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1 Introduction 

As the amount of information grows more than 
exponentially along the years, we start to face several 
challenges. In order to process and analyse all these data, 
we need new tools and algorithms that can cope with their 
heterogeneity and volume. Statistical data analysis methods 
are well-known for their difficulty in handling large number 
of instances or large number of parameters. Often just 
accessing the data may be a serious bottleneck. These 
considerations motivated work on the so-called ‘noSQL’ 
data-bases, such as Google’s BigTable (Chang et al., 2008), 
or the Apache Foundation’s Spark (Zaharia et al., 2010), 
which support distributed data. Other works in the direction 
of improving data partitioning and memory utilisation, not 
directly related with the implementation of statistical 
functions, but dedicated to big data handling are Slagter  
et al. (2013, 2015) and Hsu et al. (2015). One remarkable 
work and somewhat related to ours is Kane et al.’s (2013) 
implementation of the R packages foreach and bigmemory, 
that allow the implementation of statistical functions in 
parallel. Following this trend, MATLAB has also been 
investing on new tools for efficient data analysis  
and processing (http://www.mathworks.com/solutions/data-
analytics/, accessed in September 2016). 

In contrast to transaction oriented data-bases, statistical 
methods are often applied to data repositories with  
read-only data, which avoids data consistency overheads. 
Progress in DRAM technology has enabled manipulating 
large amounts of data in main memory. However, these 
solutions require specialised hardware and software to be 
able to handle massive amounts of data. In general, in order 
to analyse data, most people use traditional tools such as 
Excel, SPSS, MATLAB or R. Although these are very 
popular, they are not tailored to handle large amounts of 
data. In this work, we show that we can process and analyse 
millions of instances, with potentially hundreds of variables, 
faster than these systems, with the same simplicity, and 

without the need of specialised resources, except the use of 
top-of-the-shelf multicore machines. 

We concentrate on the following bivariate and 
multivariate analysis, which are most popular in data 
analysis: Chi-square and Shapiro-Wilk tests, Pearson, 
Spearman and Kendall correlations, linear, logarithmic,  
2nd and 3rd order polynomial regressions, Wilcoxon, 
Kolmogorov-Smirnov (K-S), T-student and Bartlett 
statistical tests, Pearson, Spearman and Kendall significance 
tests, ANOVA and principal component analysis (PCA). 
We also study the performance of calculating data 
summaries and loading data. With the exception of loading 
data, our results are always superior to SPSS, MATLAB 
and R, and our best result, for Kendall, is several orders of 
magnitude better than SPSS, MATLAB or R. 

Our software, DataIP, is written in C/C++, and 
implements the aforementioned functions. In the next 
sections, we describe the main functions our software 
implements, discuss about implementation issues, and 
present our experimental methodology and results. 

2 Background 

One important step in the knowledge discovery process is 
the statistical analysis of data. Usually, we start to ‘know’ 
the data using descriptive and inferential statistics through 
univariate, bivariate and multivariate methods. Later, we 
may go through other important steps related with machine 
learning techniques to build more powerful data models, but 
in this work we focus solely on the statistical analysis. 

The major purpose of univariate analysis is to describe 
the data. Univariate analysis is usually used in the first 
descriptive stages of problem solving, being complemented 
by more advanced, inferential bivariate or multivariate 
analysis. Descriptive statistics (Rumsey, 2010) describe and 
summarise data. Univariate descriptive statistics describe 
individual variables. Exploratory analysis of data gives us a 
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summary statistics of measures of central tendency, 
dispersion and shape of the data. 

Measures of central tendency locate a distribution of 
data along an appropriate scale, such as: geometric mean, 
harmonic mean, arithmetic average, median and mode. The 
purpose of measures of dispersion is to find out how spreads 
out the data values are. Another term for these statistics is 
measures of spread: interquartile range, percentiles, average 
absolute deviation (or simply called average deviation), 
range, standard deviation and coefficient of variation. This 
analysis is usually followed by measures of shape. The 
measures of shape indicate the symmetry and flatness of the 
distribution of a data sample. A distribution of data item 
values may be symmetrical or asymmetrical. In this field, 
we have: variance, kurtosis, central moment of 3rd order 
and Pearson asymmetry coefficients G1 and G2. 

Bivariate analyses are conducted to determine whether a 
statistical association exists between two variables, the 
degree of association if one does exist, and whether one 
variable may be predicted from another. It deals with causes 
or relationships. The major purpose of bivariate analysis is 
to: 

1 define the nature of the relationship 

2 identify the type and direction of the relationship 

3 determine if the relationship is statistically significant 

4 identify the strength of the relationship. 

In bivariate analysis, we use non-parametric statistics 
(Conover, 2006), given that our focus is on inferential 
statistics (Casella and Berger, 2008). We use the same 
hypotheses testing used in the univariate analysis, as well as 
other tests specific to bivariate analysis (K-S, Wilcoxon and 
T-test). 

Multivariate studies are analogous to bivariate studies, 
but involve multiple variables. Researchers could then use 
multivariate statistical analysis to study the relationships 
between all of the variables. Multivariate analytical 
techniques represent a variety of mathematical models used 
to measure and quantify outcomes, taking into account 
relevant factors that can cause this relationship. The most 
common is multiple regression analysis (Montgomery and 
Runger, 2010) whose objective is to understand how the 
value of the dependent variable changes when any of the 
independent variables is varied, while the other independent 
variables are fixed, using multiple response variables. With 
regression (Wonnacott and Wonnacott, 1990), we attempt to 
find a function which models the data with the minimum 
error. 

In PCA (Venables and Ripley, 2002), our intent is to 
reduce data dimensionality. In order to perform that task, we 
centre the data and calculate the covariance matrix and 
extract the eigenvectors, using singular value decomposition 
on the covariance matrix. The calculated principal 
components are orthogonal and less or equal the number of 
input variables. 

