
Int. J. Big Data Intelligence, Vol. X, No. Y, 200x 1

Copyright © 20XX Inderscience Enterprises Ltd.

Optimising the calculation of statistical functions

André Rodrigues*, Carla Silva,
Paulo Borges and Sérgio Silva
NLPC Lda.,
Praça Mouzinho de Albuquerque, 113 – 5º,
4100-359 Porto, Portugal
Email: razor336@gmail.com
Email: carla.maps@gmail.com
Email: paulo.borges@nlpc-incta.com
Email: sjoaosilva@yahoo.com
*Corresponding author

Inês Dutra
Department of Computer Science,
CRACS INESC TEC and University of Porto,
Rua do Campo Alegre, 1021,
4169-007, Porto, Portugal
Email: ines@dcc.fc.up.pt

Abstract: Statistical data analysis methods are well-known for their difficulty in handling large
number of instances or large number of parameters. In this paper, we study popular and
well-known statistical functions, generally applied to data analysis, and assess their performance
as implemented by SPSS, MATLAB, R and our own software, DataIP. We use medium to large
datasets and show that DataIP outperforms SPSS, MATLAB and R by several orders of
magnitude. We argue that the design and implementation of these functions need to be rethought
to adapt to today’s data challenges.

Keywords: data analysis; statistical functions; performance evaluation; SPSS; MATLAB; R.

Reference to this paper should be made as follows: Rodrigues, A., Silva, C., Borges, P., Silva, S.
and Dutra, I. (xxxx) ‘Optimising the calculation of statistical functions’, Int. J. Big Data
Intelligence, Vol. X, No. Y, pp.xxx–xxx.

Biographical notes: André Rodrigues obtained his MSc in Computer Science from the
University of Porto, Portugal in 2015. He is pursuing his PhD in Computer Science, also at the
University of Porto. His main research interests are parallel algorithms and techniques, and code
restructuring and optimisation. Currently, he has been developing software for the NLPC Dataias
company and is responsible for the most recent version of the software used in this paper.

Carla Silva obtained a Scientific-Technological Diploma in Informatics at the Colegio Internato
dos Carvalhos, Portugal, then proceeded to Engineering Sciences – Surveying Engineering at
Faculty of Sciences, Porto University, Portugal. Later, she did a research project in ICT in
Business at the Leiden Institute of Advanced Computer Science, The Netherlands. Recently she
worked at the Center for Research in Advanced Computing Systems, INESC TEC, Portugal. She
worked for the NLPC Dataias company and developed most of the initial code for the statistical
functions evaluated in this paper. Her main interests are computational agent systems, decision
support systems, positioning and satellite navigation, data mining and machine learning. She has
one book chapter at Springer and one paper at IEEE.

Paulo Borges obtained his MSc in Physics Engineering from the University of Coimbra, Portugal
in 1997. He worked as a researcher at the Optical Technologies Center at the University of Porto
in Optical Fibers from 1997 to 1999. From 2000 to 2011, he worked as a Software Consultant,
and participated in several projects in various sectors of activity and in various companies and
organisations such as: Barclays Bank, TCS, DELPHI Corporation, CSC, SIBS, Millenium BCP,
BPI, BFA, Sodecia, Efacec, Sage, Sofin, EccoleâŁ™t, First Solutions, among others. In 2011, he
was one of the founders of NLPC Institute in Behavioral Science and Applied Psychology,
leading the area of research and development in the area of decision support systems. He
participated in various training programs in information systems and project management. He has
extensive experience in systems architecture, project management and software engineering.

2 A. Rodrigues et al.

Sérgio Silva obtained his degree and Master’s in Mathematics from the University of Minho,
Portugal, and currently collaborates on research and development projects, under his PhD in
Intelligent Software Systems at the University of Vigo, Spain. He has worked as a Professor of
higher and further education and participated in research projects related to mathematics,
statistics and information technology. His main large areas of research are data analysis, data
mining, text mining and big data. He has published several articles and has participated in
conferences in the field of statistics.

Inês Dutra is a Professor of the Department of Computer Science, School of Sciences of the
University of Porto. She obtained her PhD degree from the University of Bristol, England in
1995. She worked at the Universidade Federal do Rio de Janeiro, from 1985 to 2007. In 2007,
she moved to Portugal. Her main research interests are logic programming, inductive logic
programming, data mining, applications in medical informatics and parallelisation. She has
published more than 50 papers in main conferences and journals, and supervised several MSc
and PhD students. She is a researcher consultant to NLPC Dataias.

This paper is a revised and expanded version of a paper entitled ‘Performance
evaluation of statistical functions’ presented at DataCom 2015 Conference, Chengdu, China,
19–21 December 2015.

1 Introduction

As the amount of information grows more than
exponentially along the years, we start to face several
challenges. In order to process and analyse all these data,
we need new tools and algorithms that can cope with their
heterogeneity and volume. Statistical data analysis methods
are well-known for their difficulty in handling large number
of instances or large number of parameters. Often just
accessing the data may be a serious bottleneck. These
considerations motivated work on the so-called ‘noSQL’
data-bases, such as Google’s BigTable (Chang et al., 2008),
or the Apache Foundation’s Spark (Zaharia et al., 2010),
which support distributed data. Other works in the direction
of improving data partitioning and memory utilisation, not
directly related with the implementation of statistical
functions, but dedicated to big data handling are Slagter
et al. (2013, 2015) and Hsu et al. (2015). One remarkable
work and somewhat related to ours is Kane et al.’s (2013)
implementation of the R packages foreach and bigmemory,
that allow the implementation of statistical functions in
parallel. Following this trend, MATLAB has also been
investing on new tools for efficient data analysis
and processing (http://www.mathworks.com/solutions/data-
analytics/, accessed in September 2016).

In contrast to transaction oriented data-bases, statistical
methods are often applied to data repositories with
read-only data, which avoids data consistency overheads.
Progress in DRAM technology has enabled manipulating
large amounts of data in main memory. However, these
solutions require specialised hardware and software to be
able to handle massive amounts of data. In general, in order
to analyse data, most people use traditional tools such as
Excel, SPSS, MATLAB or R. Although these are very
popular, they are not tailored to handle large amounts of
data. In this work, we show that we can process and analyse
millions of instances, with potentially hundreds of variables,
faster than these systems, with the same simplicity, and

without the need of specialised resources, except the use of
top-of-the-shelf multicore machines.

We concentrate on the following bivariate and
multivariate analysis, which are most popular in data
analysis: Chi-square and Shapiro-Wilk tests, Pearson,
Spearman and Kendall correlations, linear, logarithmic,
2nd and 3rd order polynomial regressions, Wilcoxon,
Kolmogorov-Smirnov (K-S), T-student and Bartlett
statistical tests, Pearson, Spearman and Kendall significance
tests, ANOVA and principal component analysis (PCA).
We also study the performance of calculating data
summaries and loading data. With the exception of loading
data, our results are always superior to SPSS, MATLAB
and R, and our best result, for Kendall, is several orders of
magnitude better than SPSS, MATLAB or R.

