
726

Copyright © 2016, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  24

DOI: 10.4018/978-1-4666-8823-0.ch024

ABSTRACT

Wireless Sensor Networks (WSNs) can be deployed using available hardware and software. The Contiki 
is an operative system compatible with a wide range of WSN hardware. A Contiki development envi-
ronment named InstantContiki is also available and includes the Cooja simulator, useful to test WSN 
simulation scenarios prior to their deployment. Cooja can provide realistic results since it uses the full 
Contiki’s source code and some motes can be emulated at the hardware level. However this implies 
extending the simulation runtime, which is heightened since the Cooja is single threaded, i.e, it makes 
use of a single core per instant of time, not taking advantage of the current multi-core processors. This 
chapter presents a framework to automate the configuration and execution of Cooja simulations. When a 
multi-core processor is available, this framework runs multiple simultaneous Cooja instances to reduce 
simulations runtime in exchange of higher CPU load and RAM usage.

Reducing Simulation Runtime 
in Wireless Sensor Networks:

A Simulation Framework to Reduce 
WSN Simulation Runtime by Using 
Multiple Simultaneous Instances

Pedro Pinto
Instituto Politécnico de Viana do Castelo and INESC TEC, Portugal

António Alberto Pinto
CIICESI, ESTGF, Politécnico do Porto and INESC TEC, Portugal

Manuel Ricardo
INESC TEC, Faculdade de Engenharia, Universidade do Porto, Portugal



727

Reducing Simulation Runtime in Wireless Sensor Networks
﻿

INTRODUCTION

A Wireless Sensor Network (WSN) consists of a large number of sensor nodes communicating with each 
other, where each node has limited energy and processing resources. Usually, these nodes generate and 
transport sensed data towards a gateway node, which, in turn, connects these networks to the Internet, 
as shown in Figure 1.

The WSNs can be deployed in real scenarios using hardware products such as the Z1 (“Z1 mote,” 
n.d.), the SeedEye (“SeedEye,” n.d.), the MICAz (“MICAz,” n.d.), or the Tmote Sky (“Tmote Sky 
Project,” n.d.). In terms of software, specifically regarding the Operative System (OS), multiple options 
are available, examples being the Tiny OS (“TinyOS,” n.d.), the RIOT OS (“RIOT Operative System,” 
n.d.), and the Contiki (“Contiki OS,” n.d.).

To design and test WSN, namely in scenarios using Contiki, the developers may rely on a development 
environment named InstantContiki which consists of an Ubuntu Linux in a VMware virtual machine 
with a set of developer tools. Up to date, the latest version of Contiki is 2.7 and it includes the Cooja 
simulator (Osterlind, Dunkels, Eriksson, Finne, & Voigt, 2006).

The Cooja simulator is a WSN simulator that uses the full Contiki’s source code in a set of emulated 
hardware nodes. While other simulators, such as NS-2 (“NS-2,” n.d.) or NS-3 (“NS-3,” n.d.), assume 
that motes are simplified versions of the real hardware, the usage of full Contiki’s source code and real 
hardware emulation allows Cooja to obtain close-to-real results and enables the fast deployment of the 
simulated experiments directly onto the real motes. However, it also increases simulation complexity 

Figure 1. Typical WSN



728

Reducing Simulation Runtime in Wireless Sensor Networks
﻿

and simulation runtime. The extension of simulation runtimes can be more expressive when develop-
ers need to run multiple simulations in order to obtain statistically sound simulation results, either to 
test different random topologies or test the same scenario with random seeds. Such rounds of repeated 
simulations in Monte Carlo experiments can sum up to several hours or even days of simulation runtime.

At the same time, while running simulations, Cooja runs as single-threaded and this means that it 
uses a single process and a single core at each instant of time. Thus, if Cooja simulator runs within a 
machine where a multi-core processor is available, these cores will be underused. While there may not 
be a direct correspondence between the number of cores assigned to the InstantContiki virtual machine, 
and the number of cores on the real host machine, the underutilization of virtual processing resources 
leads to the underuse of real processing resources.

The current chapter proposes a simulation framework that automates Cooja simulations and allows 
Cooja to run multiple simultaneous instances in order to take advantage of multiple virtual cores. The 
results show that by running multiple simultaneous instances, this simulation framework reduces simula-
tions runtime while requiring a higher CPU load and a higher usage of RAM.