3 Implementation 

Based on the whole data analysis process, we developed a 
framework that can make use of tools for univariate, 
bivariate, multivariate statistical analysis and also include 
some machine learning methods. In this paper, we 
concentrate on the statistical methods only. In a general 
context, knowledge extraction is performed through 
exploratory analysis, univariate, bivariate and multivariate, 
and using descriptive and inferential statistics. We have 
optimised sequential and parallel implementations of the 
methods. Moreover, we take advantage of the fact that 
several statistical functions share common data 
preprocessing operations, and execute them only once to 
speedup execution. For example, correlation functions 
usually sort the two variable values to be correlated. We sort 
all variables beforehand, store the resulting vectors, and 
reuse them whenever needed. We also store minimum and 
maximum values, modes and medians, among others. 
Added to these optimisations, we also preprocess all data 
variables by categorising them as much as possible as 
numerical or categorical, continuous or discrete. 

The algorithms were developed in C/C++ and 
implement well-known functions used in SPSS, R and 
MATLAB. All functions were implemented to produce the 
same results (including formatting) as R, except kurtosis, 
which was implemented according to MATLAB because R 
needed an extra library to run it. 

The following is handled by our implementation. 

3.1 Univariate analysis 

• Dataset dimensions and missing values are determined. 

• Variable types are automatically detected. Some 
statistical functions are only applied to the numerical 
data. 

• Measures of dispersion are calculated which results in 
the output of a shape which includes the mean, median, 
mode, maximum and minimum and some quartiles (the 
first and the third). 

• Variance, standard deviation and mean absolute 
deviation (average deviation from the average) are 
calculated. We calculate the arithmetic, geometric and 
harmonic means. 

• The mode is the most common value obtained in all the 
observations. If they are all different, we do not present 
the mode. 

• Interquartile range and the difference between the 
upper and lower quartiles are calculated. The total 
amplitude or range, the difference between the 
maximum and minimum values, is also calculated. 

• Calculation of asymmetry measures, with the results: 
positive asymmetrical when the median is less than the 
average and higher than the mode, asymmetric negative 
in cases where the median is less than the mode and 
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higher than the average and symmetrical when the 
median is equal to mode and the average. 

• The following are also calculated: kurtosis, 3rd moment 
(calculation as shape measures), G1, G2 and the 
coefficient of variation. 

• Outliers are identified consisting of elements that are 
above the 3rd quartile + 1.5 × interquartile range and 
below the 1st quartile – 1.5 × interquartile range (the 
1.5 is used because John Tukey, the inventor of the 
box-and-whisker plot in 1977, picked 1.5 × IQR and 
this has worked well since then. For our purposes, the 
choice of this value would not affect the results). 

• To end the univariate analysis, we calculate the  
Chi-square and the Shapiro-Wilk test, to check  
whether the sample has a normal distribution. 

3.2 Bivariate analysis 

For the bivariate analysis, we calculate correlation 
coefficients (Kendall and Gibbons, 1990) indicating the 
strength and direction of a linear relationship between two 
random variables, using three methods: Pearson, Spearman 
and Kendall. Pearson gives the direct relationship between a 
pair of variables while Spearman and Kendall give 
correlation coefficients for the rank function between two 
variables. For Pearson, the values obtained through the 
measures of association always vary between –1 and 1, 
where 1 indicates that there is a perfect positive correlation 
between two variables, –1 a negative perfect correlation, 
and 0 both variables are not linearly dependent on one 
another. The pairs of variables whose correlations are 
greater than or equal to 0.75 are considered strong 
correlations. For these pairs, we produce a bivariate or 
simple linear regression, using the least squares method. For 
Spearman and Kendall, the variable values are not 
important. The Spearman correlation may still give values 
of –1 when Pearson will give greater values, if the variables 
are inversely proportional, but they do not decrease by the 
same amount. Conversely, Spearman may give values of +1 
when Pearson will give smaller values, if the variables grow 
proportionally, but not by the same amount. The differences 
among the outcomes of these three tests are relevant when 
performing data analysis, but this discussion is out of the 
scope of this work [for more details about Spearman and 
Kendall rank correlations, a good reference is Croux and 
Dehon (2010)]. 

The bivariate analysis seeks to obtain a mathematical 
model that best fits the observed values of Y due to the 
variation of the variable levels of X. We then have a simple 
linear data model. Once the coefficients of this linear model 
are found and the respective errors are standardised, tests 
are applied to validate the model. Usually, the main test 
applied is the t-test, but depending on the data distribution, 
the t-test may not be suitable and another test needs to be 
applied. As output, we have the standard error of the 
residuals and the respective degrees of freedom, multiple  
R-squared and adjusted R-squared. The F-statistic is also 

calculated. Residuals are presented as follows: minimum, 
1st quartile, median, 3rd quartile and maximum. A 
normality test, Shapiro-Wilk, is applied on the residuals, 
where through the p-value we validate the model as good or 
bad. A summary of the errors is then performed to study 
how well those variables are correlated, and how good the 
prediction is given by the regression model. In this phase, 
we repeat the same process we used with the univariate 
analysis, but now on the regression errors. We calculate: the 
average error, the mean square error, the root mean square 
error and the normalised root mean square error and the 
mean absolute error. We perform non-parametric statistical 
tests (Hollander et al., 2013) such as the Wilcoxon rank sum 
test, the two-sample K-S test (Marsaglia et al., 2003) and 
the Welch two-sample t-test. We also compute F ANOVA 
in order to study the variance. Nonlinear models are also 
generated: exponential, logarithmic, quadratic and cubic 
wherein the validation of models follows the same 
procedure as the linear models. 

