�̂�𝑏,− at (11) and (28) must be 

substituted by 𝑍𝑡
𝑏,+ + 𝑃𝑏,𝑡,2

+ �̂�𝑏
+ and 𝑍𝑡

𝑏,− +
𝑃𝑏,𝑡,2

−

�̂�𝑏
−  , respectively. 

Next, (9) and (10) must be substituted by (18) and (19), 
respectively, and considering S = [1, 2]. 

 𝑃𝑠
𝑏,+𝛿𝑡,𝑠

𝑏,+ ≤ 𝑝𝑡,𝑠
𝑏,+ ≤ 𝑃𝑠

𝑏,+
𝛿𝑡,𝑠

𝑏,+, ∀ 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (18) 
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 𝑃𝑠
𝑏,−𝛿𝑡,𝑠

𝑏,− ≤ 𝑝𝑡,𝑠
𝑏,− ≤ 𝑃𝑠

𝑏,−
𝛿𝑡,𝑠

𝑏,−, ∀ 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 19 

Additionally, the following constraints must be considered: 

 𝑧𝑡
𝑏,+ = �̂�𝜂,+𝑝𝑡,1

𝑏,+ + �̂�𝜂,+𝛿𝑡,1
𝑏,+, ∀ 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (20) 

 𝑧𝑡
𝑏,− = �̂�𝜂,−𝑝𝑡,1

𝑏,− + �̂�𝜂,−𝛿𝑡,1
𝑏,−, ∀ 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (21) 

 ∑ (𝛿𝑡,𝑠
𝑏,+ + 𝛿𝑡,𝑠

𝑏,−)𝑠 ≤ 1, ∀ 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆. (22) 

 
Note that (20) and (21), for a constant segment, must be 

defined as 𝑝𝑡,𝑠
𝑏,+/−

= �̂�𝜂,+/−𝛿𝑡,𝑠
𝑏,+/−

, respectively, since 

�̂�𝜂,+/− = 0. 

IV. CASE STUDY AND RESULTS 

The algorithms were implemented in Python, using the 
linear programming modeler puLP [9] and the default COIN-
OR Branch-and-Cut solver [10] setting the mipgap to 1E-3. 
The performance tests were conducted on a Laptop PC with 
AMD® Ryzen® CPU 5 PRO 4650U @2.10 GHz and a 16GB 
RAM. 

The MG considered in the studies is composed of a total 
of 10 MWp of RES and a 5 MWh BESS. For studying the 
impact of including battery degradation limits, we considered 
the BESS desired lifetime to be 10 years and EOL = 70%, 

which leads to a daily maximum degradation 𝐸
𝑑𝑒𝑔

= 17 𝑊ℎ. 
The MG has a peak demand of 10 MVA, of which 25% is 
curtailable. For this simulation, we considered that all assets 
remain active throughout the year, i.e., no maintenance is 
defined. 

The simulations were performed over four scenarios for 
comparing a BESS basic model with the proposed model 
along two different objective functions. One year PV and load 
forecasts were adopted from real measurements [11] and [12]. 
Historical spot market prices of MIBEL [13] were used and 
feed-in tariffs were estimated as a variable, inferior percentage 
of those prices. When minimizing energy deviations (OF2), 
day-ahead bids were simulated by adding gaussian white noise 
to the forecasted net load so that the mean absolute percentage 
error (MAPE) between day-ahead bids and forecasts was 
roughly 10%. 

A. BESS daily energy dispatch 

Fig. 4 shows the net load of the microgrid and the prices 
and tariffs applicable during a randomly selected day. Fig. 5 
shows the results of the microgrid dispatch problem for that 
day. In this case BESS degradation was not limited and only 
BESS V-I characteristics and inverter efficiency were 
considered. BESS usage follows the market signals, and the 
difference between using a naïve and the enhanced proposed 
model is highlighted.  

As shown in Fig. 5, adopting the proposed BESS model 
leads to small differences in the energy dispatch strategy, 
when compared to the simplified model. This occurs since the 
model proposed updates the charging limits as a function of 
the power setpoints’ defined by the optimization problem. For 
example, at t=4, t=10 and t=15 maximum charging power is 
limited, changing the scheduling strategy. This leads to a small 
reduction of microgrid operation costs, from -   ,  € for the 
naïve model to - 1 ,  € for the enhanced model. 

 

Fig. 4. Example the net load, market prices and feedin tariffs 

considered, for a day with particular high renewables’ generation. 

 

Fig. 5. Example of a single BESS dispatch on a microgrid context uder 

OF1 for the day depicted at Fig. 4. 