Our software, DataIP, is written in C/C++, and
implements the aforementioned functions. In the next
sections, we describe the main functions our software
implements, discuss about implementation issues, and
present our experimental methodology and results.

2 Background

One important step in the knowledge discovery process is
the statistical analysis of data. Usually, we start to ‘know’
the data using descriptive and inferential statistics through
univariate, bivariate and multivariate methods. Later, we
may go through other important steps related with machine
learning techniques to build more powerful data models, but
in this work we focus solely on the statistical analysis.

The major purpose of univariate analysis is to describe
the data. Univariate analysis is usually used in the first
descriptive stages of problem solving, being complemented
by more advanced, inferential bivariate or multivariate
analysis. Descriptive statistics (Rumsey, 2010) describe and
summarise data. Univariate descriptive statistics describe
individual variables. Exploratory analysis of data gives us a

 Optimising the calculation of statistical functions 3

summary statistics of measures of central tendency,
dispersion and shape of the data.

Measures of central tendency locate a distribution of
data along an appropriate scale, such as: geometric mean,
harmonic mean, arithmetic average, median and mode. The
purpose of measures of dispersion is to find out how spreads
out the data values are. Another term for these statistics is
measures of spread: interquartile range, percentiles, average
absolute deviation (or simply called average deviation),
range, standard deviation and coefficient of variation. This
analysis is usually followed by measures of shape. The
measures of shape indicate the symmetry and flatness of the
distribution of a data sample. A distribution of data item
values may be symmetrical or asymmetrical. In this field,
we have: variance, kurtosis, central moment of 3rd order
and Pearson asymmetry coefficients G1 and G2.

Bivariate analyses are conducted to determine whether a
statistical association exists between two variables, the
degree of association if one does exist, and whether one
variable may be predicted from another. It deals with causes
or relationships. The major purpose of bivariate analysis is
to:

1 define the nature of the relationship

2 identify the type and direction of the relationship

3 determine if the relationship is statistically significant

4 identify the strength of the relationship.

In bivariate analysis, we use non-parametric statistics
(Conover, 2006), given that our focus is on inferential
statistics (Casella and Berger, 2008). We use the same
hypotheses testing used in the univariate analysis, as well as
other tests specific to bivariate analysis (K-S, Wilcoxon and
T-test).

Multivariate studies are analogous to bivariate studies,
but involve multiple variables. Researchers could then use
multivariate statistical analysis to study the relationships
between all of the variables. Multivariate analytical
techniques represent a variety of mathematical models used
to measure and quantify outcomes, taking into account
relevant factors that can cause this relationship. The most
common is multiple regression analysis (Montgomery and
Runger, 2010) whose objective is to understand how the
value of the dependent variable changes when any of the
independent variables is varied, while the other independent
variables are fixed, using multiple response variables. With
regression (Wonnacott and Wonnacott, 1990), we attempt to
find a function which models the data with the minimum
error.

In PCA (Venables and Ripley, 2002), our intent is to
reduce data dimensionality. In order to perform that task, we
centre the data and calculate the covariance matrix and
extract the eigenvectors, using singular value decomposition
on the covariance matrix. The calculated principal
components are orthogonal and less or equal the number of
input variables.

3 Implementation

Based on the whole data analysis process, we developed a
framework that can make use of tools for univariate,
bivariate, multivariate statistical analysis and also include
some machine learning methods. In this paper, we
concentrate on the statistical methods only. In a general
context, knowledge extraction is performed through
exploratory analysis, univariate, bivariate and multivariate,
and using descriptive and inferential statistics. We have
optimised sequential and parallel implementations of the
methods. Moreover, we take advantage of the fact that
several statistical functions share common data
preprocessing operations, and execute them only once to
speedup execution. For example, correlation functions
usually sort the two variable values to be correlated. We sort
all variables beforehand, store the resulting vectors, and
reuse them whenever needed. We also store minimum and
maximum values, modes and medians, among others.
Added to these optimisations, we also preprocess all data
variables by categorising them as much as possible as
numerical or categorical, continuous or discrete.

The algorithms were developed in C/C++ and
implement well-known functions used in SPSS, R and
MATLAB. All functions were implemented to produce the
same results (including formatting) as R, except kurtosis,
which was implemented according to MATLAB because R
needed an extra library to run it.

The following is handled by our implementation.

3.1 Univariate analysis

• Dataset dimensions and missing values are determined.

• Variable types are automatically detected. Some
statistical functions are only applied to the numerical
data.

• Measures of dispersion are calculated which results in
the output of a shape which includes the mean, median,
mode, maximum and minimum and some quartiles (the
first and the third).

• Variance, standard deviation and mean absolute
deviation (average deviation from the average) are
calculated. We calculate the arithmetic, geometric and
harmonic means.

• The mode is the most common value obtained in all the
observations. If they are all different, we do not present
the mode.

• Interquartile range and the difference between the
upper and lower quartiles are calculated. The total
amplitude or range, the difference between the
maximum and minimum values, is also calculated.

• Calculation of asymmetry measures, with the results:
positive asymmetrical when the median is less than the
average and higher than the mode, asymmetric negative
in cases where the median is less than the mode and

4 A. Rodrigues et al.

higher than the average and symmetrical when the
median is equal to mode and the average.

• The following are also calculated: kurtosis, 3rd moment
(calculation as shape measures), G1, G2 and the
coefficient of variation.

• Outliers are identified consisting of elements that are
above the 3rd quartile + 1.5 × interquartile range and
below the 1st quartile – 1.5 × interquartile range (the
1.5 is used because John Tukey, the inventor of the
box-and-whisker plot in 1977, picked 1.5 × IQR and
this has worked well since then. For our purposes, the
choice of this value would not affect the results).

• To end the univariate analysis, we calculate the
Chi-square and the Shapiro-Wilk test, to check
whether the sample has a normal distribution.

3.2 Bivariate analysis

For the bivariate analysis, we calculate correlation
coefficients (Kendall and Gibbons, 1990) indicating the
strength and direction of a linear relationship between two
random variables, using three methods: Pearson, Spearman
and Kendall. Pearson gives the direct relationship between a
pair of variables while Spearman and Kendall give
correlation coefficients for the rank function between two
variables. For Pearson, the values obtained through the
measures of association always vary between –1 and 1,
where 1 indicates that there is a perfect positive correlation
between two variables, –1 a negative perfect correlation,
and 0 both variables are not linearly dependent on one
another. The pairs of variables whose correlations are
greater than or equal to 0.75 are considered strong
correlations. For these pairs, we produce a bivariate or
simple linear regression, using the least squares method. For
Spearman and Kendall, the variable values are not
important. The Spearman correlation may still give values
of –1 when Pearson will give greater values, if the variables
are inversely proportional, but they do not decrease by the
same amount. Conversely, Spearman may give values of +1
when Pearson will give smaller values, if the variables grow
proportionally, but not by the same amount. The differences
among the outcomes of these three tests are relevant when
performing data analysis, but this discussion is out of the
scope of this work [for more details about Spearman and
Kendall rank correlations, a good reference is Croux and
Dehon (2010)].