3.3 Multivariate analysis 

Next, multiple linear regression is implemented, which 
involves more than two variables, giving rise to the 
multivariate study. The employed multivariate statistic 
allows the prediction values of one or more response 
variables (dependent) from several independent or 
predictive variables. The correlations between multivariate 
variables are calculated using regression, as well as 
residuals and the regression equation and its coefficients. A 
multivariate analysis of variance and error, similar to the 
one applied in simple linear regression, is performed. A 
regression is calculated for each variable. Then the Bartlett 
test is performed on the homogeneity of the variances, as 
well as the Kruskal-Wallis rank sum test. The multivariate 
analysis ends with a factor analysis where we calculate the 
principal main components using PCA, with a preliminary 
study of the Kaiser-Meyer-Olkin (KMO) index, which must 
be greater than 0.5 in order that we can proceed to the PCA. 
PCA is performed using the singular value decomposition 
technique (Press, 2007). 

Input data to our framework can be in the form of 
comma-separated values (CSV) files or can be from a 
relational database. If the data comes from a database 
connection, a query builder allows the user to apply filters 
and perform queries, which will, by their turn, generate 
CSV files. We parse the final CSV file, and transform it in a 
C structure that will be analysed using the steps described. 
Frequencies and modes for qualitative attributes are 
calculated. We also perform a cluster analysis  
(non-hierarchical) using k-means, and a hierarchical 
agglomerative cluster analysis using similarity measures 
such as the single linkage method, complete linkage, 
average and centroid linkage. Cluster analysis is not 
included in this work. 

We implemented all of those methods from scratch, in 
C/C++, using the best algorithms found in the literature, 
optimising for performance, and removing redundant 
calculations. For example, as we have all functions 
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integrated, lots of calculations can be saved because they 
are common to several methods. One example is sorting 
variable values, which is performed just once. Memory 
usage is other important issue, and we needed to organise 
our implementation to minimise writes and memory 
allocation during calculations (reads are always faster than 
writes). Another issue on the implementation is the 
complexity of the algorithms. Our implementations keep a 
maximum complexity of ( log ).n nO  

In order to get the most possible organised structure and 
layer separation, we are using an object oriented structure in 
C++. 

Our most important optimisation is on the calculation of 
Kendall τ (correlations). This is known to have quadratic 
complexity, but we use Knight’s algorithm (Knight, 1966; 
Christensen, 2005), that calculates Kendall τ with 

( log )n nO  complexity. An implementation of Knight’s 
algorithm is also found in the pcaPP R package through the 
function cor.fk. 

In order to further optimise our implementation and 
allow it to take advantage of multicore machines, we 
parallelised the code using openMP (Chandra, 2001). In 
order to get big chunks of processing and always get 
speedups avoiding overheads, parallelism is used on the 
following steps: 

• On data loading when checking for missing values, 
sample dimension and types of variables. 

• On calculating the data summary, all statistics related to 
this procedure are calculated in parallel, attribute by 
attribute. If we have only one attribute, the calculations 
are sequential, but if we have more than one, they are 
performed in parallel. 

• On calculating correlations, all pairs are calculated in 
parallel. Each core processor calculates one pair with 
all three correlations (Pearson, Spearman and Kendall). 

• On multivariate analysis the idea is the same. Each core 
calculates all analysis to each one of the permutations. 

4 Experimental methodology 

We performed our experiments in three different machines: 
a plain multicore workstation with 8 cores AMD FX 350,  
16 GBytes of memory and Linux Fedora 20 (Machine 1); a 
Xeon server with 8 cores Intel Xeon x5550 (16 threads),  
24 GBytes of memory and Fedora 20 (Machine 2); an IBM 
system x3755 with 6 cores, 48 GBytes of memory; and a 
Windows Server 2012 Datacenter (Machine 3). 

In order to study the scalability of the systems, we used 
two datasets: real data collected from Hospital das Clínicas 
(São Paulo, Brazil), consisting of around 200,000 patient 
discharges (Dataset 1) with 26 variables, from which we 
synthetically created other datasets of increasing sizes, and a 
synthetic dataset created with millions of instances, but with 
only two variables because of memory constraints (this 
dataset alone is almost 5 GBytes large) (Dataset 2). 

We use Dataset 1, patient discharges, with different 
versions: 

• 300 version: It is a subset with 300 rows, and nine 
numeric variables without nulls. 

• 200 k version: original dataset consisting of  
201,879 discharge patients, and six numeric  
variables without nulls 

• 1 M version: it is a replication in chunks of the original 
dataset 200 k in order to achieve one million instances, 
with six numeric variables without nulls. 

• 5 M version: it is a replication in chunks of the original 
dataset 200 k, in order to achieve five million instances, 
with six numeric variables without nulls. 

• 10 M version: it is a replication in chunks of the 
original dataset 200 k, in order to achieve ten million 
rows, with six numeric variables without nulls. 

Dataset 2 is a synthetic dataset created to also study the 
scalability of our implementation when handling many 
millions of instances. It has only two variables, due to the 
memory limits of our machines. The dataset was generated 
with random numbers between 0 and 1,235. This range was 
arbitrarily chosen. The choice of random numbers does not 
affect the results. They could be also real numbers. The file 
size is 4.8 GBytes. 

In order to check dataIP versatility and how it handles 
larger number of variables, we also used two datasets from 
the University of California at Irvine Machine Learning 
Repository, quite popular in the literature. One of them is 
CoverType (Dataset 3), consisting of 55 variables and 
581,012 instances. The other one is YearPredictionMSD 
(Dataset 4), consisting of 91 variables and 515,345 
instances. 

Input data to our framework can be in the form of CSV 
files or can be retrieved from a relational database. In this 
work, we used CSV files for DataIP, MATLAB and R and 
SAV format for SPSS. In DataIP, the CSV file is parsed, 
frequencies and modes for qualitative attributes are 
calculated, and attribute types are detected. 

Most of our experiments were run with Dataset 1 using 
Machine 1. Datasets 3 and 4 were also run using Machine 1. 
Dataset 2 ran in the last two machines (the dual Xeon and 
the IBM servers, Machine 2 and Machine 3, respectively). 
The experiment in Machine 2 compares the Kendall results 
running on Linux and Windows with only one thread and a 
larger set of instances, as in Dataset 2. The experiment in 
Machine 3 compares the execution of Kendall on Oracle 
with our implementation. Kendall is highlighted here 
because we use an algorithm whose complexity is 

( log )n nO  as compared with the quadratic implementations 
of MATLAB or Oracle. 

