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ABSTRACT
With the advances of the big data era in biology, deep learning
have been incorporated in analysis pipelines trying to transform
biological information into valuable knowledge. Deep learning
demonstrated its power in promoting bioinformatics field including
sequence analysis, bio-molecular property and function prediction,
automatic medical diagnosis and to analyse cell imaging data. The
ambition of this work is to create an approach that can fully explore
the relationships across modalities and subjects throughmining and
fusing features from multi-modality data for cell state classification.
The system should be able to classify cell state through multimodal
deep learning techniques using heterogeneous data such as bio-
logical images, genomics and clinical annotations. Our pilot study
addresses the data acquisition process and the framework capable
to extract biological parameters from cell images.
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PROBLEM AND MOTIVATION
In the last years, with the advances in computational power and
the growth of biological data available, new challenges have arisen
such as store, process and analyse of the data. Two areas, from com-
puter science field, have been proving to be useful to address these
challenges: Computer Vision and Machine Learning. Computer Vi-
sion (CV) is an interdisciplinary subject that aims to bridge the gap
between the level of images are represented by machines and the
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high level way that a human can interpret images and videos. Ma-
chine Learning (ML) is one of promising techniques that attempts
to address the challenge to build and train machines for uncover
underlying patterns, build models and make predictions based on
the best fit model. The combination of these two techniques can
build a bridge making what a human brain does with the retinal
input and the brain in a artificial way.

Biological image analysis is a subfield of bioinformatics, where
the representation and knowledge extraction methods are critical
for understanding various features of cell biology, molecular bi-
ology and neuroscience. One of the most challenging problems
in this field is the identification of cell malfunction from images.
Changes in cellular mechanics are emerging as an important factor
in numerous diseases [11]. The process of linking the disease to
cell malfunction or misregulation remains challenging, because in
numerous cases only the features which represent the cell shape are
not sufficient to determine the cell function. For example, microglia
is one type of cell in the central nervous system. It is considered
the first line of defense within the brain and the major influencer
of the brain inflammatory response. During the inflammatory pro-
cess, the cell change their shape according to chemical influences
and the micro-environment. It has been proved before that the
cell shape and function are closely related [2]. Then, according to
the phenomena that happen during the inflammation process and
the forms that the cell takes on can detect cell malfunctions that
cause disease like dementia [4], Alzheimer [5], brain cancer [19]
and others neurodegenerative diseases [14].

Biological images are generally represented by the morphologi-
cal parameters [7]. Considering that morphologies are closely re-
lated to their functional state, additional information like molecular,
genome and clinical annotation may be important to improve the
identification of cells malfunction and related diseases. This context
characterises an heterogeneous scenario and can be addressed to
multimodal learning problem, because the goal is combine different
types of data and extract knowledge from them in a automatic way.
Multimodal learning is one of the promising ML techniques with
the aim of build models and make predictions in heterogeneous data
scenarios. The conventional ML algorithms are high dependent of
data representation and the problem complexity. Deep Learning
(DL), a branch of machine learning, has recently emerged as the
state-of-the-art multimodal processing is due to the fact that they
have been outperforming previous traditional ML techniques in
several tasks, and can model the abundance of complex data from
different sources like visual, textual and numeric. The goal of this
work is to build a deep multimodal learning based approach to
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identify the different types of cells states, which are characterised
by current health status data, biological annotation and cell image.

BACKGROUND AND RELATEDWORK
In general terms, a modality refers to the way in which something
happens or is experienced. Multimodal data sets consist of data
from different such modalities which characterises a common phe-
nomena. Multimodal machine learning is a multidisciplinary field
which aims to use data in a complementary manner with the goal of
building models to learn a complex task. The early researches in this
area covered the problems in audio-visual speech recognition and
still nowadays it is main application area. This research field brings
some challenges for computational research given the heterogene-
ity of data. According to the taxonomy proposed by Baltrušaitis
et al. [3] there are five core technical challenges surrounding multi-
modal learning: representation, translation, alignment, fusion and
co-learning.

Deep learning has resulted in state-of-the-art performance for
many problems regarding heterogeneous data scenarios, mainly
in areas involving high dimensional unstructured data, because
the hierarchically representation can be automatically learned for
each modality [15]. Actually there are two important areas in deep
multimodal learning: (i) methods that use regularization techniques
to improve cross-modality learning and (ii) methods to attempt to
find optimal architectures through search, optimization or some
learning procedure.

