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a b s t r a c t

Quality control, failure analysis and improvement are central elements in manufacturing. Total Quality
Management (TQM) provides several quality oriented tools and techniques which, in the event of things,
are not always applicable. The increased use of Information Technology (IT) in manufacturing means
increased data availability and improved potential for knowledge extraction. Exploiting this knowledge
requires data storage and processing facilities with demanding, time consuming sessions for inter-
pretation. Without suitable tools and techniques, knowledge remains hidden in databases. This paper
presents a method to help identify root causes of nonconformities (NCs) using a pattern identification
approach. Hereby, a general framework, Knowledge Discovery in Databases (KDD), is adapted. This
adaptation involves incorporating an economic concentration measure, the Herfindahl–Hirschman Index
(HHI), as the data mining algorithm. After presenting the theoretical background, a new methodology is
proposed. The suggested approach can be regarded as a quality tool to help make root cause identifi-
cation of failures simpler and more agile. A case study from the automotive industry is examined using
this tool. Results are obtained and presented in the form of matrix based patterns. They suggest that
concentration indices help indicate possible root causes of NCs, warranting further investigation in this
area.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Controlling and maintaining quality of production processes is
an important topic for manufacturing companies. The increased
use of Information Technology (IT) in manufacturing means in-
creased availability of data. Demanding activities of data proces-
sing, interpretation and visualization are necessary in order to
extract knowledge from data.

Total Quality Management (TQM) can be understood as a phi-
losophy consisting of values, tools and techniques to increase
customer satisfaction and continuous improvement. Tools and
techniques to control process parameters are a central element.
Deviations from specified target values of the process parameters
signal the need for action. Nowadays, ensuring the capacity nee-
ded for storing manufacturing data is not a problem. Likewise,
central processing units are highly capable of treating the data.
However, suitable tools are not always applicable and must be
a FEUP, Rua Doutor Roberto
customized/tailored to solve specific problem statements. If sui-
table tools are not available, knowledge remains hidden in data-
bases [1]. Quality tools and techniques offer a variety of methods
to visualize and control process data. Applied statistics can help
gather evidence to support hypotheses about cause effect relations
[2]. These tools are remedies to numerous quality problems but
might not always be effectual. For instance, if there are too many
variables associated with a particular application, statistical ana-
lysis and visualizations of traditional quality tools are impractical
evaluation instruments.

In mass production like environments, with numerous ma-
chines at several process stages, the traceability of products de-
pends largely on the degree of IT implementation. Additional work
must be done for data analysis, interpretation and visualization.
Knowledge Discovery in Databases (KDD), for example, offers a
general framework consisting of sub-elements to generate
knowledge from a dataset [3]. Its core element is data mining
(DM), a method designed to identify patterns [3]. Developers using
this method have a high degree of freedom to choose what kind of
element to employ in the DM step.

This paper presents a methodology to identify specific
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machines within a manufacturing process as the possible origins
of a given nonconformity (NC). In particular, the concentration of
NCs is analyzed for single machines of a multi-stage and multi-
machine manufacturing process. Once the relevant machine has
been identified, it is possible to further investigate likely root
causes. The study presented here relates to a real industrial pro-
blem. The methodology is validated using a case study from the
automotive industry. The company operates in a mass production
environment, producing similar products, which vary in size,
composition and shape. Quality related data for two consecutive
manufacturing process stages is evaluated. After data treatment,
the result is visually depicted using colour highlighted matrices.
The matrices serve to identify the source responsible for the NCs
being investigated. In order to create the matrices, all NC occur-
rences are analyzed and their concentration is measured over the
machines. The visualization takes into account production stages
and production volume. Additionally, the specific types of NCs that
occur at the machines within the process stages are considered.

The results obtained are of interest to both academia and in-
dustry. Practitioners, such as quality engineers, can integrate the
approach into their set of quality tools in their quest for improving
quality in manufacturing. Different disciplines such as IT, quality
control and economics are brought together.