The bivariate analysis seeks to obtain a mathematical
model that best fits the observed values of Y due to the
variation of the variable levels of X. We then have a simple
linear data model. Once the coefficients of this linear model
are found and the respective errors are standardised, tests
are applied to validate the model. Usually, the main test
applied is the t-test, but depending on the data distribution,
the t-test may not be suitable and another test needs to be
applied. As output, we have the standard error of the
residuals and the respective degrees of freedom, multiple
R-squared and adjusted R-squared. The F-statistic is also

calculated. Residuals are presented as follows: minimum,
1st quartile, median, 3rd quartile and maximum. A
normality test, Shapiro-Wilk, is applied on the residuals,
where through the p-value we validate the model as good or
bad. A summary of the errors is then performed to study
how well those variables are correlated, and how good the
prediction is given by the regression model. In this phase,
we repeat the same process we used with the univariate
analysis, but now on the regression errors. We calculate: the
average error, the mean square error, the root mean square
error and the normalised root mean square error and the
mean absolute error. We perform non-parametric statistical
tests (Hollander et al., 2013) such as the Wilcoxon rank sum
test, the two-sample K-S test (Marsaglia et al., 2003) and
the Welch two-sample t-test. We also compute F ANOVA
in order to study the variance. Nonlinear models are also
generated: exponential, logarithmic, quadratic and cubic
wherein the validation of models follows the same
procedure as the linear models.

3.3 Multivariate analysis

Next, multiple linear regression is implemented, which
involves more than two variables, giving rise to the
multivariate study. The employed multivariate statistic
allows the prediction values of one or more response
variables (dependent) from several independent or
predictive variables. The correlations between multivariate
variables are calculated using regression, as well as
residuals and the regression equation and its coefficients. A
multivariate analysis of variance and error, similar to the
one applied in simple linear regression, is performed. A
regression is calculated for each variable. Then the Bartlett
test is performed on the homogeneity of the variances, as
well as the Kruskal-Wallis rank sum test. The multivariate
analysis ends with a factor analysis where we calculate the
principal main components using PCA, with a preliminary
study of the Kaiser-Meyer-Olkin (KMO) index, which must
be greater than 0.5 in order that we can proceed to the PCA.
PCA is performed using the singular value decomposition
technique (Press, 2007).

Input data to our framework can be in the form of
comma-separated values (CSV) files or can be from a
relational database. If the data comes from a database
connection, a query builder allows the user to apply filters
and perform queries, which will, by their turn, generate
CSV files. We parse the final CSV file, and transform it in a
C structure that will be analysed using the steps described.
Frequencies and modes for qualitative attributes are
calculated. We also perform a cluster analysis
(non-hierarchical) using k-means, and a hierarchical
agglomerative cluster analysis using similarity measures
such as the single linkage method, complete linkage,
average and centroid linkage. Cluster analysis is not
included in this work.

We implemented all of those methods from scratch, in
C/C++, using the best algorithms found in the literature,
optimising for performance, and removing redundant
calculations. For example, as we have all functions

 Optimising the calculation of statistical functions 5

integrated, lots of calculations can be saved because they
are common to several methods. One example is sorting
variable values, which is performed just once. Memory
usage is other important issue, and we needed to organise
our implementation to minimise writes and memory
allocation during calculations (reads are always faster than
writes). Another issue on the implementation is the
complexity of the algorithms. Our implementations keep a
maximum complexity of (log).n nO

In order to get the most possible organised structure and
layer separation, we are using an object oriented structure in
C++.

Our most important optimisation is on the calculation of
Kendall τ (correlations). This is known to have quadratic
complexity, but we use Knight’s algorithm (Knight, 1966;
Christensen, 2005), that calculates Kendall τ with

(log)n nO complexity. An implementation of Knight’s
algorithm is also found in the pcaPP R package through the
function cor.fk.

In order to further optimise our implementation and
allow it to take advantage of multicore machines, we
parallelised the code using openMP (Chandra, 2001). In
order to get big chunks of processing and always get
speedups avoiding overheads, parallelism is used on the
following steps:

• On data loading when checking for missing values,
sample dimension and types of variables.

• On calculating the data summary, all statistics related to
this procedure are calculated in parallel, attribute by
attribute. If we have only one attribute, the calculations
are sequential, but if we have more than one, they are
performed in parallel.

• On calculating correlations, all pairs are calculated in
parallel. Each core processor calculates one pair with
all three correlations (Pearson, Spearman and Kendall).

• On multivariate analysis the idea is the same. Each core
calculates all analysis to each one of the permutations.

4 Experimental methodology

We performed our experiments in three different machines:
a plain multicore workstation with 8 cores AMD FX 350,
16 GBytes of memory and Linux Fedora 20 (Machine 1); a
Xeon server with 8 cores Intel Xeon x5550 (16 threads),
24 GBytes of memory and Fedora 20 (Machine 2); an IBM
system x3755 with 6 cores, 48 GBytes of memory; and a
Windows Server 2012 Datacenter (Machine 3).

In order to study the scalability of the systems, we used
two datasets: real data collected from Hospital das Clínicas
(São Paulo, Brazil), consisting of around 200,000 patient
discharges (Dataset 1) with 26 variables, from which we
synthetically created other datasets of increasing sizes, and a
synthetic dataset created with millions of instances, but with
only two variables because of memory constraints (this
dataset alone is almost 5 GBytes large) (Dataset 2).

We use Dataset 1, patient discharges, with different
versions:

• 300 version: It is a subset with 300 rows, and nine
numeric variables without nulls.

• 200 k version: original dataset consisting of
201,879 discharge patients, and six numeric
variables without nulls

• 1 M version: it is a replication in chunks of the original
dataset 200 k in order to achieve one million instances,
with six numeric variables without nulls.

• 5 M version: it is a replication in chunks of the original
dataset 200 k, in order to achieve five million instances,
with six numeric variables without nulls.

• 10 M version: it is a replication in chunks of the
original dataset 200 k, in order to achieve ten million
rows, with six numeric variables without nulls.

Dataset 2 is a synthetic dataset created to also study the
scalability of our implementation when handling many
millions of instances. It has only two variables, due to the
memory limits of our machines. The dataset was generated
with random numbers between 0 and 1,235. This range was
arbitrarily chosen. The choice of random numbers does not
affect the results. They could be also real numbers. The file
size is 4.8 GBytes.