For bioimaging data, the most common problem is the small
number of subjects and large feature dimensions. Even after feature
extraction, the dimension of feature continues high compared to
the size of subject. In most cases, the irrelevant and redundant
features need to be removed by feature selection process. In the
literature, most existing feature selection methods are performed
for each modality individually and ignore the potential relationship
among different data modalities. Our proposed approach considers
the information of all modalities and try to link the relationships
across different modalities as extra information, addressing the
problem of fusion structured learning. Previously researches tried
to address the challenge of building models using biological data,
such as image, clinical and genomics biomarkers using traditional
machine learning methods [18].

Themajor challenges in applying deep learning based approaches
for biological applications are: the obtaining of sufficiently labeled
data and the problem of imbalance class. The first problem have
been treated by applying patch-based training [8] and transfer
learning [17]. To address the class imbalance problem we can apply
weighted loss function techniques [10].

APPROACH AND UNIQUENESS
In this paper, we propose an approach that can fully explore the rela-
tionships across modalities and subjects through mining and fusing
features from multi-modality data for cell function classification.
Specifically, our proposed approach includes tree major steps: (i)
data modalities representation; (ii) label-aligned multi-task feature
selection; and (iii) multimodal classification. In order to achieve the
stated goals, the proposed approach involves the following steps
showed Figure 1 and explained in the next sections.

Figure 1: Multimodal approach for cell function classifica-
tion

Data Representation
The data representation step is the most important step, because
good representations are important for the performance of deep
learning models. For this step the proposal involves the following
tasks, subtasks and outcomes:

Task 1 : Morphological image analysis. This task involves the follow-
ing subtasks: (i) definition of the morphological parameters;
and (ii) a comparative study between the different tools to
extract the parameters from images. The expected outcomes
are: (a) the implementation of the framework to extract mor-
phological and molecular parameters from cell image data ;
and (b) a dataset composed by morphological and molecular
parameters.

Task 2 : Biological data representation. This task involves the fol-
lowing subtasks: (i) extraction of bio-molecular annotations;
(ii) extraction of genomics data; and (iii) gene enrichment
analysis. The expected outcomes are: (a) the implementa-
tion/adoption of the framework to biological data enrich-
ment and selection analysis; and (b) the data set of molecular
and genomics data representation.

Task 3 : Clinical data representation. This task involves the follow-
ing subtasks: (i) exploration of available data; (ii) grouping
the different types of clinical data; (iii) selection of demo-
graphic data, if available; and (iv) natural language process-
ing for textual features. The expected outcomes are: (a) health
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status data set composed by numerical and categorical vari-
ables; and (b) word embedding representation for textural
features.

Data Fusion
The data fusion step aims to join information from at least three
modalities (image, biological and clinical) to perform a prediction.
Architectures based in deep learning offer the possibility of imple-
menting multimodal fusion either as early, intermediate and late
fusion. Before fusing at the feature level, it is important to define the
type of features representation. When non-hierarchical features are
used, such as handcrafted features, features extracted from multiple
modalities can be fused at only one level. Otherwise, if the task
involves learning hierarchical representations from raw data, this
gives rise to intermediate fusion. The late fusion is not applicable
in this project, because this proposal involves the combination of
multi-modalities before the building model process. For this step,
the proposal involves the following tasks, subtasks and outcomes:
Task 1 : Feature level representation. This task involves the follow-

ing subtasks: (i) non-hierarchical features; and (ii) hierar-
chical features. The expected outcomes are: (a) handcrafted
features; and (b) learned representations.

Task 2 : Early fusion. This task involves the following subtasks: (i)
handcrafted features concatenation; and (ii) dimensionality
reduction. The expected outcome is the vector of multimodal
features. An example of this process is showed in Figure 2.

Task 3 : Intermediate fusion. This task involves the following sub-
tasks: (i) definition of the type of learned representation
(2-D-convolution or fully connected); (ii) shared representa-
tion layer; and (iii) dimensionality reduction with stacked
autoencoders. The expected outcome is the intermediate
fusion architecture. Figure 3 presents an example of this
process.