B. Impact of battery degradation in BESS dispatch strategy 

The impact of considering battery degradation in the BESS 
scheduling problem was tested for both objective functions. 
The results of simulating the first year of usage with a 1h step, 
are summarized in Table I. Considering the energy arbitrage 
strategy (OF1) there is a reduction on expected revenues of 
27%, linked to a decrease in BESS degradation of 19%. There 
is a clear trade-off between liquid profitability and an 
increased BESS lifetime, which we can argue to accentuate 
with the degree of mismatch between generation and 
consumption profiles or the inadequacy of the BESS installed. 
Another factor that can have the reverse effect on that trade-
off is the adequacy of the maximum daily degradation 
threshold to the objective function. By analysing the results 
for OF2 (minimizing energy deviations), we found no 
differences between both strategies. Given the low error 
between day-ahead bids and forecasts, the need to use the 
flexibility of the BESS is reduced, which is supported by its 
average daily usage generating a degradation (6 Wh) less than 
the maximum of 17 Wh. Clearly the daily degradation 
restriction, defined as it was, had no impact on this scenario. 

TABLE I.  DIFFERENCE IN TOTAL AND AVERAGE OBJECTIVE 

FUNCTION AND DEGRADATION VALUES BETWEEN BESS USAGE 

STRATEGIES. NOTE: NEGATIVE VAUES FOR OF1 REPRESENT A PROFIT. 

Obj. 
Func. 

Strategy 
Obj. Func. Value 

Degradation 

(kWh) 

Total Average Total Average 

OF1 
conservative -6982 € -19 € 138 0,38 

unconstrained -9599 € -26 € 170 0,47 

OF2 
conservative 145 MWh 0.40 MWh 2 0,005 

unconstrained 145 MWh 0.40 MWh 2 0,005 

C. BESS model tractability and computational efficiency 

A sensitivity analysis was carried out for the algorithms’ 
performance and computational efficiency. Table II 
summarizes the average time required for the MILPs to reach 
an optimal solution for the 4 different scenarios over the year. 
Generally, the proposed model leads to an increase in the 
average optimization time, as expected. Nonetheless, the 
times presented are adequate for real-time applications relying 
on non-commercial solvers, thus enabling the implementation 
of an MPC framework.  
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TABLE II.  AVERAGE OPTIMIZATION TIMES FOR DIFFERENT 

SCENARIOS. 

BESS Model Obj. Func. 
Time 

(average) 

Enhanced 
OF1 3,212 s 

OF2 0,387 s 

Naïve 
OF1 0,157 s 

OF2 0,175 s 

 

Fig. 5 shows the impact of the selected time horizon and 
timestep in the computational time, when considering the 
enhanced BESS model, on systems with increasing size. For 
this purpose, a microgrid with 10 BESS, 10 RES plants and 
10 load assets, 50% of which are curtailable, were defined. A 
day in the dataset with high generation and consumption 
fluctuations was selected for a series of trial runs on both 
systems, including the two objective functions and different 
horizons ( h, 1 h and   h), and timesteps ( ’, 1 ’ and  0’). 
To comply with the smaller steps, the data was resampled 
(original load forecasts had a  0’ step while generation, 
market and feed-in data had a 1h step). Three independent runs 
were performed for each combination to determine an average 
performance. Again, even with more complex systems, we 
observed that the model is suited for real-time applications. 

 

 

Fig. 6. Optimization time comparison between different objective 

function, horizon and step scenarios. 

V. CONCLUSIONS 

This work presented an optimization framework for real-
time operation of microgrids, considering a linear model for 
BESS. The BESS model proposed is more accurate than 
widely used naïve models, considering VI-characteristics, 
system efficiency and degradation estimation and the results 
have demonstrated its tractability, ensuring its adequacy for 
real-time applications. The following assumptions are 
considered: energy is estimated assuming an idle state of the 
BESS, with constant voltage and BESS parameters namely 
its’ degradation dynamics and energy content are considered 
constant throughout the optimization horizon (6-24h). In 
online operation they should be updated with BMS 
information regarding the battery State of Health (SoH) and 
total capacity estimation. 

The simulations where BESS usage was constrained by a 
daily degradation limit highlighted the influence of 1) the 
adequacy of the installed capacities to the configured system; 
2) the restrictiveness to be imposed on the daily degradation, 
and 3) the cost attributed to BESS degradation, whose 
definition resides outside the scope of this work. In practical 
applications, we recommend the BESS degradation curve to 

be updated from time to time. Further tests with real BESS 
need to be performed to identify the periodicity of such 
updates. 

Finally, the simulation times obtained with non-
commercial solvers allow to infer that the model presented is 
well suited for real-time operation of either system. There is 
the possibility of considering multiple asset types, thus 
resulting in an increased system complexity, without 
significantly impacting the simulation time, enabling the 
extension of the model to the MPC framework. For time steps 
smaller than 60 minutes, operation times can be further 
reduced with more powerful solvers. 
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