In order to check dataIP versatility and how it handles
larger number of variables, we also used two datasets from
the University of California at Irvine Machine Learning
Repository, quite popular in the literature. One of them is
CoverType (Dataset 3), consisting of 55 variables and
581,012 instances. The other one is YearPredictionMSD
(Dataset 4), consisting of 91 variables and 515,345
instances.

Input data to our framework can be in the form of CSV
files or can be retrieved from a relational database. In this
work, we used CSV files for DataIP, MATLAB and R and
SAV format for SPSS. In DataIP, the CSV file is parsed,
frequencies and modes for qualitative attributes are
calculated, and attribute types are detected.

Most of our experiments were run with Dataset 1 using
Machine 1. Datasets 3 and 4 were also run using Machine 1.
Dataset 2 ran in the last two machines (the dual Xeon and
the IBM servers, Machine 2 and Machine 3, respectively).
The experiment in Machine 2 compares the Kendall results
running on Linux and Windows with only one thread and a
larger set of instances, as in Dataset 2. The experiment in
Machine 3 compares the execution of Kendall on Oracle
with our implementation. Kendall is highlighted here
because we use an algorithm whose complexity is

(log)n nO as compared with the quadratic implementations
of MATLAB or Oracle.

We performed experiments for the summary, Chi-square
and Shapiro-Wilk tests, the three correlations (Pearson,
Spearman and Kendall), three significance tests (Pearson,
Spearman and Kendall), linear and nonlinear second and
third order polynomial and logarithmic regressions,

6 A. Rodrigues et al.

Wilcoxon, K-S, T and Bartlett statistical tests, and PCA.
Some experiments were aborted by SPSS, MATLAB or R,
because of lack of memory or because they exceeded our
maximum running time limit. Experiments with SPSS,
MATLAB and R were run with default parameters. Some of
the functions implemented by this software are calculated in
different forms and produce different results. Examples are:
Shapiro-Wilk in SPSS also calculates K-S and shows
descriptive analysis; also SPSS K-S and Wilcoxon produce
graphical output files (jpg), which may cause them to be
slower than the other software; Bartlett outputs other
information such as covariance and correlations, among
others.

All experiments in Machine 1 and Dataset 1, Dataset 3
and Dataset 4 were run with 1 and 8 threads. In our
implementation, we measured execution times necessary
to execute each one of the statistical functions, but
because some operations need to be computed only once
(for example, sorting variable values), this time is computed
only once. A list of functions timed in MATLAB is:
textscan, corr, anova2, kmeans, fitlm, min, max,
median, mode, mean, geomean, harmmean, std, var,
range, iqr, mad, quantile, prctile, kurtosis,
moment, ranksum, kstest2, chi2gof and ttest2.
A list of functions timed in R is: read.csv,
chisq.test, shapiro.test, cor, cor.test
(Hollander and Wolfe, 1973), aov (Chambers et al., 1992),
prcomp, princomp, lm, summary, min, quantile,
median, mean, max, var, sd, IQR, range, kurtosis,
wilcox.test, ks.test, t.test, bartlett.test,
moment, and plot. In SPSS, we used GET
FILE, CORRELATIONS, RANK, NONPAR CORR
PRINT = KENDALL, T-TEST PAIRS, REGRESSION,
NPTESTS INDEPENDENT TEST MANN_WHITNEY
KOLMOGOROV_SMIRNOV, NPAR TESTS CHISQUARE,
GLM PRINT = TEST(SSCP) RSSCP, EXAMINE, and
FACTOR.

Shapiro-Wilk was not run for all dataset sizes, because it
is recommended to be applied to input sizes of at most
5,000 rows not to lose precision (Royston, 1995). Linear
and logarithmic regression, 2nd and 3rd order polynomial
regression, the Wilcoxon, K-S, T-student and Bartlett
statistical tests, Pearson, Spearman and Kendall significance
tests and ANOVA are only applied to datasets that have
strong correlations between variables (correlation value
greater than 0.75 with confidence greater than 95%). This is
true only for the 300 dataset.

For Machine 1, in total, we performed 206 experiments:
35 for SPSS, 31 for MATLAB, 44 for R, and 48 for DataIP
(1 and 8 threads). Most of them were repeated 30 times and
averages of execution time were taken. The only exception
was Kendall, which was repeated only ten times due to its
very long execution time in SPSS, R and MATLAB. For
MATLAB, in particular, we ran 31 times and discarded the
first run, since it was slower than the remaining ones.
Except for that, variation among execution times for each
run was negligible.

Our version of SPSS (academic license, authorised user)
does not provide any function to assess execution time. We
used the python interface to perform this task. This proved
to be a very tedious task, since some of the code could not
run through ‘Run Script’, and our license did not provide
the means to perform the experiments in batch. Moreover,
SPSS does not allow Spearman correlations to run all
variables at once. We had two alternatives: to use
CROSSTABS or RANK variables. CROSSTABS limits the
number of instances to 1,000. We were forced to use
RANK. Except for SPSS, all runs were performed in batch.

Data input was not taken into account when timing each
statistical function. We measured data input times
separately.

Except for R, whose code is written in C, we would
expect SPSS and MATLAB, that use Java coding, to be
slower than DataIP, which is also written in C/C++ like R.

All execution times include time spent to write files in
disk. All times are reported in seconds and because of the
differences in magnitude, are presented with nine decimals.

5 Experiments and results

5.1 Dataset 1

Tables 1 to 11 show execution times, in seconds, for each
statistical function, using our implementation (DataIP (1) –
with a single thread, and DataIP (8) – with 8 threads), SPSS,
MatLab and R, running on Machine 1, applied to datasets
300, 200 k, 1 M, 5 M and 10 M.

The minimum average execution time was obtained by
DataIP (8 threads), running the Bartlett test for our
300 dataset (0.000001709 seconds) and the maximum was
obtained by MATLAB (4931.319953 seconds), running the
Kendall correlation for the 200 k dataset (it could not run
the larger datasets).

5.1.1 Data input

Table 1 shows data input times for all software.