We performed experiments for the summary, Chi-square 
and Shapiro-Wilk tests, the three correlations (Pearson, 
Spearman and Kendall), three significance tests (Pearson, 
Spearman and Kendall), linear and nonlinear second and 
third order polynomial and logarithmic regressions, 
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Wilcoxon, K-S, T and Bartlett statistical tests, and PCA. 
Some experiments were aborted by SPSS, MATLAB or R, 
because of lack of memory or because they exceeded our 
maximum running time limit. Experiments with SPSS, 
MATLAB and R were run with default parameters. Some of 
the functions implemented by this software are calculated in 
different forms and produce different results. Examples are: 
Shapiro-Wilk in SPSS also calculates K-S and shows 
descriptive analysis; also SPSS K-S and Wilcoxon produce 
graphical output files (jpg), which may cause them to be 
slower than the other software; Bartlett outputs other 
information such as covariance and correlations, among 
others. 

All experiments in Machine 1 and Dataset 1, Dataset 3 
and Dataset 4 were run with 1 and 8 threads. In our 
implementation, we measured execution times necessary  
to execute each one of the statistical functions, but  
because some operations need to be computed only once 
(for example, sorting variable values), this time is computed 
only once. A list of functions timed in MATLAB is: 
textscan, corr, anova2, kmeans, fitlm, min, max, 
median, mode, mean, geomean, harmmean, std, var, 
range, iqr, mad, quantile, prctile, kurtosis, 
moment, ranksum, kstest2, chi2gof and ttest2. 
A list of functions timed in R is: read.csv, 
chisq.test, shapiro.test, cor, cor.test 
(Hollander and Wolfe, 1973), aov (Chambers et al., 1992), 
prcomp, princomp, lm, summary, min, quantile, 
median, mean, max, var, sd, IQR, range, kurtosis, 
wilcox.test, ks.test, t.test, bartlett.test, 
moment, and plot. In SPSS, we used GET  
FILE, CORRELATIONS, RANK, NONPAR CORR  
PRINT = KENDALL, T-TEST PAIRS, REGRESSION, 
NPTESTS INDEPENDENT TEST MANN_WHITNEY 
KOLMOGOROV_SMIRNOV, NPAR TESTS CHISQUARE, 
GLM PRINT = TEST(SSCP) RSSCP, EXAMINE, and 
FACTOR. 

Shapiro-Wilk was not run for all dataset sizes, because it 
is recommended to be applied to input sizes of at most 
5,000 rows not to lose precision (Royston, 1995). Linear 
and logarithmic regression, 2nd and 3rd order polynomial 
regression, the Wilcoxon, K-S, T-student and Bartlett 
statistical tests, Pearson, Spearman and Kendall significance 
tests and ANOVA are only applied to datasets that have 
strong correlations between variables (correlation value 
greater than 0.75 with confidence greater than 95%). This is 
true only for the 300 dataset. 

For Machine 1, in total, we performed 206 experiments: 
35 for SPSS, 31 for MATLAB, 44 for R, and 48 for DataIP  
(1 and 8 threads). Most of them were repeated 30 times and 
averages of execution time were taken. The only exception 
was Kendall, which was repeated only ten times due to its 
very long execution time in SPSS, R and MATLAB. For 
MATLAB, in particular, we ran 31 times and discarded the 
first run, since it was slower than the remaining ones. 
Except for that, variation among execution times for each 
run was negligible. 

Our version of SPSS (academic license, authorised user) 
does not provide any function to assess execution time. We 
used the python interface to perform this task. This proved 
to be a very tedious task, since some of the code could not 
run through ‘Run Script’, and our license did not provide 
the means to perform the experiments in batch. Moreover, 
SPSS does not allow Spearman correlations to run all 
variables at once. We had two alternatives: to use 
CROSSTABS or RANK variables. CROSSTABS limits the 
number of instances to 1,000. We were forced to use 
RANK. Except for SPSS, all runs were performed in batch. 

Data input was not taken into account when timing each 
statistical function. We measured data input times 
separately. 

Except for R, whose code is written in C, we would 
expect SPSS and MATLAB, that use Java coding, to be 
slower than DataIP, which is also written in C/C++ like R. 

All execution times include time spent to write files in 
disk. All times are reported in seconds and because of the 
differences in magnitude, are presented with nine decimals. 

5 Experiments and results 

5.1 Dataset 1 

Tables 1 to 11 show execution times, in seconds, for each 
statistical function, using our implementation (DataIP (1) – 
with a single thread, and DataIP (8) – with 8 threads), SPSS, 
MatLab and R, running on Machine 1, applied to datasets 
300, 200 k, 1 M, 5 M and 10 M. 

The minimum average execution time was obtained by 
DataIP (8 threads), running the Bartlett test for our  
300 dataset (0.000001709 seconds) and the maximum was 
obtained by MATLAB (4931.319953 seconds), running the 
Kendall correlation for the 200 k dataset (it could not run 
the larger datasets). 

5.1.1 Data input 

Table 1 shows data input times for all software. 

