The problem with embedded CRDT counters and a solution

Carlos Baguero
HASLab, INESC TEC &
Universidade do Minho

Braga, Portugal

cbm@di.uminho.pt

ABSTRACT

Conflict-free Replicated Data Types (CRDTs) can simplify
the design of deterministic eventual consistency. Consid-
ering the several CRDTs that have been deployed in pro-
duction systems, counters are among the first. Counters
are apparently simple, with a straightforward inc/dec/read
API, but can require complex implementations and several
variants have been specified and coded. Unlike sets and
registers, that can be adapted to operate inside maps, cur-
rent counter approaches exhibit anomalies when embedded
in maps. Here, we illustrate the anomaly and propose a so-
lution, based on a new counter model and implementation.

CCS Concepts

eTheory of computation — Distributed algorithms;

Keywords
Distributed Counting, Eventual Consistency, CRDTs.

1. INTRODUCTION

In order to support high-availability and low response
latency in geo-replicated data storage systems, developers
have successfully explored relaxed consistency models, such
as eventual consistency [8, 1], and supporting frameworks,
such as conflict-free replicated data types (CRDTs) [6, 7].
This trend towards fast querying and data manipulation at
the edge, possibly under partitions, will likely become more
prevalent with the growth of IoT deployments.

Complex CRDT deployments require mechanisms for com-
posing together several base data types. A common strategy
[5] is to define a replicated map data structure that maps
keys to CRDT instances. In the Riak data store, maps can
store sets, registers, flags, counters and even, recursively,
other maps [3] (as they are CRDTs themselves). Maps need
to support the addition and removal of entries (key bind-
ings), and allow data type dependent updates over the stored
CRDT instances.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

PaPOC’16, April 18-21 2016, London, United Kingdom

(© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4296-4/16/04. .. $15.00

DOL: http://dx.doi.org/10.1145,/2911151.2911159

Paulo Sérgio Aimeida
HASLab, INESC TEC &
Universidade do Minho

Braga, Portugal

psa@di.uminho.pt

Carl Lerche
Portland, Oregon

me@carllerche.com

2. EMBEDDED COUNTERS ANOMALY

In order to provide a sound semantics for key removal,
CRDT maps behave in a way such that a non-present key
(e.g., after removal), when fetched returns the default ini-
tial state, i.e., bottom, of the embedded CRDT. Efficient
implementations require the storable CRDT data types to
provide a special reset operation that brings the instance
back to bottom, which need not be stored in the map, while
allowing the map meta-data to remember the reset state in
a efficient way, without requiring any per-key metadata; i.e.,
no per-key tombstone. Technically this is done by keeping a
global causal context for the whole map, that is common to
all the recursively embedded CRDTs. This can be thought
of as a observed-reset, in the sense that all operations that
have been observed to be applied to the map when the reset
is issued, should be equivalently reset on another instance
which observes the reset upon a join. Bellow is an example
of a correct reset over an add-wins set.

ml[”friend”].add(”alice”);
m2.301n(m1)

m2.remove (" friend”); // m2: {}
ml[”friend”].add(”bob”);

ml. join(m2); // ml: {”friend” —> {”bob”}}

After m2.join(m1) both replicas hold a mapping to a
AWSet with a single “alice” element. Once replica m2 removes
the “friend” entry from the map, the set becomes implicitly
empty. Concurrently, replicaml adds a new element “bob” to
the set. Later, after joining the two replicas, we see that the
reset, implicitly called on the set when removing the entry,
only undoes the add("alice") and not the add("bob").

We now change the example to illustrate the ideal (sound)
semantics when counters are embedded. Initially we incre-
ment by 2 the “friend” entry and then we concurrently re-
move it and increment by 3. Ideally, removing the entry
should undo the “increment by 2”, which when merged to
m1, would leave the “increment by 3” as the only remaining
operation, and counter value of 3.
ml[”friend”].inc(2);
m2. J01n (ml) ; m2. remove(" friend”);
ml[”friend”].inc(3);
ml.join(m2); // ml: {”friend” —> 3}

The desired counter evolution would be:

>3
//////71 join
0

inc 2 inc 3
mi 0—>2—>5

\ join
> 2

reset

However, embedding a simple CRDT counter implemen-
tation, and namely the behaviour of Riak DT Counters, ex-
hibit an anomaly, leading to the following outcome:

inc 2 m(‘ 3

> 5
join
join
—0

The problem is that the reset does not undo all observed
operations (here the initial increment by 2) when merging
to other replica, if such replica concurrently updates the
counter. This limitation is known in Riak DT and it was an
open problem to find an alternative solution [4].