Table 1 Load (time in seconds)

 300 200 k 1 M

SPSS 0.020093200 0.022729400 0.023347700
MATLAB 0.003309000 2.661653000 13.514717000
R 0.009000000 6.304000000 14.403000000
DataIP (1) 0.018793400 2.294150000 12.600600000
DataIP (8) 0.019221200 1.008460000 5.146790000

 5 M 10 M

SPSS 0.022880760 0.022780460
MATLAB 136.083043000 -
R 59.249000000 119.781000000
DataIP (1) 70.003900000 146.975000000
DataIP (8) 28.128700000 56.732000000

 Optimising the calculation of statistical functions 7

SPSS performs a pretty decent job when reading data,
maintaining a constant input time no matter the data size. It
may be taking advantage of using its own file format,
because we provide input files in SAV format. We will see
later that, although it performs well when loading files, it
has the poorest performance when calculating the statistical
functions. MATLAB takes a quite long time to input data as
the file sizes increase and does not manage to read multiple
times the largest data file with around 10 million instances.
This leads us to conclude that MATLAB will be unable to
load larger data files. Our MATLAB script runs one session
to input data running textscan 30 times. If we start
MATLAB 30 times (30 different sessions), where each one
executes a textscan, the input times drop considerably,
being close to SPSS times (0.006222, 0.010844, 0.010858,
0.010711, and 0.010842 seconds for 300, 200 k, 1 M, 5 M,
and 10 M, respectively). DataIP(1) is competitive with R up
to the 1 M data size. As the data sizes increase to 5 M and
10 M, DataIP becomes a bit slower than R (note that DataIP
preprocesses the data while loading). This difference
disappears and times drop to almost half of R’s when we
use 8 threads for the DataIP loading function. Because
preprocessing can be performed in parallel, DataIP can be
faster than R (even though it performs other actions such as
checking variable types and calculating modes and
frequencies). In any case, as we will show next, the
advantage that R and SPSS have over DataIP on loading,
disappears when one needs to perform some calculation
with the data. It is important to note that DataIP is not fully

optimised and that the results with 8 threads show that the
implementation can still scale to larger datasets. If we
disable the preprocessing of data types, the DataIP loading
times become linear with a small slope, as we increase the
data size. However, besides having the advantage of
computing only once certain functions (like sorting),
preprocessing also has the advantage of preventing
execution errors. For example, geometric mean should not
be computed if a variable has negative values. While
MATLAB requires that the user handles these variables
(otherwise the system triggers an error), dataIP skips them
when calculating the geometric mean.

Figure 1 shows the behaviour of all software when
performing data input.

Figures 2, 3 and 4 show examples of codes that perform
data input. The SPSS code is embedded in Python, as
explained earlier.

5.1.2 Summary

Table 2 shows execution times for SPSS, MATLAB, R
and our implementation of the summary for 1 thread
[DataIP (1)] and for 8 threads [DataIP (8)], with varying
dataset sizes. All experiments were run on Machine 1. For
this task, MATLAB is twice as fast as R. DataIP (1) is
almost 50 times faster than R (for the smallest dataset) and
almost 20 times faster for the largest (10 M). DataIP (1) is
also faster than MATLAB (varying from 6 to 56 times
faster, depending on the dataset size).

Figure 1 Load data execution times (seconds) (see online version for colours)

8 A. Rodrigues et al.

Figure 2 SPSS example script for data input

BEGIN PROGRAM.

import spss, time

total = 0

for i in range(31):

 start = time.time()

 file=“.../10M.sav”

 varlist=“cod_alta cod_hosp cod_sexo
cod_ocup cod_catint cod_mnibge”

 spss.Submit(“““

 GET FILE=‘%s’.

 “““ %(file))

 corTime = time.time() - start

 if i != 0:

 total += corTime

 print corTime

print “Average: “, total/(i-1)

spss.Submit(“““OUTPUT EXPORT

 /TEXT
DOCUMENTFILE=‘output_10M_0.txt’.

“““)

END PROGRAM.

Figure 3 MATLAB example script for data input

fileID = fopen(‘M10M.txt’,’w’);

sumtime=0;

for i = 1:31

 tic

 file = fopen(‘10M.csv’);

 out = textscan(file, ‘%f %f %s %s %f %s
%f %f %s %s %s %s %s %s \

 %s %s %s %s %f %s %s %s %s %s %s
%s’,’delimiter’, ‘;’,
‘HeaderLines’,1);

 fclose(file);

 cod_alta=out{1};

 cod_hosp=out{2};

 cod_sexo=out{5};

 cod_ocup=out{7};

 cod_catint=out{8};

 cod_mnibge=out{19};

 toc

 if (i˜=1) sumtime=sumtime+toc; end

end

fprintf(fileID,’%f\n’,sumtime/30);

fclose(fileID);

DataIP does not improve the performance much when using
8 threads, achieving a maximum speedup of 2. Note that all
DataIP times take into account the output to disk, which can
be very time consuming. Our parallelisation is very simple

and only computes in parallel the summary of each
attribute. As these datasets have a small number of
non-null attributes, we do not take full advantage of the
multi-threaded version, but still manage to have an
efficiency of almost 50% for all larger data sizes, doubling
the speed of the sequential version.

Figure 4 R example script for data input

output <- file(“R10M.txt”, open = “wt”)

sink(output)

results <- function(){

 data<-
read.csv(“10M.csv”,header=F,sep=“;”)

 data<-data[2:length(data[,1]),]

 cod_alta<-
as.numeric(as.vector(data[,1]))

 cod_hosp<-
as.numeric(as.vector(data[,2]))

 cod_sexo<-
as.numeric(as.vector(data[,5]))

 cod_ocup<-
as.numeric(as.vector(data[,7]))

 cod_catint<-
as.numeric(as.vector(data[,8]))

 cod_mnibge<-
as.numeric(as.vector(data[,19]))

}

system.time(replicate (30,results()))/30

sink()

We do not have access to a parallelised MATLAB toolbox,
but, even if the 8-threads version of MATLAB had perfect
speedup, DataIP with 8 threads would still be almost
32 times faster than MATLAB with 8 threads to calculate
the summary for the 300 dataset, and 115 times faster for
the larger 5 M dataset. The same effect in a different scale
happens when comparing DataIP with R.

Table 2 Summary (time in seconds)

 300 200 k 1 M

SPSS 0.025017508 0.848454031 4.843381265
MATLAB 0.011257000 0.396472000 2.021464000
R 0.010033330 0.866366667 4.124233000
DataIP (1) 0.000199484 0.023866800 0.319406000
DataIP (8) 0.000352226 0.023766300 0.215104000

 5 M 10 M

SPSS 29.332320517 64.272009676
MATLAB 10.006390000 -
R 21.997370000 48.257370000
DataIP (1) 1.416320000 2.784620000
DataIP (8) 0.743863000 1.401760000

 Optimising the calculation of statistical functions 9

Figure 5 Summary execution times (seconds) (see online version for colours)

Figure 6 Chi-square test execution times (seconds) (see online version for colours)

Figure 5 shows how the three implementations compare in
terms of execution times, in seconds, as we vary the dataset
sizes.

5.1.3 Chi-square test

The chi-square test is timed for all software, even though
MATLAB’s chi2gof produces results that are different
from R and from SPSS. As DataIP is implemented to give

10 A. Rodrigues et al.

results as in R, it produces results like SPSS and R. Average
execution times are shown in Table 3.

SPSS could not perform the test for our larger datasets
due to a Java out of memory error (heap space). The default
heap size available at our configuration file (jvmcfg.ini) is
2 GBytes, already quite high.