Table 1 Load (time in seconds) 

 300 200 k 1 M 

SPSS 0.020093200 0.022729400 0.023347700 
MATLAB 0.003309000 2.661653000 13.514717000 
R 0.009000000 6.304000000 14.403000000 
DataIP (1) 0.018793400 2.294150000 12.600600000 
DataIP (8) 0.019221200 1.008460000 5.146790000 

 5 M 10 M 

SPSS 0.022880760 0.022780460 
MATLAB 136.083043000 - 
R 59.249000000 119.781000000 
DataIP (1) 70.003900000 146.975000000 
DataIP (8) 28.128700000 56.732000000 
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SPSS performs a pretty decent job when reading data, 
maintaining a constant input time no matter the data size. It 
may be taking advantage of using its own file format, 
because we provide input files in SAV format. We will see 
later that, although it performs well when loading files, it 
has the poorest performance when calculating the statistical 
functions. MATLAB takes a quite long time to input data as 
the file sizes increase and does not manage to read multiple 
times the largest data file with around 10 million instances. 
This leads us to conclude that MATLAB will be unable to 
load larger data files. Our MATLAB script runs one session 
to input data running textscan 30 times. If we start 
MATLAB 30 times (30 different sessions), where each one 
executes a textscan, the input times drop considerably, 
being close to SPSS times (0.006222, 0.010844, 0.010858, 
0.010711, and 0.010842 seconds for 300, 200 k, 1 M, 5 M, 
and 10 M, respectively). DataIP(1) is competitive with R up 
to the 1 M data size. As the data sizes increase to 5 M and 
10 M, DataIP becomes a bit slower than R (note that DataIP 
preprocesses the data while loading). This difference 
disappears and times drop to almost half of R’s when we 
use 8 threads for the DataIP loading function. Because 
preprocessing can be performed in parallel, DataIP can be 
faster than R (even though it performs other actions such as 
checking variable types and calculating modes and 
frequencies). In any case, as we will show next, the 
advantage that R and SPSS have over DataIP on loading, 
disappears when one needs to perform some calculation 
with the data. It is important to note that DataIP is not fully 

optimised and that the results with 8 threads show that the 
implementation can still scale to larger datasets. If we 
disable the preprocessing of data types, the DataIP loading 
times become linear with a small slope, as we increase the 
data size. However, besides having the advantage of 
computing only once certain functions (like sorting), 
preprocessing also has the advantage of preventing 
execution errors. For example, geometric mean should not 
be computed if a variable has negative values. While 
MATLAB requires that the user handles these variables 
(otherwise the system triggers an error), dataIP skips them 
when calculating the geometric mean. 

Figure 1 shows the behaviour of all software when 
performing data input. 

Figures 2, 3 and 4 show examples of codes that perform 
data input. The SPSS code is embedded in Python, as 
explained earlier. 

5.1.2 Summary 

Table 2 shows execution times for SPSS, MATLAB, R  
and our implementation of the summary for 1 thread 
[DataIP (1)] and for 8 threads [DataIP (8)], with varying 
dataset sizes. All experiments were run on Machine 1. For 
this task, MATLAB is twice as fast as R. DataIP (1) is 
almost 50 times faster than R (for the smallest dataset) and 
almost 20 times faster for the largest (10 M). DataIP (1) is 
also faster than MATLAB (varying from 6 to 56 times 
faster, depending on the dataset size). 

Figure 1 Load data execution times (seconds) (see online version for colours) 
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Figure 2 SPSS example script for data input 

BEGIN PROGRAM. 

import spss, time 

total = 0 

for i in range(31): 

 start = time.time() 

 file=“.../10M.sav” 

 varlist=“cod_alta cod_hosp cod_sexo 
cod_ocup cod_catint cod_mnibge” 

 spss.Submit(“““ 

 GET FILE=‘%s’. 

 “““ %(file)) 

 corTime = time.time() - start 

 if i != 0: 

  total += corTime 

 print corTime 

print “Average: “, total/(i-1) 

spss.Submit(“““OUTPUT EXPORT 

   /TEXT 
DOCUMENTFILE=‘output_10M_0.txt’. 

“““) 

END PROGRAM. 

Figure 3 MATLAB example script for data input 

fileID = fopen(‘M10M.txt’,’w’); 

sumtime=0; 

for i = 1:31 

 tic 

 file = fopen(‘10M.csv’); 

 out = textscan(file, ‘%f %f %s %s %f %s 
%f %f %s %s %s %s %s %s \ 

  %s %s %s %s %f %s %s %s %s %s %s 
%s’,’delimiter’, ‘;’, 
‘HeaderLines’,1); 

 fclose(file); 

 cod_alta=out{1}; 

 cod_hosp=out{2}; 

 cod_sexo=out{5}; 

 cod_ocup=out{7}; 

 cod_catint=out{8}; 

 cod_mnibge=out{19}; 

 toc 

 if (i˜=1) sumtime=sumtime+toc; end 

end 

fprintf(fileID,’%f\n’,sumtime/30); 

fclose(fileID); 

DataIP does not improve the performance much when using 
8 threads, achieving a maximum speedup of 2. Note that all 
DataIP times take into account the output to disk, which can 
be very time consuming. Our parallelisation is very simple 

and only computes in parallel the summary of each 
attribute. As these datasets have a small number of  
non-null attributes, we do not take full advantage of the 
multi-threaded version, but still manage to have an 
efficiency of almost 50% for all larger data sizes, doubling 
the speed of the sequential version. 

Figure 4 R example script for data input 

output <- file(“R10M.txt”, open = “wt”) 

sink(output) 

results <- function(){ 

 data<-
read.csv(“10M.csv”,header=F,sep=“;”) 

 data<-data[2:length(data[,1]),] 

 cod_alta<-
as.numeric(as.vector(data[,1])) 

 cod_hosp<-
as.numeric(as.vector(data[,2])) 

 cod_sexo<-
as.numeric(as.vector(data[,5])) 

 cod_ocup<-
as.numeric(as.vector(data[,7])) 

 cod_catint<-
as.numeric(as.vector(data[,8])) 

 cod_mnibge<-
as.numeric(as.vector(data[,19])) 

} 

system.time(replicate (30,results()))/30 

sink() 

We do not have access to a parallelised MATLAB toolbox, 
but, even if the 8-threads version of MATLAB had perfect 
speedup, DataIP with 8 threads would still be almost  
32 times faster than MATLAB with 8 threads to calculate 
the summary for the 300 dataset, and 115 times faster for 
the larger 5 M dataset. The same effect in a different scale 
happens when comparing DataIP with R. 