BACKGROUND

Other research efforts have been applied in order to reduce simulation times either by sampling simula-
tion, by dynamically changing simulation detail, or by using multi-threaded workloads in order to take 
advantage of multi-core processors. In sampling simulations, developers reduce the simulation runtimes 
by simulating just a small percentage of the overall tested applications, though trying to cover its most 
relevant portions and obtain close to real results. Using dynamic simulation detail, the developers use 
different details while the simulation is running, highlighting specific stages of simulations that will 
be executed with detail (extending simulation runtime) and using other stages executed with low detail 
(reducing simulation runtime). This technique reduces simulations runtime when compared to constant 
high detail simulations execution technique.

Developers also design and use multi-threaded workloads when multi-core processors are available, 
in order to take full advantage of processing and memory resources to reduce simulation runtime when 
compared to single threaded workloads simulation. In (Kihm & Connors, 2005) authors propose statis-
tical procedures to simulate multi-threaded processor architectures and presented experimental results 
of multi-threading simulations in a context of processor simulation in computer architectures. In (T.E. 
Carlson, Heirman, & Eeckhout, 2013) authors propose a multi-threaded application sampling method-
ology that enables workload reduction and reduces simulation runtimes while accurately predicting an 
application performance. In (Trevor E. Carlson, Heirman, & Eeckhout, 2011) the authors present results 
and analysis of experimental studies of multi-threaded workloads running in a set of real hardware. In 
(Goldsby & Pancerella, 2013) authors proposed a set of changes on Java simulation packages to make 
use of multiple threads to increase simulation performance in the context of systems with autonomous 
decision-making entities.

Multiple simulators are available to simulate WSNs. The cross-level WSN simulators allow the simula-
tion of the WSN devices and networks in the different levels of abstraction, from physical to application. 
In this context, we can enumerate J-Sim (“J-Sim Web site,” 2015) and Sensor Network Package, SENS 
(Sundresh, Kim, & Agha, 2004), and Cooja. The Cooja WSN simulator is distributed with Contiki and, 
in recent years, this simulator has been updated in many extents. The Table 1 presents the changelog 



729

Reducing Simulation Runtime in Wireless Sensor Networks
﻿

related to Cooja simulator from 2.5 (released in September 9th of 2011) to Contiki 2.7 the up-to-date 
version of Contiki (released November 15th of 2014) – information from (“Contiki OS,” n.d.).

Although significant improvements related to the Cooja simulator have been released as shown in 
Table 1, since Contiki’s version 2.5, the updates are related to internal features and enhanced hardware 
support. Since WSN developers sometimes face the challenge to design and deploy networks with hun-
dreds or thousands of devices, one of the future improvements regarding Cooja that requires particular 
attention is the support of multi-core processors, i.e. the capability to run multiple threads in each core 
at each instance of time (“Contiki Developers Mailing List,” 2012). By using the full potential of current 
processor architectures, the simulation runtimes could be reduced as well as the time elapsed from design 
to deployment stages. In order to tackle this limitation of Cooja, a simulation framework is proposed in 
order to reduce simulation runtime by using multiple and simultaneous Cooja instances.

SIMULATION FRAMEWORK

The proposed simulation framework intends to reduce simulation runtime of Cooja simulator by running 
multiple simultaneous instances. The layout of this framework is presented in Figure 2, where each block 
is written in perl (except the Cooja Simulator block). It comprises the main functional block, the Main 
Launcher, where the user provides the simulations the parameters to be used on all simulations either 
in the form of an argument list or through a configuration file. After that, the Simulator Scheduler will 
schedule and initiate all simulations, launching a parallel instance for each simulation with its own set 
of parameters. Each instance is composed of a Simulation Setup and Simulation Execution and Analy-
sis. According to the Simulation Scheduler information, the Simulation Setup generates all simulation 
parameters in one main configuration file and then starts the code compilation. Then, the Simulation 
Execution and Analysis starts the Cooja simulation and, in the end of this, analyses the simulation log 
to generate graphics of the obtained results. At the end of each round of simulations, the Simulation 
Scheduler may perform a general analysis of logs and generate graphics for groups of finished simulations.

In this simulation framework the simulation runtime is assumed to be the time elapsed between the 
Simulation Setup start and the end of the Simulation Execution and Analysis, as presented in Figure 3.