Table 3 Chi-square test (time in seconds)

 300 200 k 1 M

SPSS 0.045724256 - -
MATLAB 0.005219000 0.003709000 0.003753000
R 0.006466667 0.264633333 1.045500000
DataIP (1) 0.000018806 0.000592726 0.003258870
DataIP (8) 0.000018306 0.000664484 0.003357810

 5 M 10 M

SPSS - -
MATLAB 0.004391000 0.003863000
R 5.916433000 13.769167000
DataIP (1) 0.014693000 0.029212400
DataIP (8) 0.014883000 0.029014700

MATLAB does a good job with the Chi-square test
maintaining constant performance even for the larger
datasets. R performs very poorly while DataIP performs in
between, but with worse performance than MATLAB as we
increase the dataset size. Once more this effect is due to the
fact that the time taken to write results to disk is being taken
into account for DataIP. Also for this reason, DataIP can not

achieve speedups even executing the data preprocessing in
parallel. For this function, we got better performances than
for the summary.

Figure 6 shows how the three implementations compare
in terms of execution times, in seconds, as we vary the
dataset sizes. R has exponential behaviour, while MATLAB
and DataIP have linear behaviour.

5.1.4 Shapiro-Wilk test

The Shapiro-Wilk test performed much better in DataIP
than in R (more than 100 times faster). This function is not
directly implemented in MATLAB, therefore no results are
reported. We only ran this for the 300 dataset as it is
recommended only for datasets up to 5,000 instances.

Table 4 Shapiro-Wilk test (time in seconds)

 300

SPSS 3.277540948
R 0.005933333
DataIP (1) 0.000050726
DataIP (8) 0.000059871

5.1.5 Pearson correlation

Figure 7 shows the behaviour of all software when running
the Pearson correlation. SPSS, MATLAB and R have
exponential behaviour while DataIP has linear behaviour.

Figure 7 Pearson correlation (see online version for colours)

 Optimising the calculation of statistical functions 11

Table 5 Pearson Correlation (time in seconds)

 300 200 k 1 M

SPSS 0.016465374 0.177693620 0.779819110
MATLAB 0.024677000 0.124922000 0.561916000
R 0.006066667 0.113100000 0.617166700
DataIP (1) 0.000030952 0.001865020 0.013641000
DataIP (8) 0.000230371 0.001433520 0.006151690

 5 M 10 M

SPSS 3.694809988 8.257494096
MATLAB 2.874032000 -
R 3.143700000 6.302133000
DataIP (1) 0.062067200 0.124550000
DataIP (8) 0.030884000 0.059715300

For the Pearson correlation, all software increase execution
times as the dataset size increases, with DataIP times
growing linearly while SPSS, MATLAB and R grow
exponentially. For smaller dataset sizes, R seems to perform
better than SPSS and MATLAB. But as the dataset size
increases, R execution times fluctuate behaving better than
SPSS for 1 M and 5 M, but worse, for 10 M. For this
experiment, DataIP manages to have modest speedups
ranging from 1.3 to 2.2 for the larger datasets.

5.1.6 Spearman correlation

For the Spearman correlation MATLAB and R start well
with the smaller dataset size (300) having execution times
better than SPSS. As the dataset sizes increase, R and
MATLAB execution times become much worse than SPSS
with MATLAB unable to run the largest 10 M dataset.
DataIP manages to keep execution times low achieving a
modest speedup for the larger datasets (1 M, 5 M and
10 M). Speedups for the larger datasets are limited, but in
any case, the DataIP implementation largely outperforms
MATLAB and R. Figure 8 shows execution times as we
increase the dataset sizes.

Table 6 Spearman correlation (time in seconds)

 300 200 k 1 M

SPSS 0.935224150 2.222288790 5.096869300
MatLab 0.041846000 2.448189000 21.516139000
R 0.015900000 3.292867000 27.062666670
DataIP (1) 0.000106694 0.023312200 0.226401000
DataIP (8) 0.000460823 0.028749200 0.190727000

 5 M 10 M

SPSS 17.836248300 33.648206037
MatLab 85.345645000 -
R 225.244500000 526.125000000
DataIP (1) 1.528510000 3.053720000
DataIP (8) 1.022340000 2.031240000

Table 7 Kendall correlation (time in seconds)

 300 200 k 1 M

SPSS 0.028889376 1992.953648900 -
MatLab 0.146417000 4931.319953000 -
R 0.200633333 - -
DataIP (1) 0.000356516 0.089785400 0.540615000
DataIP (8) 0.000442839 0.042243000 0.256585000

 5 M 10 M

SPSS - -
MatLab - -
R -
DataIP (1) 3.308700000 6.887990000
DataIP (8) 1.516380000 3.213720000

5.1.7 Kendall correlation

The Kendall correlation seems to be the most inefficient
implementation in all software, except in DataIP. SPSS
starts well ahead of MATLAB and R for the 300 and 200 k
dataset sizes, but fails to calculate the correlation for larger
dataset sizes (1 M, 5 M and 10 M). On the other hand,
DataIP runs for all dataset sizes with acceptable sequential
execution times, and running two times faster when using
8 threads. For all dataset sizes, we managed to have an
average speedup of 2.5 with 8 threads related to the single
threaded version. MATLAB took almost 1.5 hour to run the
200 k dataset. Runs for MATLAB and R were aborted due
to our imposed time limit. Implementations of Kendall
usually employ the quadratic algorithm, but we use an

(log)n nO complexity version published many years ago
(Knight, 1966). This can partially explain the poor
performance achieved by MATLAB and R.

5.1.8 Significance tests

Significance tests were ran only for the 300 dataset size.
Table 8 shows average execution times for these tests.
MATLAB does not provide functions to perform them.

Table 8 Significance tests (time in seconds)

 Pearson Spearman Kendall

R 0.002900000 0.002900000 0.012600000
DataIP (1) 0.000006581 0.000006548 0.000007339
DataIP (8) 0.000294113 0.000345177 0.000321323

R performs quite well for these tests. However, DataIP can
take advantage of code optimisations and runs more than
400 times faster than R to perform the Pearson and
Spearman significance tests and more than 1,700 times
faster than R to perform the Kendall significance test.

12 A. Rodrigues et al.

Figure 8 Spearman correlation (see online version for colours)

Figure 9 Kendall correlation (see online version for colours)

5.1.9 Regression

Figure 10 shows the behaviour of all regressions for the
300 dataset.

Table 9 shows results of regression calculations for the
300 dataset. We performed linear, logarithmic, second and
third order polynomial regressions.

 Optimising the calculation of statistical functions 13

Figure 10 Regression (see online version for colours)

Average execution times for all types of regression
calculation are very close for all software. R performs better
than SPSS and MATLAB. DataIP, once more, wins by
running the linear regression 234 times faster than SPSS,
372 times faster than MATLAB and 70 times faster than R.
Speeds are quite similar when comparing with the other
regressions.