mi1 O

reset
mo 0

3. ANEW EMBEDDED COUNTER

Our approach to address the problem is to try to obtain
the desired observed-reset behaviour without compromising
the scalability of the underlying meta-data. We found that
this can be obtained in a remove wins counter design. In
this counter all increments (and decrements) that are ob-
served in a replica are correctly reset upon entry removal.
Moreover, any concurrent operations are also affected by the
reset, thus the remove wins behaviour. Lets illustrate this
in our example.

ml[”friend”].inc(2);
m2. JOln(ml)7 m2.remove (" friend”);
ml[”friend”].inc (3);
ml. join (m2); // ml:

{"friend” —> 0}
Leading to the counter evolution:
inc 2 znu 3

>0
join
join
—0

Notice that although concurrent operations are affected

mi1 00—

reset
ma2

(both increments and decrements), any operations that causally

follow the reset are not affected. Thus if we had done
m2["friend"].inc(1) after m2.remove("friend") the out-
come would have been 1:

inc 2 inc 3

mi 0—>2—55 > 1

join
join
reset, inc 1

mso 0 >2——>0—=>1
4. A SEMANTIC TRADE-OFF WITH STATE

Although we fixed the observed-reset anomaly, some ap-
plications might have a need for an add wins counter where
reset only affects the (observed) past operations and leaves
concurrent ones unaffected.

This behaviour is simple to obtain, but at a meta-data
cost. The idea is to provide a fresh() operation which
has the effect of protecting subsequent updates from being
affected by resets concurrent to it. The following example
shows that, by calling fresh(), the inc(3) operation is not
affected by the concurrent reset, and the outcome is 3, as
desired.

ml[”friend”].inc(2);
m2. Jmn(ml), m2.remove (' friend),
ml[”friend”]. fresh (); ml[”friend”].inc (3);

]
ml. join(m2); // ml: {”friend” —> 3}
inc 2 fresh, inc 3

Leading to the counter evolution:
5 >3
join
join
—0

In the counter presented below, if no fresh() calls are
made the counter scalability is O(r log o), as usual, where r
is the number of replicas that issued operations and o is the
number of operations done. If we consider an arbitrary num-
ber of fresh calls f > r, the scalability becomes O(f log o),
when fresh calls are made. Therefore, if meta-data size is
a concern then fresh() should be called sparingly. The
good news is that, upon resets, meta-data comes back to
O(rlogo), so only the number of observed fresh() calls un-
til a reset is relevant. Moreover, to obtain the ideal seman-
tics, it is enough to perform a fresh() only after shipping
the state to other replicas. A possible direction towards ob-
taining state-scalability could involve a combination of the
use of fresh, together with periodic resets through some
replica coordination.

mi O

reset
mo 0

5. COUNTER SPECIFICATION

Figure 1 shows a mathematical specification of the pro-
posed counter. The state is a pair (m,c) formed by a map
m from replica generated ids to a pair of integers, and by a
map c (referred to as causal context) from replica ids to inte-
gers that compactly encodes causality (essentially a version
vector). The first map is what we call a dot store; each key,
called a dot, serves as globally unique id, being formed by
a pair of replica id and a monotonically increasing counter;
the value is a pair of integers that contain the positive and
negative partial counts registered under that key.

Initially both the dot store and the causal context are
empty, and the reported count value, by query function
value;, returns 0. In order to increment or decrement the
counter at replica ¢ an active entry for ¢ must be found, or
created, in the dot store m. Mutator functions inc; and dec;
invoke an auxiliary mutator upd, with a pair (either (1,0) or
(0,1)) containing the number of increments and decrements
to be applied to the partial count on an active entry for
replica 4. Thus, function upd,; before updating must check
if an active entry is already available for replica i in the dot
store m or create a new one by calling fresh;; if an active
entry exists in m its key corresponds to the more recent dot
known in the causal context in ¢, i.e., dot (i, c(4)).