The paper is structured as follows. A literature review is given
and the relevant background discussed. The methodology is pre-
sented and formalized for the defined set process stages to be
analyzed. Defining these process stages is the first step presented
in this paper, followed by the identification and collection of re-
levant data. In order to identify patterns, a methodology is used
which is adapted from discovering knowledge in databases. After
data treatment the core element of data mining is introduced and
results can be obtained. The methodology's strengths and limita-
tions are discussed and an application case is presented. The ap-
plication case from the automotive industry is studied using this
methodology. Results from identifying NC root causes are dis-
cussed and conclusions drawn.
2. Background and research development

This section provides the theoretical background in relevant
subject areas and discusses the development of research on this
topic. TQM and quality tools are reviewed and Knowledge Dis-
covery in Databases (KDD) is presented, a specific method de-
signed to identify patterns in datasets.

2.1. Quality tools in TQM

Total Quality Management (TQM) is a diverse and extensive
subject, whose development has been influenced by a subjective
Table 1
Quality tools and techniques. Adapted from [18].

The seven basic quality control tools The seven management tools

Cause and effect diagram Affinity diagram
Check sheet Arrow diagram
Control chart Matrix diagram
Graphs Matrix data analysis method
Histogram Process decision programme cha
Pareto diagram Relations diagram
Scatter diagram Systematic diagram
body of thought. There is no global definition of TQM and its un-
derstanding and use varies across companies [4]. A generally ac-
cepted way of describing of TQM is as a philosophy that may also
entail the use of certain tools and techniques. It aims to increase
customer satisfaction and encourage continuous improvement.

Using tactics to change a company's culture leads to a mind-set
focused on satisfying the needs of the internal customer [5,6]. This
is endorsed through structured technical techniques. TQM is also
understood as representing a management system consisting of
values, techniques and tools as three independent components [7].

The tools of TQM described in literature have evolved over
time. However, it is still generally accepted to include the seven
quality control tools (Table 1) which were first selected by Ishi-
kawa [8]. At a later date a new set of seven management tools was
presented. These are more related to process mapping and pro-
blem-solving [9]. Only a few people were responsible for the de-
velopment of the basic tools – Shewhart [10], Deming [11], Juran
and Gyrna [12], Ishikawa [13], Ōno [14], Shingō [15] and Taguchi
[16] – starting in the late 1930s. Since then, the evolution that has
occurred reflects people's ability to bring the tools together pro-
grammatically in order to achieve company-wide benefits [17].
Common tools and techniques are summarized in Table 1 [18].

McQuater et al. [2] describe tools and techniques, as portrayed
in Table 1, to be practical methods, skills, means or mechanisms
used for a specific circumstance. Their purpose is to achieve po-
sitive change and improvement. However, many of the tools in
Table 1 are not appropriate for root cause identification of non-
conformities. Instead, these are more applicable for detecting
change, e.g. control charts and Statistical Process Control [19,20].
Others provide a method of structured analysis for root cause
identification, such as the cause and effect diagram [8] or a
method designed to prevent process and product problems before
they occur, such as Failure Mode and Effect Analysis (FMEA) [21]. A
quality tool has also been suggested for prioritizing failure types to
be selected for future quality improvement projects [22].

Nevertheless, none of the tools contains a systematic approach
to identify root causes of failures from a production dataset. The
absence of such a kind of a tool might be a reflection of the anti-
quated and formal essence of the TQM tools and methods. TQM
tools are to be applied in industrial environments by a wide
spectrum of stakeholders with distinct analytical and computing
competences. As such, TQM tools must be easy to apply and simple
to use, or at least easy to interpret. These essential characteristics
of TQM tools tend to inhibit the transfer of scientific knowledge
and of complex, developed methodologies to the industrial en-
vironment. In fact, the field of KDD has suffered a significant de-
velopment in the last decade through the use of advanced com-
puting algorithms, data mining strategies and the use of artificial
intelligence related methods.

The contribution of the proposed research in this paper is to
Other tools Techniques

Brainstorming Benchmarking
Control plan Department purpose analysis
Flow chart Design of experiments
Force field analysis Fault tree analysis

rt Questionnaire FMEA
Sampling Poka yoke

Problem solving methodology
Quality costing
Quality function deployment
Quality improvement teams
Statistical process control
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Fig. 1. The KDD process c.f. [3].
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cover this gap. This is done by presenting a methodology (or tool)
that is simpler, more agile and easier to interpret to support the
identification of root causes of failures from a production dataset
in a systemic and efficient way. The proposed methodology was
developed based on the KDD field of knowledge, which the next
section now discusses.