Unfortunately, DataIP does not have any speedup when
running with 8 threads. The reason for that is the very low
execution time for one thread. Using 8 threads causes too
much overhead because there is not enough work to keep all
threads busy.

Table 9 Regression (time in seconds)

 Linear Logarithmic

SPSS 0.022341967 -
MATLAB 0.035284000 0.037382000
R 0.006666667 0.006466667
DataIP (1) 0.000094677 0.000135548
DataIP (8) 0.000424032 0.000477548

 2nd order polynomial 3rd order polynomial

SPSS - -
MATLAB 0.037118000 0.039120000
R 0.007366667 0.007200000
DataIP (1) 0.000295774 0.000136823
DataIP (8) 0.000581113 0.000887871

5.1.10 Wilcoxon, K-S, T, ANOVA and Bartlett tests

Table 10 shows the execution times for the five statistical
tests we implemented: Wilcoxon, K-S, T, ANOVA and
Bartlett.

Figure 11 shows the behaviour of all tests for the
300 dataset, for all software.

Table 10 Wilcoxon, K-S, T, ANOVA and Bartlett tests (time
in seconds)

 Wilcoxon K-S T

SPSS 0.074964336 0.075011739 0.031844190
MATLAB 0.000811000 0.000362000 0.001214000
R 0.006633333 0.003166667 0.002266667
DataIP (1) 0.000153903 0.000007500 0.000005903
DataIP (8) 0.000439532 0.000437113 0.000448258

 ANOVA Bartlett

SPSS 0.022341967 0.031525859
MATLAB 0.128183000 -
R 0.006300000 0.000733333
DataIP (1) 0.000011113 0.000003016
DataIP (8) 0.000447371 0.000001710

We ran the Bartlett test only in SPSS, R and DataIP,
because the Bartlett function of MATLAB gives a result
that is very much different than R, SPSS or our
implementation. It looks like it does something more than
just performing the test. MATLAB has a poor performance

14 A. Rodrigues et al.

for ANOVA when compared with SPSS, R or DataIP. SPSS
seems to be the least efficient to run these tests.

5.1.11 Principal component analysis

Our last set of experiments for Machine 1 is to perform
PCA. Table 11 shows average execution times for all
datasets and all software.

SPSS is the most efficient to execute PCA. R performs
quite poorly, and DataIP runs a bit more than two times
slower than SPSS. PCA is not yet optimised in DataIP,
therefore its sequential and parallel versions still need to be
improved.

Table 11 PCA (time in seconds)

 300 200 k 1 M

SPSS 0.024010287 0.193039497 0.843310515
R 0.017866667 1.537466700 7.165300000
DataIP (1) 0.002665940 0.301419000 1.536630000
DataIP (8) 0.002892400 0.301174000 1.514880000

 5 M 10 M

SPSS 3.877115753 7.727483537
R 34.187100000 71.544770000
DataIP (1) 7.599020000 16.948700000
DataIP (8) 7.307220000 16.495300000

5.2 Dataset 2

5.2.1 Kendall correlations performance on big data

In this section, we present results for the comparison
between the same software running on Linux and Windows,
using a larger number of instances (Dataset 2), on
Machine 2. The dataset has 300 million instances. The tests
are run on a single thread, since the dataset has only two
variables and we parallelise the column operations.

Table 12 Kendall correlations with DataIP (time in seconds)

 300 M

Windows 116.489
Linux 113.264

Linux is slightly faster than Windows. In both
environments, our implementation performs well running
the Kendall correlation in less than 2 minutes.
Unfortunately, we could not load the dataset in R or
MatLab.

5.2.2 Kendall correlations on Oracle Database 12c
enterprise

In this section we compare DataIP with the Oracle
implementation of Kendall, in Machine 3, the Windows
Server 2012 Datacenter using Dataset 2.

Figure 11 Wilcoxon, K-S, T, ANOVA and Bartlett tests

 Optimising the calculation of statistical functions 15

The Oracle implementation has time complexity that most
probably is quadratic (given its behaviour as we increase the
input size). In order to perform this experiment, we had to
reduce our 300 million instances. We created two smaller
subsets: one with about 50 thousand instances and another
one with about 200 thousand instances.

Table 13 Kendall correlation (time in seconds)

 50 k 200 k

Oracle 12c Enterprise 426.46 6,253.568
DataIP (1) 0.015 0.046

Table 13 shows the results for this experiment. To get
exactly the same results, on the 50 k subset, DataIP is
28,430.7 times faster than Oracle 12c Enterprise, and on the
200 k subset is 135947.1 times faster than Oracle 12c
Enterprise. With larger datasets, we would even better
results, since on the Oracle 12c Enterprise the execution
time grows faster than on DataIP.

5.3 Dataset 3 and Dataset 4

In this section, we evaluate DataIP, Matlab and R on data
taken from the UCI Machine Learning Repository,
with larger numbers of variables: Covertype and
YearPredictionMSD (Dataset 3 with 55 variables and
581,012 instances, and Dataset 4 with 91 variables and
515,345 instances, respectively). Table 14 shows execution
times in seconds averaged from 30 runs for all tests
applicable to these datasets, using R, MATLAB and DataIP.

Regarding data input, R is the slowest, while DataIP
using 8 threads, competitive with MATLAB, is the fastest to
load the two datasets. To perform the summary, DataIP
(sequential or using 8 threads) is several times faster than
MATLAB or R for both datasets, thanks to its initial
preprocessing. Calculating chi-square is also faster using
DataIP (we did not run this for MATLAB for the same
reasons given in previous sections: MATLAB’s chi2gof
does not produce the same results as R and DataIP). With
respect to the calculation of correlations, DataIP remains the
best, by several orders of magnitude. We also used R’s
cor.fk to calculate the Kendall correlation for both
datasets. Times are reported for the correlation between all
pairs of variables. R’s cor.fk is also implemented using
Knight’s algorithm, which has (log)n nO complexity. R
ordinary Kendall implementation and MATLAB’s could not
finish before 15 hours of computation for both datasets.
Spearman could not run in less than 15 hours in MATLAB
and could not finish before 15 hours, in R, for the larger
number of variables (91). Pearson, in R, for the largest
dataset (Dataset 4) could not finish the 30 times replicated
function to calculate the correlation. We then decided to
report on just one run of Pearson for all pairs of variables,
using R. Also, when loading data, R could not finish
replicating 30 times the loading of Dataset 4. In this case,
we also decided to report time for loading the file just once.

Shapiro-Wilk was not applied to these datasets, because
they have more than 5,000 instances. Significance tests and
regressions were also not calculated because no pair of
variables had all three correlations strong (all of them
greater than 0.75).