The simulation framework has a Simultaneous Instances (SI) mode that, when disabled, will result 
in the sequential execution of all simulations, where each instance will start after the termination of the 
previous one, as shown in Figure 4.

Table 1. Changelog of Cooja Simulator from Contiki version 2.5 to version 2.7 (actual version)

Contiki 2.5 (09/2011) Contiki 2.6 (07/2012) Contiki 2.7 (11/2014)

Changelog The MSPSim/Cooja simulation 
environment has received a 
significant speed-up.

• Many improvements to the user 
interface. 
• Simulation support for the 
MSP430x architecture and the 
exp5438, wismote, and z1 platforms.

• Support for link-layer ACKs 
• Improved stack monitoring and 
stack overflow triggering 
• Improved radiologger 
• Improved Timeline handling 
• Support for new RF transceivers 
emulation 
• Improved MSPsim support for 
MSP430x instruction set, verified 
against hardware



730

Reducing Simulation Runtime in Wireless Sensor Networks
﻿

Figure 3. Simulation Runtime

Figure 2. Simulation Framework



731

Reducing Simulation Runtime in Wireless Sensor Networks
﻿

On the other hand, when the SI mode is enabled, the Simulation Scheduler will start each simulation 
instance independently of the others and up to a maximum SI number (MaxSI), as presented in Figure 5. 
In this mode, the configuration of a MaxSI value is mandatory and it can be adjusted in order to obtain 
the maximum reduction of the simulation runtime.

When SI mode is enabled, the simulator scheduler manages the test, initiation and termination of the 
multiple simulations instances. In this context, a simplified flow diagram of the Simulator Scheduler 
internal procedure is shown in Figure 6.

Figure 4. SI disabled

Figure 5. SI enabled (MaxSI equals to 4)



732

Reducing Simulation Runtime in Wireless Sensor Networks
﻿

Initially, the simulations to execute are inserted in a queue and then, two different cycles are performed. 
When the simulations queue is not empty, one cycle tests constantly if any instance already ended and, 
in case this is true, it starts a new simulation in this instance. The other cycle is performed when there 
are no simulations in queue to perform. Here, this cycle tests if the instances ended and is there is no 
simulations running. When no instances are in the running state, the procedure ends. This procedure uses 
the perl interpreter-based threads in perl (threads module) to manage instances (e.g. start new instances, 
check if instance ended or check if an instance is free).

Validation Environment

In order to test the presented simulation framework, a WSN simulation was defined using Contiki 2.5 
with 10 generator/forwarder nodes and a gateway node, with a simulated time of 60s. The Simulation 

Figure 6. Simulation Scheduler internal procedure (SI mode enabled)



733

Reducing Simulation Runtime in Wireless Sensor Networks
﻿

Scheduler was configured with SI enabled and tested with MaxSI values ranging from 1 to 6. When the 
MaxSI value equals to 1, this means there are no simultaneous instances (similar to having SI disabled) 
and in order to compare this particular case with the others, where SI is greater than 1, the results obtained 
for MaxSI value equal to 1 were repeated for every SI tested, and named as the default mode. These tests 
were repeated 10 times each with a total number of 20 simulations using different seeds and values for 
the global runtime, the runtime per simulation, the CPU load, and the RAM usage were collected and 
their average values and standard deviations were calculated.

The simulation framework was tested in an Ubuntu Linux (12.04 LTS) 32 bits system with 2GB of 
RAM in a VMware virtual machine, VMware® player 6 (“VMware,” n.d.). The virtual machine processor 
emulated an Intel® CoreTM i7-2620M CPU @ 2.70GHz processor (“Intel® CoreTM i7-2620M Processor,” 
n.d.), with 2 cores, each one with 2 virtual cores, resulting in a total of 4 virtual cores. The simulation 
framework was tested using different number of virtual cores configured in the VMware virtual machine: 
initially were used 2 virtual cores and then, 4 virtual cores (the number of virtual cores in a VMware virtual 
machine can be configured up to the number of cores presented in the real CPU; 4 cores in this case).

Results

The results collected for the average global runtime and the average runtime per simulation are presented 
in Table 2.

Figure 7 shows the results obtained for the average global runtime for the MaxSI values tested for 
each scenario. These results show that the average global runtime is lower when the SI mode is enabled 
and the best absolute results are obtained when 4 virtual cores are used. When using a MaxSI value of 4 
and 4 virtual cores, the average global runtime reduced from 2300s, in default mode, to 1200s (approx.).