Figure 2: Early or data-level fusion

Multimodal Classification
The multimodal classification step aims to build models which are
capable to predict the functions of cells based on current health

Figure 3: Intermediate fusion

status data, biological data and cell image. According the categoriza-
tion proposed by Ramachandram and Taylor [15], there are three
learning paradigms such as generative, discriminative and hybrid.
In the supervised learning task which we have data X and labels Y,
the generative model learn the joint probability P(X ,Y ). Otherwise,
the discriminative models learn the conditional P(X |Y ). Hybrid
models combine both discriminative and generative models in a
unified framework. The discriminative models generally require a
large set of labeled data. Considering the most commons problems
in bioimaging applications regarding the small number of subjects
and unbalanced classes, the discriminative models are not applica-
ble in our case. In this case, our proposal can be characterised as a
generative approach.

For this step, the proposal involves the following tasks, subtasks
and outcomes:
Task 1 : Test of deep architectures used in literature, such as DNN,

ResNets and RNN. This task involves the following subtasks:
(i) survey of the algorithms that exist for the three types of
architecture; and (ii) choose one algorithm for each archi-
tecture which better fits in each fusion data method. The
expected outcome is implemented pipelines with the selected
algorithms.

Task 2 : Evaluation. This task involves the following subtasks: (i)
definition of evaluation metrics; (ii) evaluate and compare
each learning architecture chosen with different data sets;
and (iii) build a pipeline including the algorithm that best fits
the multimodal model. The expected outcome is an approach
which is able to classify functions of cells and link to diseases
using multimodal data.

RESULTS AND CONTRIBUTIONS
In the actual phase of the project, we are building the framework to
deal with the extraction of morphological parameters. The image
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acquisition process is happening during the project by a partner
research center. From the set of available images, there are two types
of filaments: actin[6] andmyosin[6]. In this work, the cell images are
acquired by a multi-channel microscope camera able to represent
the cell into two channels, such as the first channel is the cell shape
and the second channel is the molecular annotations. Hence, our
approach has to be able to detect multi-channel images, split them
and extract features for each channel. Actually, the framework
is capable to extract fifteen morphological parameters from the
first image channel according to Fernández-Arjona et al. [7], and
the next phase is extract molecular annotations from the second
channel. The source code is available at GitHub1.

To expand our approach and test in different scenarios, in a
literature review process, we selected 6 datasets with different types
of modalities (Table 1). The selection criteria of the databases was
that they had at least 3 types of data: images, clinical and genomics.
The datasets TCGA-KIRC [1], TCGA-GBM [16], TCGA-LGG [13],
TCGA-OV [9] and TCGA-BRCA [12] are available at The Cancer
Image Archive 2 for public download. The IDNA dataset is available
for free authorized researches through the LONI Image and Data
Archive (IDA) 3.

Table 1: Heterogeneous Datasets

Dataset Subjects Modalities
TCGA-KIRC 267 Images, tissue slides, clinical, genomics
TCGA-GBM 262 Images, tissue slides, clinical, genomics
TCGA-LGG 199 Images, tissue slides, clinical, genomics
TCGA-OV 143 Images, tissue slides, clinical, genomics
TCGA-BRCA 139 Images, tissue slides, clinical, genomics
ADNI 1737 MRI, PET, clinical, genomics,

(a) MRI: Magnetic Resonance Image. PET: Positron Emission To-
mography.

In this work, we showed how multimodal deep learning can
be applied to this challenging task for identification of cells states
from biological images, genomics and clinical data. There are sev-
eral limitations that should be further considered in the planed
approach. As we showed in the Table 1, the biggest dataset has 1737
subjects (study participants) and the other ones have from 139 to
267 subjects. When comparing with other heterogeneous scenarios,
which authors are applying deep learning, the amount of data in
this work looks small. However, it is important to consider that the
complexity of the problem is more related to the combination of
different data types than the number of subjects. Moreover, if the
data are non very rich in information, we can improve the results
of experiments with a gene enrichment process able to search and
extract additional information from external annotation data bases
such as Ensembl4, Uniprot5, Gene Ontology (GO)6 and KEGG7.

1https://github.com/paularaissa/DMLFramework
2https://www.cancerimagingarchive.net/
3http://adni.loni.usc.edu/data-samples/data-types/
4https://www.ensembl.org/
5https://www.uniprot.org/
6http://geneontology.org/
7https://www.genome.jp/kegg/
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