2.2. Pattern identification in KDD

KDD can be described as the complete process of discovering
useful knowledge from data [3]. Knowledge is usually exposed by
identifying patterns which can then be used for further analysis.
Pattern identification is a core element of the methodology and
referred to as data mining; it is one specific procedure of KDD [1].
Harding et al. [23] define data mining as a concept and algorithm
mix consisting of machine learning, statistics, artificial intelligence
and data management.

But terminology is ambiguous and one must be aware that
different communities use different terms to mean the same thing.
Fayyal et al. [3] compiled the following names for data mining
across different communities: knowledge extraction, information
discovery, information harvesting, data archaeology, and data
pattern processing. Data mining (DM) is the term used in this
paper.

Fig. 1 portrays the process of KDD that is described by Fayyal
et al. [3]. It starts by selecting a relevant target dataset from a
database. The target data must be pre-processed to remove noise
and outliers before the data can be processed further. The cleaned
data can then be fed into the specially tailored DM algorithm to
generate patterns. The produced patterns must then be inter-
preted and evaluated for the knowledge to be uncovered.

Fayyal et al. [3] mention that the DM algorithm can be com-
posed of a specific mix of the model (the function of the model and
the form in which it is presented), the preference criterion (some
form of goodness-of-fit function of the model to the data) and the
search algorithm (the specification of an algorithm for finding the
path).

Recent reviews of the literature on the topic of KDD and DM
report its popularity for use in manufacturing [1,23,24]. These
reviews deal with KDD and DM surrounding the topic of quality
improvement. One can say that DM functions can be categorized
into clustering, association, classification and prediction [1,24].
Köksal et al. [24] refer to an increasing use of DM applications for
quality related tasks, such as quality control, fault diagnosis, defect
analysis, predicting quality and parameter optimization [1,24].

Of these tasks, the most widely used are applications for quality
prediction followed by those used for classifying quality and
parameter optimization [24]. There are plenty of applications or
algorithms proposed for deploying DM. Some of these are maps
for classification, regression or clustering of data, while others
include summaries, dependency modelling of variables and se-
quence analysis [3]. Models may be represented in different ways,
ranging from decision trees to linear and non-linear models, to
case-based reasoning and beyond to include probabilistic graphi-
cal models of dependencies.

In addition, Du and Xi [30] state that three classes of methods
are available for identifying root causes. The engineering-model-
based methods draw on mathematical models from engineering
that usually integrate product quality information and root cause
information. The success of this class of methods depends on the
availability of know-how related to the possible root causes and
the accuracy of the model (knowledge that is in general very dif-
ficult to attain for a complex system) [30,31]. Another class of
methods, known as knowledge-based methods [30], requires the
understanding and establishment of root cause logics. It also re-
quires the combination of data mining and knowledge discovery
techniques to define the decision approach [32]. Besides the high
level of effort necessary to build-up this class of method, its ap-
plication field is usually restricted to the manufacturing systems
under analysis. The third class is referred to as intelligent-learn-
ing-based methods [30]. These methods are usually based on
neural networks, taking advantage of their self-learning potential
and the fact that prior modelling or reasoning is not mandatory.
The methods based on neural networks proceed to identify the
root causes by pattern recognition in quality control charts and/or
changes in the process performance [33,34]. Others have proposed
the integration of neural networks with engineering rules and
design characteristics [30]. Despite the improved accuracy and
effectiveness of this last class of methods, the complexity involved
in building up the methods and the intricate numerical outputs
mean they lose out in terms of agility and ease of interpreting the
results obtained.

So, one can conclude that quality tools and techniques provide
a remedy for a wide range of problems. However, they do not
sufficiently remedy the problem of root cause analysis. Although,
data in manufacturing is omnipresent, it requires effort for treat-
ment and analysis. If a suitable tool is not available it must be
tailored to solve a specific problem, else the knowledge remains
hidden in databases. In the field of data analysis, KDD provides an
efficient methodology to make sense of a dataset. This general
methodology is present in engineering and well established for
quality related topics.

Thus a gap has been identified in TQM tools in relation to the
problem of root cause identification. This gap can be filled by
adapting KDD related knowledge and techniques to fit with TQM
tools, favouring elements of simplicity and agility. This is the aim
of the approach presented in this paper.