Table 2 Summary (time in seconds) 

 300 200 k 1 M 

SPSS 0.025017508 0.848454031 4.843381265 
MATLAB 0.011257000 0.396472000 2.021464000 
R 0.010033330 0.866366667 4.124233000 
DataIP (1) 0.000199484 0.023866800 0.319406000 
DataIP (8) 0.000352226 0.023766300 0.215104000 

 5 M 10 M 

SPSS 29.332320517 64.272009676 
MATLAB 10.006390000 - 
R 21.997370000 48.257370000 
DataIP (1) 1.416320000 2.784620000 
DataIP (8) 0.743863000 1.401760000 

 

 



 Optimising the calculation of statistical functions 9 

Figure 5 Summary execution times (seconds) (see online version for colours) 

 

Figure 6 Chi-square test execution times (seconds) (see online version for colours) 

 

 
Figure 5 shows how the three implementations compare in 
terms of execution times, in seconds, as we vary the dataset 
sizes. 

5.1.3 Chi-square test 

The chi-square test is timed for all software, even though 
MATLAB’s chi2gof produces results that are different 
from R and from SPSS. As DataIP is implemented to give 
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results as in R, it produces results like SPSS and R. Average 
execution times are shown in Table 3. 

SPSS could not perform the test for our larger datasets 
due to a Java out of memory error (heap space). The default 
heap size available at our configuration file (jvmcfg.ini) is  
2 GBytes, already quite high. 

Table 3 Chi-square test (time in seconds) 

 300 200 k 1 M 

SPSS 0.045724256 - - 
MATLAB 0.005219000 0.003709000 0.003753000 
R 0.006466667 0.264633333 1.045500000 
DataIP (1) 0.000018806 0.000592726 0.003258870 
DataIP (8) 0.000018306 0.000664484 0.003357810 

 5 M 10 M 

SPSS - - 
MATLAB 0.004391000 0.003863000 
R 5.916433000 13.769167000 
DataIP (1) 0.014693000 0.029212400 
DataIP (8) 0.014883000 0.029014700 

MATLAB does a good job with the Chi-square test 
maintaining constant performance even for the larger 
datasets. R performs very poorly while DataIP performs in 
between, but with worse performance than MATLAB as we 
increase the dataset size. Once more this effect is due to the 
fact that the time taken to write results to disk is being taken 
into account for DataIP. Also for this reason, DataIP can not 

achieve speedups even executing the data preprocessing in 
parallel. For this function, we got better performances than 
for the summary. 

Figure 6 shows how the three implementations compare 
in terms of execution times, in seconds, as we vary the 
dataset sizes. R has exponential behaviour, while MATLAB 
and DataIP have linear behaviour. 

5.1.4 Shapiro-Wilk test 

The Shapiro-Wilk test performed much better in DataIP 
than in R (more than 100 times faster). This function is not 
directly implemented in MATLAB, therefore no results are 
reported. We only ran this for the 300 dataset as it is 
recommended only for datasets up to 5,000 instances. 

Table 4 Shapiro-Wilk test (time in seconds) 

 300 

SPSS 3.277540948 
R 0.005933333 
DataIP (1) 0.000050726 
DataIP (8) 0.000059871 

5.1.5 Pearson correlation 

Figure 7 shows the behaviour of all software when running 
the Pearson correlation. SPSS, MATLAB and R have 
exponential behaviour while DataIP has linear behaviour. 

Figure 7 Pearson correlation (see online version for colours) 
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Table 5 Pearson Correlation (time in seconds) 

 300 200 k 1 M 

SPSS 0.016465374 0.177693620 0.779819110 
MATLAB 0.024677000 0.124922000 0.561916000 
R 0.006066667 0.113100000 0.617166700 
DataIP (1) 0.000030952 0.001865020 0.013641000 
DataIP (8) 0.000230371 0.001433520 0.006151690 

 5 M 10 M 

SPSS 3.694809988 8.257494096 
MATLAB 2.874032000 - 
R 3.143700000 6.302133000 
DataIP (1) 0.062067200 0.124550000 
DataIP (8) 0.030884000 0.059715300 

For the Pearson correlation, all software increase execution 
times as the dataset size increases, with DataIP times 
growing linearly while SPSS, MATLAB and R grow 
exponentially. For smaller dataset sizes, R seems to perform 
better than SPSS and MATLAB. But as the dataset size 
increases, R execution times fluctuate behaving better than 
SPSS for 1 M and 5 M, but worse, for 10 M. For this 
experiment, DataIP manages to have modest speedups 
ranging from 1.3 to 2.2 for the larger datasets. 

5.1.6 Spearman correlation 

For the Spearman correlation MATLAB and R start well 
with the smaller dataset size (300) having execution times 
better than SPSS. As the dataset sizes increase, R and 
MATLAB execution times become much worse than SPSS 
with MATLAB unable to run the largest 10 M dataset. 
DataIP manages to keep execution times low achieving a 
modest speedup for the larger datasets (1 M, 5 M and  
10 M). Speedups for the larger datasets are limited, but in 
any case, the DataIP implementation largely outperforms 
MATLAB and R. Figure 8 shows execution times as we 
increase the dataset sizes. 