Figure 8 shows the values obtained for the average runtime per simulation and for the tested MaxSI 
values. These results show that a higher MaxSI value will result in a higher runtime per simulation. 
Considering the results obtained for a MaxSI value of 2 or more, the real runtime per simulation can be 
approximated to a linear function. If so, we can see that for 4 cores the linear function presents a slight 
lower slope than the one of the 2 cores.

A virtual runtime per simulation variable was used to verify the effect of the usage of the simultane-
ous instances. Table 3 presents the Average Virtual Runtime per simulation and Simulation Time ratio. 
The Average Virtual Runtime per simulation was obtained by:

Table 2. Average Global Runtime and Average Runtime per simulation

Average Global Runtime (s) Average Runtime per Simulation (s)

MaxSI 2 Cores 4 Cores 2 Cores 4 Cores

1 2403.38 2298.27 119.23 114.01

2 1475.74 1380.29 145.58 136.06

3 1514.61 1233.50 217.77 176.27

4 1533.27 1190.14 303.88 235.20

5 1502.36 1220.52 371.85 301.59

6 1507.13 1225.83 421.29 337.89

7 1490.49 1197.67 492.45 394.28

8 1537.26 1219.50 551.98 429.32



734

Reducing Simulation Runtime in Wireless Sensor Networks
﻿

AverageVirtual Runtime per simulation
Average Global Runtime

Tot
=

aal number of simulations
	 (1)

The Simulation Time ratio was obtained by:

Simulation Time ratio
Simulated time

Virtual Runtime per ins ce
=

tan
	 (2)

where the simulated time was constant and equal to 60s in all scenarios.
Figure 9 shows the Average Virtual Runtime per simulation. A greater reduction is achieved when 

using a MaxSI value that is equal to the number of virtual cores. Moreover, the lowest value, 59 seconds 
approximately, is obtained when the MaxSI is set to 4, which is the number of virtual cores. This was 
an expected result since each instance will run in its virtual core and thus, increasing the MaxSI number 
to a value higher than the number of virtual cores, will result in loss of efficiency due to concurrency 
within each virtual core. Moreover, the results also show that with the increase of the MaxSI value, there 
is an increase of the standard deviation of the obtained results.

Figure 7. Average Global Runtime



735

Reducing Simulation Runtime in Wireless Sensor Networks
﻿

Table 3. Average Virtual Runtime per simulation and Simulation time ratio

Average Virtual Runtime 
per Simulation (s)

Simulation Time Ratio (%)

MaxSI 2 Cores 4 Cores 2 Cores 4 Cores

1 120.17 114.91 50 52

2 73.79 69.01 81 87

3 75.73 61.68 79 97

4 76.66 59.51 78 101

5 75.12 61.03 80 98

6 75.36 61.29 80 98

7 74.52 59.88 81 100

8 76.86 60.98 78 98

Figure 8. Average Runtime per Simulation



736

Reducing Simulation Runtime in Wireless Sensor Networks
﻿

Figure 10 shows the results obtained for the simulation time ratio. The results show that the use of 
multiple virtual cores increases the simulation time ratio from 52% up to 101%, when using 4 virtual cores 
and a MaxSI of 4. In this case, the simulation runtime is slower than the simulated time in default mode, 
but is faster than the simulated time when SI is enabled. The results also reinforce that the highest reduc-
tion in simulation runtime is obtained when the maxSI is equal to the number of the used virtual cores.

The use of SI mode impacts on CPU load and RAM usage. Table 4 presents the values collected for 
CPU load and RAM memory usage. CPU load is expressed as a percentage of total processor resources, 
ranging from 0% to 100% when all cores of the CPU are in complete use. For instance, if one core is using 
100% of its capabilities and the remaining three are using 0%, the represented CPU load will be of 25%.

Figure 11 shows the average load of the CPU for the tested MaxSI values. When using 2 virtual cores, 
the CPU load reaches 100% (approx.) for a MaxSI value of 2 or higher. When using 4 virtual cores, the 
CPU load reaches 100% (approx) for a MaxSI value of 4 or higher. As a side effect, an increase of the 
temperature of the real CPU was detected, reaching 100ºC during simulation runtime.