The fresh; mutator will always create a new entry in m
by creating a new (globally unique) dot, with replica id @
and the next sequence number, c(i) + 1, and map it to the
(0,0) positive-negative partial count. It leaves other entries
untouched and, therefore, does not change the counter value.
The query function value; simply sums up all the positive
values in the active map and subtracts the corresponding
negative ones. By calling reset; all mappings are removed
from the dot store and only the causal context is preserved;
thus, the reported value will be again 0. When counter
CRDTs are embedded inside maps, a reset is called on the

Counter

L= L

inci(s) = Updi(& (170))
dec;(s) = upd,(s,(0,1))
upd, ((m, ¢), u) ’

(IxIN<—INxN)x(I—N)

(m/{d +— m’(d) + u}, ') where d = (i, (7)),

otherwise

() = {fresh,-((m, ¢)) if (i,c(d)) & domm

(m, c)

fresh;((m,c)) =
reset;((m,c)) = ({},¢)
value;((m,c)) =

dedomm

(m{(i, c(i) + 1) = (0,0)}, e{i = (i) +1})

> fstm(d) — sndm(d)

(m,c)u(m’,c) = ({d— m(d)um'(d)|decdomm’ Nndomm}u
{(G,n),v) €m | n > ()} U{((G,n),v) €m [n>c(h)},

cld)

Figure 1: Resettable Counter, replica i.

counter instance when the corresponding key is removed.
Since CRDTs embedded in maps all share a common causal
context, removing a map entry effectively removes all the
state associated to the counter instance.

Finally, the join function will: look for entries in com-
mon among the two maps m, m’ and join the corresponding
values by taking the pairwise maximum of the two positive-
negative values; and for entries that are present only in one
map, only those whose dot was never seen in the other causal
context are preserved. This is done by checking if the num-
ber n in the dot (j, n) is strictly higher than the highest entry
known for j in the other causal context. The joined causal
context is simply obtained, as usual for version vectors, by
coordinate-wise maximum between maps ¢ and ¢'.

6. FINAL REMARKS

The new counter design we propose in this paper addresses
the problem that prevented counters to be embedded in a
map and still provide a reset that would correctly remove
all past operations, to be used when removing an entry from
the map. Even when not embedded, current counters still
have that problem if applications require a reset operation.

The solution we propose is efficient, in terms of meta-data
cost, under a remove-wins semantics. The alternative, add-
wins, that protects operations from being cancelled by con-
current resets, has considerable meta-data cost. This cost
can be reduced by a system design that only creates fresh
entries after the counter state is sent to other replicas, pos-
sibly accepting the trade-off of a low rate of dissemination
and less overall recency. Further research is needed, to eval-
uate this cost and to attempt garbage collection of entries
possibly through reset together with some coordination.

Reference implementations for the various counters, in-
cluding the Riak DT counter (CCounter) and the proposed
counter (RWCounter), are publicly available in GitHub [2]
for C++. Rust implementations are under development.

7. ACKNOWLEDGMENTS

We thank the following funding sources: Project Norte-
01-0145-FEDER~000020 is financed by the North Portugal
Regional Operational Programme (Norte 2020), under the
Portugal 2020 Partnership Agreement, and through the Eu-
ropean Regional Development Fund (ERDF). Funding from
the European Union Seventh Framework Program (FP7,/2007-
2013) under grant agreement 609551, SyncFree project.

8. REFERENCES

[1] P. Bailis and A. Ghodsi. Eventual consistency today:
Limitations, extensions, and beyond. Queue,
11(3):20:20-20:32, Mar. 2013.

[2] C. Baquero. Delta-enabled-crdts. URL
http://github.com/CBaquero/delta-enabled-crdts,
Retrieved 22-dec-2015.

[3] Basho. Riak datatypes. URL http://github.com/basho,
Retrieved 22-dec-2015.

[4] R. Brown. Personal Communication, Jan 2016.

[5] R. Brown, S. Cribbs, C. Meiklejohn, and S. Elliott.
Riak dt map: A composable, convergent replicated
dictionary. In Proceedings of the First Workshop on
Principles and Practice of Fventual Consistency,
PaPEC ’14, pages 1:1-1:1, New York, NY, USA, 2014.
ACM.

[6] M. Shapiro, N. Preguica, C. Baquero, and M. Zawirski.
A comprehensive study of Convergent and
Commutative Replicated Data Types. Rapp. Rech.
7506, INRIA, Rocquencourt, France, Jan. 2011.

[7] M. Shapiro, N. Preguiga, C. Baquero, and M. Zawirski.
Conflict-free replicated data types. In X. Défago,

F. Petit, and V. Villain, editors, Int. Symp. on
Stabilization, Safety, and Security of Distributed
Systems (SSS), volume 6976 of Lecture Notes in Comp.
Sc., pages 386—400, Grenoble, France, Oct. 2011.
Springer-Verlag.

[8] W. Vogels. Eventually consistent. ACM Queue,
6(6):14-19, Oct. 2008.