Table 6 Spearman correlation (time in seconds) 

 300 200 k 1 M 

SPSS 0.935224150 2.222288790 5.096869300 
MatLab 0.041846000 2.448189000 21.516139000 
R 0.015900000 3.292867000 27.062666670 
DataIP (1) 0.000106694 0.023312200 0.226401000 
DataIP (8) 0.000460823 0.028749200 0.190727000 

 5 M 10 M 

SPSS 17.836248300 33.648206037 
MatLab 85.345645000 - 
R 225.244500000 526.125000000 
DataIP (1) 1.528510000 3.053720000 
DataIP (8) 1.022340000 2.031240000 

Table 7 Kendall correlation (time in seconds) 

 300 200 k 1 M 

SPSS 0.028889376 1992.953648900 - 
MatLab 0.146417000 4931.319953000 - 
R 0.200633333 - - 
DataIP (1) 0.000356516 0.089785400 0.540615000 
DataIP (8) 0.000442839 0.042243000 0.256585000 

 5 M 10 M 

SPSS - - 
MatLab - - 
R -  
DataIP (1) 3.308700000 6.887990000 
DataIP (8) 1.516380000 3.213720000 

5.1.7 Kendall correlation 

The Kendall correlation seems to be the most inefficient 
implementation in all software, except in DataIP. SPSS 
starts well ahead of MATLAB and R for the 300 and 200 k 
dataset sizes, but fails to calculate the correlation for larger 
dataset sizes (1 M, 5 M and 10 M). On the other hand, 
DataIP runs for all dataset sizes with acceptable sequential 
execution times, and running two times faster when using  
8 threads. For all dataset sizes, we managed to have an 
average speedup of 2.5 with 8 threads related to the single 
threaded version. MATLAB took almost 1.5 hour to run the 
200 k dataset. Runs for MATLAB and R were aborted due 
to our imposed time limit. Implementations of Kendall 
usually employ the quadratic algorithm, but we use an 

( log )n nO  complexity version published many years ago 
(Knight, 1966). This can partially explain the poor 
performance achieved by MATLAB and R. 

5.1.8 Significance tests 

Significance tests were ran only for the 300 dataset size. 
Table 8 shows average execution times for these tests. 
MATLAB does not provide functions to perform them. 

Table 8 Significance tests (time in seconds) 

 Pearson Spearman Kendall 

R 0.002900000 0.002900000 0.012600000 
DataIP (1) 0.000006581 0.000006548 0.000007339 
DataIP (8) 0.000294113 0.000345177 0.000321323 

R performs quite well for these tests. However, DataIP can 
take advantage of code optimisations and runs more than 
400 times faster than R to perform the Pearson and 
Spearman significance tests and more than 1,700 times 
faster than R to perform the Kendall significance test. 

 



12 A. Rodrigues et al.  

Figure 8 Spearman correlation (see online version for colours) 

 

Figure 9 Kendall correlation (see online version for colours) 

 

 
5.1.9 Regression 

Figure 10 shows the behaviour of all regressions for the  
300 dataset. 

Table 9 shows results of regression calculations for the  
300 dataset. We performed linear, logarithmic, second and 
third order polynomial regressions. 
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Figure 10 Regression (see online version for colours) 

 

 
Average execution times for all types of regression 
calculation are very close for all software. R performs better 
than SPSS and MATLAB. DataIP, once more, wins by 
running the linear regression 234 times faster than SPSS, 
372 times faster than MATLAB and 70 times faster than R. 
Speeds are quite similar when comparing with the other 
regressions. 

Unfortunately, DataIP does not have any speedup when 
running with 8 threads. The reason for that is the very low 
execution time for one thread. Using 8 threads causes too 
much overhead because there is not enough work to keep all 
threads busy. 

Table 9 Regression (time in seconds) 

 Linear Logarithmic 

SPSS 0.022341967 - 
MATLAB 0.035284000 0.037382000 
R 0.006666667 0.006466667 
DataIP (1) 0.000094677 0.000135548 
DataIP (8) 0.000424032 0.000477548 

 2nd order polynomial 3rd order polynomial 

SPSS - - 
MATLAB 0.037118000 0.039120000 
R 0.007366667 0.007200000 
DataIP (1) 0.000295774 0.000136823 
DataIP (8) 0.000581113 0.000887871 

5.1.10 Wilcoxon, K-S, T, ANOVA and Bartlett tests 

Table 10 shows the execution times for the five statistical 
tests we implemented: Wilcoxon, K-S, T, ANOVA and 
Bartlett. 

Figure 11 shows the behaviour of all tests for the  
300 dataset, for all software. 

Table 10 Wilcoxon, K-S, T, ANOVA and Bartlett tests (time 
in seconds) 

 Wilcoxon K-S T 

SPSS 0.074964336 0.075011739 0.031844190 
MATLAB 0.000811000 0.000362000 0.001214000 
R 0.006633333 0.003166667 0.002266667 
DataIP (1) 0.000153903 0.000007500 0.000005903 
DataIP (8) 0.000439532 0.000437113 0.000448258 

 ANOVA Bartlett 

SPSS 0.022341967 0.031525859 
MATLAB 0.128183000 - 
R 0.006300000 0.000733333 
DataIP (1) 0.000011113 0.000003016 
DataIP (8) 0.000447371 0.000001710 

We ran the Bartlett test only in SPSS, R and DataIP, 
because the Bartlett function of MATLAB gives a result 
that is very much different than R, SPSS or our 
implementation. It looks like it does something more than 
just performing the test. MATLAB has a poor performance 
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for ANOVA when compared with SPSS, R or DataIP. SPSS 
seems to be the least efficient to run these tests. 

5.1.11 Principal component analysis 

Our last set of experiments for Machine 1 is to perform 
PCA. Table 11 shows average execution times for all 
datasets and all software. 

SPSS is the most efficient to execute PCA. R performs 
quite poorly, and DataIP runs a bit more than two times 
slower than SPSS. PCA is not yet optimised in DataIP, 
therefore its sequential and parallel versions still need to be 
improved. 

Table 11 PCA (time in seconds) 

 300 200 k 1 M 

SPSS 0.024010287 0.193039497 0.843310515 
R 0.017866667 1.537466700 7.165300000 
DataIP (1) 0.002665940 0.301419000 1.536630000 
DataIP (8) 0.002892400 0.301174000 1.514880000 

 5 M 10 M 

SPSS 3.877115753 7.727483537 
R 34.187100000 71.544770000 
DataIP (1) 7.599020000 16.948700000 
DataIP (8) 7.307220000 16.495300000 

5.2 Dataset 2 

5.2.1 Kendall correlations performance on big data 

In this section, we present results for the comparison 
between the same software running on Linux and Windows, 
using a larger number of instances (Dataset 2), on  
Machine 2. The dataset has 300 million instances. The tests 
are run on a single thread, since the dataset has only two 
variables and we parallelise the column operations. 