Table 14 Covertype and YearPredictionMSD (time in seconds)

Function System Covertype YearPred

MATLAB 5.153896000 11.599155000
R 11.239400000 759.303000000

DataIP (1) 14.915800000 50.017300000

Data input

DataIP (8) 5.106310000 11.509100000
MATLAB 11.509100000 19.491427000

R 22.150366670 98.33860000
DataIP (1) 0.613753000 1.330550000

Summary

DataIP (8) 0.993580000 2.064320000
R 7.939400000 25.005630000

DataIP (1) 0.028485300 0.043176500
Chi-square

DataIP (8) 0.028518900 0.043124200
MATLAB 17.337545000 42.161247000

R 200.327500000 1,672.516000000
DataIP (1) 1.190970000 2.716040000

Pearson
correlation

DataIP (8) 0.719797000 1.755250000
MATLAB (Aborted) (Aborted)

R 798.738400000 (Aborted)
DataIP (1) 15.489100000 67.36650000

Spearman
correlation

DataIP (8) 9.827960000 39.189800000
MATLAB (Aborted) (Aborted)

R (Aborted) (Aborted)
R (cor.fk) 788.131000000 4,230.495000000
DataIP (1) 50.919000000 266.753000000

Kendall
correlation

DataIP (8) 16.688200000 51.050800000

6 Conclusions

Our main conclusion is that traditional implementations of
basic statistical functions, crucial for data analysis, need to
be revisited, and better designed to meet the requirements of
larger datasets. We presented results of a C/C++
implementation of many statistical functions and show that,
even for small datasets, well designed code can achieve
very good performance when compared with state-of-the-art
statistical software. Experiments running with 1 thread or
8 threads perform several orders of magnitude faster than
SPSS, R or MATLAB. Besides, we can achieve reasonable
speedups taking advantage of a multicore machine, which
MATLAB and R can also take, but, even with perfect
speedups, would not beat DataIP. DataIP was the only
software that completed all experiments while the other
software failed some experiments due to memory or timing
issues.

16 A. Rodrigues et al.

Acknowledgements

We are grateful to Professor Domingos Alves, from
Faculty of Medicine of Ribeirão Preto, São Paulo, Brazil,
who kindly provided us with the patient discharge
dataset. We would also like to thank the anonymous
referees that helped improving the quality of this work.
This work was supported by NLPC, Lda (Proj. DATAIP
Nb. 38667, 07/2012-SII&DT), IAPMEI/COMPETE/QREN/
EUROPEAN UNION, Copyright ©2014 2015 NLPC – I.C.
NLPC T.A.I.C.C. Gestão, LDA – All rights reserved. Other
funding was provided by the European Regional
Development Fund as part of project NanoSTIMA
(NORTE-01-0145-FEDER-000016).

DataIP is a R&D project from NLPC – Dataias. All
contacts related to this work should be addressed to:
rd@dataias.com, http://www.dataias.com.

References
Casella, G. and Berger, R. (2008) Statistical Inference, Duxbury

Advanced Series, Duxbury Thomson Learning, Pacific
Grove.

Chambers, J.M., Freeny, A. and Heiberger, R.M. (1992) Analysis
of Variance; Designed Experiments, Wadsworth &
Brooks/Cole, Pacific Grove.

Chandra, R. (2001) Parallel Programming in OpenMP, High
Performance Computing, Morgan Kaufmann Publishers,
San Diego.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A.,
Burrows, M., Chandra, T., Fikes, A. and Gruber, R.E. (2008)
‘Bigtable: a distributed storage system for structured data’,
ACM Trans. Comput. Syst., Vol. 26, No. 2, pp.4:1–4:26.

Christensen, D. (2005) ‘Fast algorithms for the calculation of
Kendall’s τ’, Computational Statistics, Vol. 20, No. 1,
pp.51–62.

Conover, W. (2006) Practical Nonparametric Statistics, Cram101
Series, Cram101 Incorporated, New York.

Croux, C. and Dehon, C. (2010) ‘Influence functions of the
spearman and Kendall correlation measures’, Statistical
Methods & Applications, Vol. 19, No. 4, pp.497–515.

Hollander, M. and Wolfe, D.A. (1973) Parallel Programming in
OpenMP. Nonparametric Statistical Methods, John Wiley &
Sons, Kendall and Spearman Tests, New York.

Hollander, M., Wolfe, D. and Chicken, E. (2013) Nonparametric
Statistical Methods, Wiley Series in Probability and Statistics,
Wiley, New York.

Hsu, C-H., Slagter, K.D. and Chung, Y-C. (2015) ‘Locality and
loading aware virtual machine mapping techniques for
optimizing communications in mapreduce applications’,
Future Gener. Comput. Syst., Vol. 53, No. C, pp.43–54.

Kane, M., Emerson, J. and Weston, S. (2013) ‘Scalable strategies
for computing with massive data’, Journal of Statistical
Software, Vol. 55, No. 1, pp.1–19.

Kendall, M. and Gibbons, J. (1990) Rank Correlation Methods,
A Charles Griffin Title, Edward Arnold, London.

Knight, W.R. (1966) ‘A computer method for calculating
Kendall’s tau with ungrouped data’, Journal of the American
Statistical Association, Vol. 61, No. 314, pp.436–439.

Marsaglia, G., Tsang, W.W. and Wang, J. (2003) ‘Evaluating
Kolmogorov’s distribution’, Journal of Statistical Software,
Vol. 8, No. 18, pp.1–4.

Montgomery, D. and Runger, G. (2010) Applied Statistics and
Probability for Engineers, John Wiley & Sons, New York.

Press, W. (2007) Numerical Recipes 3rd Edition: The Art of
Scientific Computing, Cambridge University Press,
Cambridge.

Royston, P. (1995) ‘Remark as r94: a remark on algorithm as 181:
the w-test for normality’, Journal of the Royal Statistical
Society, Series C (Applied Statistics), Vol. 44, No. 4,
pp.547–551.

Rumsey, D. (2010) Statistics Essentials for Dummies, For
Dummies, Wiley, Hoboken.

Slagter, K., Hsu, C-H. and Chung, Y-C. (2015) ‘An adaptive and
memory efficient sampling mechanism for partitioning in
mapreduce’, International Journal of Parallel Programming,
Vol. 43, No. 3, pp.489–507.

Slagter, K., Hsu, C-H., Chung, Y-C. and Zhang, D. (2013)
‘An improved partitioning mechanism for optimizing massive
data analysis using mapreduce’, The Journal of
Supercomputing, Vol. 66, No. 1, pp.539–555.

Venables, W.N. and Ripley, B.D. (2002) Modern Applied Statistics
with S, Springer-Verlag, New York.

Wonnacott, T. and Wonnacott, R. (1990) Student Workbook,
Introductory Statistics for Business and Economics, Fourth
Edition and Introductory Statistics, 5th ed., Wiley,
New York.

Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S. and
Stoica, I. (2010) ‘Spark: cluster computing with working
sets’, in Proceedings of the 2nd USENIX Conference on
Hot Topics in Cloud Computing, HotCloud’10, USENIX
Association, Berkeley, CA, USA, p.10.