2.3. Research aims and scope

The main aim of the developed approach is to increase the
agility and to facilitate the application of a systematic strategy for
identifying the root causes of nonconformities. The method can be
regarded as a contribution to the field of TQM and is targeted at
both researchers and practitioners in quality management. Filling
a gap among the existing TQM tools and methods, the proposed
approach allows KDD related developments to be employed by
applying KDD to “quickly” identify root causes of nonconformities
in an industrial real-time setting and decision making environ-
ment. This is especially important for industries with multi-stage
and multi-machine processes, 100% manual inspection and de-
manding customers. In this context, a novel approach to identi-
fying root causes using a visual representation is an actual need.

The concentration of nonconformities (NC) is the measure used
to assess the level of importance and hence to identify the path to
determine the main root cause. Respecting the spirit of the TQM
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tools, the interpretation of the results is based on visualizing the
results for the machines and processes involved. This helps ease
the task of identifying the problem points and also facilitates
communication among the several people that may be involved.
Finally, the identified possible root causes must be proven as
correct by investigating the data and other evidence on site.

This paper makes a significant contribution to extend existing
methods for identifying nonconformity root causes in multi-stage
and multi-machine production processes. This is done by adapting
a general framework that is composed of concentration measure
formulae. This framework can be regarded as a quality tool de-
signed to reveal the individual machines contributing to
nonconformities.
3. Nonconformity root causes and the identification matrix

This section presents the proposed methodology designed to
serve as a quality tool. The functionality, the inputs required and
the outputs generated are all explained and discussed.

3.1. Purpose and overview

The proposed methodology is of particular interest for manu-
facturing companies with multi-stage production processes each
composed of multiple machines. Imperfect production processes
result in a variety of NCs on a given product. The methodology
proposes a visualization of concentration indices according to NCs
allocated to machines. The integration of an economics concept
(the concentration measure) into a KDD methodology means it can
be used as a quality tool for identifying possibilities to improve
processes in mass production type environments with diverse NCs.
This enables the user to efficiently identify machines with a high
concentration of nonconformities, potentially indicating the root
cause of the NCs. The methodology can be applied by practitioners
such as quality engineers of industrial companies with problems
where various NCs occur at multiple machines distributed across
multiple process steps. Moreover, the approach can be applied to
any type of concentration measurement exercise.

Following the process steps of the methodology (please refer to
Fig. 2) leads to the creation of the quality tool. An adapted meth-
odology for pattern identification is suggested allowing manu-
facturing processes to be improved by learning from data. The
methodology is similar to the KDD methodology (Fig. 1), adding a
method for measuring concentration (taken from the field of
economics) as the data mining sub-step. The resulting patterns
provide the basis for interpretation and knowledge creation.
Firstly, one can identify the NC from among a set of specific NC
types that occur concentrated at individual machines. Secondly,
one can identify at which individual machines a specific NC occurs
the most. This additional knowledge serves to highlight possible
origins of NCs.

In order to obtain the desired results, one must first gather
quality related data for the manufacturing process. This data
provides a list of NCs of the relevant manufacturing processes.
Fig. 2. The methodology of the study. (For interpretation of the references to c
Ideally, for each NC it includes a record of the exact machines that
the product had passed through at every relevant manufacturing
step.

In order to retrieve data in a reliable manner the format of the
input data file must be defined. The input file can then be pre-
processed to remove outliers and noise. This includes spreadsheet
calculation which must be tailored or integrated with the pre-
viously obtained input data file. The next step is to define the DM
method or algorithm. In this paper, the Herfindahl–Hirschman
Index is the measure used as the data mining sub-step algorithm.

The result is visualized using a coloured table with cells ranging
from red to green – green indicates no concentration and red in-
dicates a high concentration of nonconformities. Dark red shading
indicates critical machines where NCs occur highly concentrated.
This high concentration suggests the associated machine to be the
contributor of that particular NC. Further analysis is suggested and
corrective action necessary, if applicable.

3.2. The Herfindahl–Hirschman Index as a concentration measure

The Herfindahl–Hirschman Index (HHI), also referred to as the
Herfindahl Index, is a method used to measure concentration [25].
Unaware of Hirschman's published work Herfindahl developed a
similar method of measuring concentration at a later date [25,26].
The equations are identical apart from the square root of Hirsch-
man's index on Herfindahl's equation [26,27]. Herfindahl's equa-
tion is depicted in (1) and Hirschman's in (3).
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the equation to measure competition in the market [25]. For in-
stance, it is used to analyze the effects on market competition after
company mergers [25,28]. The US Department of Justice and
Federal Reserve deploy the index in such cases. It is also used to
measure income concentration in households [25].