The average RAM usage for each tested scenario is shown in Figure 12. The obtained results show 
that, if SI is enabled, the memory usage increases until SI equals 5. For a MaxSI value greater than 5, the 
memory usage is constant and around 1900MB which is close to the 2000MB memory limit of the system.

Figure 9. Virtual Runtime per Simulation



737

Reducing Simulation Runtime in Wireless Sensor Networks
﻿

Table 4. Average CPU load and Memory usage

CPU Load (%) RAM Usage (MB)

MaxSI 2 Cores 4 Cores 2 Cores 4 Cores

1 67.2 36.3 1453.540 1339.591

2 97.0 62.6 1526.626 1395.175

3 99.4 85.2 1741.389 1676.623

4 99.3 98.6 1897.306 1863.829

5 99.7 99.4 1915.097 1908.103

6 99.8 99.5 1920.312 1913.760

7 99.7 99.6 1916.498 1915.830

8 99.6 99.5 1915.626 1921.616

Figure 10. Simulation time ratio



738

Reducing Simulation Runtime in Wireless Sensor Networks
﻿

FUTURE RESEARCH DIRECTIONS

Contiki OS includes the Cooja simulator which is a cross-layer simulation environment that allows WSN 
developers to emulate specific hardware motes, though providing close-to-real results. The Contiki 
developers’ community has been releasing significant improvements, support for new hardware and 
new features in their releases. Since the WSNs are usually formed by large number of devices, more 
support for large scale simulations is expected in near future. Any reduction on simulation runtimes on 
simulation tools will be highly valuable to researchers and developers dealing with large scale scenarios.

At the same time, all the actual hardware capabilities must be used to reduce the simulation runtime 
in order to enable WSN developers to cross from network design to deployment. Up-to-date benchmarks 
regarding simulation runtimes in real hardware could be provided to developers and researchers as this 
is an important item to consider in this context.

The Cooja simulator allows for the simulation of a set of different hardware motes in the same sce-
nario. Regarding this feature, further attention can be devoted to improve the heterogeneous capability of 
Cooja and other simulators and also to provide interoperability between multiple simulators to perform 
simulations of complex scenarios involving multiple hardware and software.

Figure 11. Average CPU load



739

Reducing Simulation Runtime in Wireless Sensor Networks
﻿

CONCLUSION

Contiki developers may use compatible hardware and a set of available developments tools that include 
the Cooja simulator to design and test WSNs scenarios. The Cooja simulator allows for close-to-real 
simulations by using the full Contiki’s source code and by emulating the hardware of some motes. Has 
a downside, its simulations take longer. The current version of the Cooja simulator uses a single process 
and does not take full advantage of current multi-core CPU architectures.

In this chapter, a simulation framework that automates Cooja simulations and can run multiple 
simultaneous Cooja instances, each one using a different core of the CPU, if available, is proposed. It 
reduces the simulations runtimes while increasing the average CPU load and RAM usage. The proposed 
simulation framework achieves the best results when the maximum number of simultaneous instances 
is equal to the number of (virtual) cores.

Figure 12. Average Memory usage



740

Reducing Simulation Runtime in Wireless Sensor Networks
﻿

REFERENCES

Z1 mote. (n. d.). Retrieved from http://zolertia.com/products/z1

Carlson, T. E., Heirman, W., & Eeckhout, L. (2011). Sniper: Exploring the Level of Abstraction for 
Scalable and Accurate Parallel Multi-core Simulation. Proceedings of 2011 International Conference 
for High Performance Computing, Networking, Storage and Analysis (pp. 52:1–52:12). New York, NY, 
USA: ACM. http://doi.org/ doi:10.1145/2063384.2063454

Carlson, T. E., Heirman, W., & Eeckhout, L. (2013). Sampled simulation of multi-threaded applications. 
Proceedings of 2013 IEEE International Symposium on Performance Analysis of Systems and Software 
(ISPASS) (pp. 2–12). http://doi.org/ doi:10.1109/ISPASS.2013.6557141

Contiki O. S. (n.d.). Retrieved from http://www.contiki-os.org

Contiki Developers Mailing List. (2012, October 11). Retrieved from http://comments.gmane.org/gmane.
os.contiki.devel/15410

Goldsby, M. E., & Pancerella, C. M. (2013). Multithreaded agent-based simulation. Proceedings of Simu-
lation Conference (WSC) (pp. 1581–1591). doi.org/ doi:<ALIGNMENT.qj></ALIGNMENT>10.1109/
WSC.2013.6721541