Table 12 Kendall correlations with DataIP (time in seconds) 

 300 M 

Windows 116.489 
Linux 113.264 

Linux is slightly faster than Windows. In both 
environments, our implementation performs well running 
the Kendall correlation in less than 2 minutes. 
Unfortunately, we could not load the dataset in R or 
MatLab. 

5.2.2 Kendall correlations on Oracle Database 12c 
enterprise 

In this section we compare DataIP with the Oracle 
implementation of Kendall, in Machine 3, the Windows 
Server 2012 Datacenter using Dataset 2. 

Figure 11 Wilcoxon, K-S, T, ANOVA and Bartlett tests 
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The Oracle implementation has time complexity that most 
probably is quadratic (given its behaviour as we increase the 
input size). In order to perform this experiment, we had to 
reduce our 300 million instances. We created two smaller 
subsets: one with about 50 thousand instances and another 
one with about 200 thousand instances. 

Table 13 Kendall correlation (time in seconds) 

 50 k 200 k 

Oracle 12c Enterprise 426.46 6,253.568 
DataIP (1) 0.015 0.046 

Table 13 shows the results for this experiment. To get 
exactly the same results, on the 50 k subset, DataIP is 
28,430.7 times faster than Oracle 12c Enterprise, and on the 
200 k subset is 135947.1 times faster than Oracle 12c 
Enterprise. With larger datasets, we would even better 
results, since on the Oracle 12c Enterprise the execution 
time grows faster than on DataIP. 

5.3 Dataset 3 and Dataset 4 

In this section, we evaluate DataIP, Matlab and R on data 
taken from the UCI Machine Learning Repository,  
with larger numbers of variables: Covertype and 
YearPredictionMSD (Dataset 3 with 55 variables and 
581,012 instances, and Dataset 4 with 91 variables and 
515,345 instances, respectively). Table 14 shows execution 
times in seconds averaged from 30 runs for all tests 
applicable to these datasets, using R, MATLAB and DataIP. 

Regarding data input, R is the slowest, while DataIP 
using 8 threads, competitive with MATLAB, is the fastest to 
load the two datasets. To perform the summary, DataIP 
(sequential or using 8 threads) is several times faster than 
MATLAB or R for both datasets, thanks to its initial 
preprocessing. Calculating chi-square is also faster using 
DataIP (we did not run this for MATLAB for the same 
reasons given in previous sections: MATLAB’s chi2gof 
does not produce the same results as R and DataIP). With 
respect to the calculation of correlations, DataIP remains the 
best, by several orders of magnitude. We also used R’s 
cor.fk to calculate the Kendall correlation for both 
datasets. Times are reported for the correlation between all 
pairs of variables. R’s cor.fk is also implemented using 
Knight’s algorithm, which has ( log )n nO  complexity. R 
ordinary Kendall implementation and MATLAB’s could not 
finish before 15 hours of computation for both datasets. 
Spearman could not run in less than 15 hours in MATLAB 
and could not finish before 15 hours, in R, for the larger 
number of variables (91). Pearson, in R, for the largest 
dataset (Dataset 4) could not finish the 30 times replicated 
function to calculate the correlation. We then decided to 
report on just one run of Pearson for all pairs of variables, 
using R. Also, when loading data, R could not finish 
replicating 30 times the loading of Dataset 4. In this case, 
we also decided to report time for loading the file just once. 

Shapiro-Wilk was not applied to these datasets, because 
they have more than 5,000 instances. Significance tests and 
regressions were also not calculated because no pair of 
variables had all three correlations strong (all of them 
greater than 0.75). 

Table 14 Covertype and YearPredictionMSD (time in seconds) 

Function System Covertype YearPred 

MATLAB 5.153896000 11.599155000 
R 11.239400000 759.303000000 

DataIP (1) 14.915800000 50.017300000 

Data input 

DataIP (8) 5.106310000 11.509100000 
MATLAB 11.509100000 19.491427000 

R 22.150366670 98.33860000 
DataIP (1) 0.613753000 1.330550000 

Summary 

DataIP (8) 0.993580000 2.064320000 
R 7.939400000 25.005630000 

DataIP (1) 0.028485300 0.043176500 
Chi-square 

DataIP (8) 0.028518900 0.043124200 
MATLAB 17.337545000 42.161247000 

R 200.327500000 1,672.516000000 
DataIP (1) 1.190970000 2.716040000 

Pearson 
correlation 

DataIP (8) 0.719797000 1.755250000 
MATLAB (Aborted) (Aborted) 

R 798.738400000 (Aborted) 
DataIP (1) 15.489100000 67.36650000 

Spearman 
correlation 

DataIP (8) 9.827960000 39.189800000 
MATLAB (Aborted) (Aborted) 

R (Aborted) (Aborted) 
R (cor.fk) 788.131000000 4,230.495000000 
DataIP (1) 50.919000000 266.753000000 

Kendall 
correlation 

DataIP (8) 16.688200000 51.050800000 

6 Conclusions 

Our main conclusion is that traditional implementations of 
basic statistical functions, crucial for data analysis, need to 
be revisited, and better designed to meet the requirements of 
larger datasets. We presented results of a C/C++ 
implementation of many statistical functions and show that, 
even for small datasets, well designed code can achieve 
very good performance when compared with state-of-the-art 
statistical software. Experiments running with 1 thread or  
8 threads perform several orders of magnitude faster than 
SPSS, R or MATLAB. Besides, we can achieve reasonable 
speedups taking advantage of a multicore machine, which 
MATLAB and R can also take, but, even with perfect 
speedups, would not beat DataIP. DataIP was the only 
software that completed all experiments while the other 
software failed some experiments due to memory or timing 
issues. 
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