3.3. Approach, strengths and limitations

The main strength of this approach is the ability to generate
knowledge from production and quality related data. This
knowledge is visually and intuitively presented, facilitating the
introduction of quality improvement measurements. Moreover,
the DM algorithm used is simple enough to be implemented and
executed using basic spreadsheet calculation software. As such,
the user does not have to invest in new software and only needs to
replicate this paper's instructions to realize the potential benefits
of the tool. Additionally, the results presented by the tool are
highly illustrative. The tables use colour highlighting and signal
high and low concentrations of NCs among machines.

A drawback of this approach is that it is essentially an offline
tool. Thus it requires periodical updates and must be fed with
recent input data files. If wanted, it can act in real time, requiring
an upgrade with additional IT development to operate as an online
tool according to the on-site IT environment. Additionally, this is a
method to allocate NCs to machines. The root cause must be
identified and may not originate with a machine failure. Thus,
there may be cases of false positives that indicate a particular
machine as responsible for a high concentration of NCs, without
the machine being the root cause of the NC.
4. Application case study

The suggested methodology in Fig. 2 was applied using a ma-
ture, high technology, automotive parts producer. The company
maintains a quality management system and is certified by quality
standards such as DIN EN ISO 9000, DIN EN ISO 9004 and ISO/TS
16949.

4.1. Problem description

The high technology product of the company is produced in the
form of a multi-stage production process operation.
Stage n-1Stage 1 …

Machine #
Operator #
Date and time

Fig. 3. The production flow and
The multi-stage production process of the company is a com-
position of different manufacturing processes. The difference
stages require specialist knowledge in various fields of science.
Among the processes are the mixing of raw materials, the as-
sembly of subassemblies and a process similar to injection
moulding. Each production stage consists of multiple machines. At
every production stage a product passes through exactly one
machine. Thus, there is no product that skips one stage and there
is no product that passes two machines in one stage. Barcodes are
attached to the product and every machine is equipped with a
barcode scanner that saves the product-machine relationship to a
database. This ensures that the information stored in the database
makes the product traceable. Thus, the path that the product takes
across the individual machines of the production stages can be
recreated.

At the end of the manufacturing line an inspection station is
located where product appraisal is performed by humans. They
manually assess the product for conformance to requirements.
Conforming products are accepted and forwarded to be shipped to
customers. Nonconforming products are rejected and the type of
NC is added to the information system. A decision follows the
rejection regarding the recoverability of the product. Recoverable
products are sent to be reworked and unrecoverable products are
scrapped. Due to the complex nature of the product and its pro-
cesses, there are a multitude of causes of nonconformities. These
are attributable to process failures, machine stoppages, incorrect
composition, quality of raw materials or human error. Additionally,
NCs are often only detectable in the finished product and cannot
be seen in the unfinished product in between stages. The NCs vary
from minor cosmetic recoverable blemishes to severe imperfec-
tions that may not be recoverable. The company is focused on
scrap rate reduction. Thus, they form multi-departmental teams to
initiate studies to identify and eliminate root causes. This task has
proven to be difficult, which is why the tool in this paper was
developed.

4.2. Data retrieval and pre-processing

Fig. 3 illustrates the production stages and the input of in-
formation into the database.

Corresponding data is input into the database at the last two
production stages before the inspection station. The barcode
scanners attached to the machines scan the product with an
Stage n Inspection

Machine #
Date and time

Machine #
Operator #
Date and time
OK/NOK
NC type

Database

data input to the database.



Table 2
Retrieved data input file from database.

Barcode Stage n�1 Stage n Inspection

Machine Date Time Machine NC type Decision Date Time

– – – –

1nnn622 A1 2011-02-11 16:32:14 B12 NC17 S 2011-02-01 06:10:55
1nnn799 C4 2011-02-11 18:17:54 Q34 NC24 S 2011-02-09 17:31:36
1nnn464 B7 2011-02-11 19:16:25 T07 NC4 R 2011-02-03 07:01:40
1nnn699 B9 2011-02-12 0:07:21 G06 NC1 R 2011-02-11 09:47:09
1nnn244 A5 2011-02-12 0:58:27 A19 NC31 R 2011-02-01 03:47:59
1nnn505 C2 2011-02-12 9:14:49 R23 NC12 R 2011-02-08 14:02:45
– – – –

Table 3
Pre-processing of data to identify the number of occurrences according to
machines.