Intel® CoreTM i7-2620M Processor. (n. d.). Retrieved from http://ark.intel.com/products/52231/Intel-
Core-i7-2620M-Processor-4M-Cache-up-to-3_40-GHz

J-Sim Web site. (2015). Retrieved from https://sites.google.com/site/jsimofficial/

Kihm, J. L., & Connors, D. A. (2005). Statistical simulation of multithreaded architectures. Proceed-
ings of 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and 
Telecommunication Systems (pp. 67–74). http://doi.org/ doi:10.1109/MASCOTS.2005.68

MICAz. (n. d.). Retrieved from http://www.openautomation.net/uploadsproductos/micaz_datasheet.pdf

NS-2. (n. d.). Retrieved from http://www.isi.edu/nsnam/ns/

NS-3. (n. d.). Retrieved from http://www.nsnam.org/

Osterlind, F., Dunkels, A., Eriksson, J., Finne, N., & Voigt, T. (2006). Cross-Level Sensor Network 
Simulation with COOJA. Proceedings 2006 31st IEEE Conference on Local Computer Networks (pp. 
641–648). http://doi.org/ doi:10.1109/LCN.2006.322172

RIOT Operative System. (n. d.). Retrieved from http://www.riot-os.org/

SeedEye. (n. d.). Retrieved from http://www.evidence.eu.com/products/seed-eye.html

Sundresh, S., Kim, W., & Agha, G. (2004). SENS: a sensor, environment and network simulator. Pro-
ceedings of Simulation Symposium (pp. 221–228). http://doi.org/ doi:10.1109/SIMSYM.2004.1299486

Tiny, O. S. (n. d.). Retrieved from http://www.tinyos.net/

Tmote Sky Project. (n. d.). Retrieved from http://www.snm.ethz.ch/Projects/TmoteSky

VMware. (n. d.). Retrieved from https://www.vmware.com/

http://zolertia.com/products/z1
http://dx.doi.org/10.1145/2063384.2063454
http://dx.doi.org/10.1109/ISPASS.2013.6557141
http://www.contiki-os.org
http://comments.gmane.org/gmane.os.contiki.devel/15410
http://comments.gmane.org/gmane.os.contiki.devel/15410
http://dx.doi.org/<ALIGNMENT.qj></ALIGNMENT>10.1109/WSC.2013.6721541
http://dx.doi.org/<ALIGNMENT.qj></ALIGNMENT>10.1109/WSC.2013.6721541
http://ark.intel.com/products/52231/Intel-Core-i7-2620M-Processor-4M-Cache-up-to-3_40-GHz
http://ark.intel.com/products/52231/Intel-Core-i7-2620M-Processor-4M-Cache-up-to-3_40-GHz
https://sites.google.com/site/jsimofficial/
http://dx.doi.org/10.1109/MASCOTS.2005.68
http://www.openautomation.net/uploadsproductos/micaz_datasheet.pdf
http://www.isi.edu/nsnam/ns/
http://www.nsnam.org/
http://dx.doi.org/10.1109/LCN.2006.322172
http://www.riot-os.org/
http://www.evidence.eu.com/products/seed-eye.html
http://dx.doi.org/10.1109/SIMSYM.2004.1299486
http://www.tinyos.net/
http://www.snm.ethz.ch/Projects/TmoteSky
https://www.vmware.com/


741

Reducing Simulation Runtime in Wireless Sensor Networks
﻿

KEY TERMS AND DEFINITIONS

Cooja Simulator: A cross-layer java-based wireless sensor network simulator distributed with Con-
tiki. It allows the simulation of different levels from physical to application layer, and also allows the 
emulation of the hardware of a set of sensor nodes.

Core: Processing unit that is able to process programmed instructions.
Monte Carlo Experiment: Experiment method that follows an algorithm that rely on a repeated 

number of the same experiment each using different conditions (e.g. random seeds, random sampling, etc).
MSPSim: A java-based simulator of msp430 sensor network platforms.
Simulation Instance: A simulation executed in an instance or thread that is independent of all other 

instances or threads in execution.
Thread: Portion of programmed instructions that can be managed (executed) independently.
Wireless Sensor Network: Network of multiple sensor nodes used for monitoring the environment 

where they are deployed. Usually these sensor nodes are very limited in processing and energy resources.