Stage n�1 NC1 NC2 – NCn Stage n NC1 NC2 – NCn

Machine 1 x y – z Machine 1 x y – z
Machine 2 – – – – Machine 2 – – – –

– – – – – – – – – –

Machine n u v – w Machine n u v – w
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attached barcode. The data contains information about the specific
production machine, the operator involved as well as time and
date (please refer to Table 2). Lastly, the result of the appraisal
decision provides a final input.

Basic calculations are required to compute the occurrences of
NCs according to individual machines using the retrieved data as
presented. This results in a matrix with machine number and NC
type filled with the number of incidents as presented in Table 3.

Applying the statistical formula (1) and (2) to the tables, one
can calculate the HHI for a specific NC for one production stage.
Calculating the HHI for all NCs for each production stage provides
information showing the level of concentration of NCs for in-
dividual machines. Visualizing the data in a specific way can help
in identifying the NCs with the highest concentration for particular
machines.

4.3. Matrix output – results and discussion

This section presents the matrix output. Firstly, those NCs with
high HHI values are identified. Secondly, two examples are pre-
sented of cases with the highest HHI values for each production
stage.

4.3.1. Concentration indices for two production stages
Following the methodology steps of the tool generates the data

used in the result tables. Table 4a and b provide an overview of the
concentration of all NCs for the two production stages. The values
in each cell represent the HHI results for each NC for the two
stages. Results for stage n�1 are illustrated in Table 4a and results
for stage n are presented in Table 4b. Each cell represents the
concentration of incidents of one specific NC within one produc-
tion stage. This measure shows the concentration of NC occur-
rences among the production machines for one production stage.

In order to relate the NC type with the indicated HHI number it
is necessary to consult Table 5. In this table the NC types are stored
in the form of a matrix with horizontal index letters and vertical
index numbers. Comparing these indices reveals the NC type that
matches its corresponding HHI index number.

In Table 4a NC8, which is located in cell 1b, has an HHI of 0.8 in
stage n�1 and an HHI of 0.14 in stage n. NC8 records by far the
highest concentration with the manufacturing machines in stage
n�1. This value is close to 1.0, which indicates a very high
concentration. This same NC (NC8) does not have the highest HHI
for stage n. However, compared to the other NCs in that stage, it
does show a high concentration. One may hypothesize that only
one or just a few machines in stage n�1 are completely re-
sponsible for NC8's occurrence.

In Table 4b, NC14 which is located in cell 7b, shows an HHI of
0.21 in stage n and an HHI of 0.17 in stage n�1. NC14 shows the
highest concentration for the manufacturing machines in stage n.
This same NC (NC14) does not show the highest HHI for stage n�1.
Thus, one may hypothesise that only a few machines in stage n are
completely responsible for NC14's occurrence.

The concentration numbers across the stages are not compar-
able to each other. This reflects the different total number of ma-
chines at each step. However, within one production stage they do
become comparable with each other, since the number of manu-
facturing machines is the same.

In order to analyze the results, the strategy is followed to ob-
serve the results for the highest concentrations for both stages.
With regard to Table 4a the highest concentration HHI value is
indicated in cell 1b which relates to NC8. Table 4b records the
highest concentration for NC14 in cell 7b.

4.3.2. The highest concentration measure of a given NC of stage n�1
The following shows the result table for NC8 according to the

selection criterion, with the highest HHI of stage n�1 presented in
Table 6a. For the sake of completeness the result table of NC8 for
stage n is also presented in Table 6b.

Production stage n�1 consists of fewer machines than in
production stage n. The machines at each production stage operate
in parallel and each production stage consists of exactly one ma-
chine processing the product being fabricated. The route that the
product takes from one production stage to the other depends on
the set-up configuration of the machines. Different configurations
allow products varying in size, composition and shape.

Table 6a presents the number of occurrences of NC8 for every
machine of production stage n�1. As one can see, machine
number 2A is associated with 1478 NCs out of a total number of
1653 NCs. In other words, 89% of all NC8 occurrences are related
with machine 2A for production stage n�1. All other machines of
this production stage show numbers of occurrences between
0 and 82.

Table 6b presents the number of occurrences for every machine
of production stage n. In comparison to stage n�1 the NCs are a bit
more fragmented. Machine number K1, K2, L19 and L20 have a
total number of 1187 occurrences. This means that 70% of all NC8
occurrences were associated with four machines in stage n. Of the
remaining 30%, machines K15 and K16 relate to around 150 oc-
currences each, while all other machines are free of NCs or record
only a very few.

The above results highlight the very high concentration of NCs
associated with machine 2A of production stage n�1. Thus, the
number of occurrences is very concentrated on one single



Table 4
(a) The HHI for production stage n�1 and (b) the HHI for production stage n according to the NCs.

a b c d e
1 0.09 0.80 0.16 0.09 0.04
2 0.30 0.03 0.07 0.04 0.06
3 0.04 0.05 0.06 0.09 0.09
4 0.09 0.18 0.05 0.04 0.06
5 0.11 0.05 0.17 0.08 0.04
6 0.03 0.10 0.05 0.10 0.10
7 0.13 0.17 0.03 0.05 0.05

HHI values for NCs of production stage n-1

horizontal index letters

ve
rti

ca
l i

nd
ex

 n
um

be
rs

a b c d e
1 0.02 0.14 0.08 0.04 0.02
2 0.04 0.00 0.02 0.01 0.01
3 0.01 0.01 0.01 0.05 0.02
4 0.05 0.06 0.01 0.01 0.01
5 0.02 0.01 0.12 0.02 0.01
6 0.00 0.03 0.02 0.03 0.04
7 0.07 0.21 0.01 0.03 0.02

HHI values for NCs of production stage n

ve
rti

ca
l i

nd
ex

 n
um

be
rs

horizontal index letters

Table 5
Corresponding NCs for the HHI in Table 4 for stage n�1 and stage n.

Horizontal index letters

a b c d e

Vertical index numbers 1 NC1 NC8 NC15 NC22 NC29
2 NC2 NC9 NC16 NC23 NC30
3 NC3 NC10 NC17 NC24 NC31
4 NC4 NC11 NC18 NC25 NC32
5 NC5 NC12 NC19 NC26 NC33
6 NC6 NC13 NC20 NC27 NC34
7 NC7 NC14 NC21 NC28 NC35
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production machine. This suggests that further steps are needed to
analyze the root causes of NC8 at this specific machine (2A) at
stage n�1. A possible tool to complement the analysis can be the
cause and effect diagram from Table 1. This lists all possible con-
tributing factors to look out for, such as operator error, machine
failure, method errors or material problems. As such, the particular
branch where the machine sits should be placed under scrutiny in
order to methodically investigate the exact root cause, if there is
one to find.

4.3.3 The highest concentration measures of a given NC of stage n
The result table for NC14 is presented in Table 7b, using the

highest HHI of stage n as the selection criterion. Additionally, the
result table of NC14 for stage n�1 is presented in Table 7a.

The same logic as presented in Section 4.3.2 can be followed in
the analysis of Table 7a and b. However, the results in Table 7 are
visibly very different to those seen in Table 6. The highest occur-
rences for NC14 are related with machine 32Q. This machine is
responsible for 308 incidents, which represents 45% of all NCs
produced in stage n. When looking at Table 7a, machine 2D shows
232 incidents, which represent 36% of all NCs produced in stage
n�1. While the number of occurrences are by far the highest in
stage n (Table 7b) there is a different picture for stage n�1
(Table 7a). Besides machine 2D, machine 6C and 4D also show
moderately high incident rates.

Based on the information gleaned above, there is no strong
reason to believe one machine to be the originator of NC14. In this
case it is suggested that besides machine 32Q from stage n, ma-
chine 2D from stage n�1 should be selected for further analysis.
However, when complementing the analysis with the cause and
effect diagram there must be room for other possible contributor
factors besides the machines, such as operators, methods or ma-
terials, among others.

When comparing the results in Table 6a and b a mismatch of
the total numbers of NC occurrences becomes apparent. While the
total number of NC8 in stage n�1 sums up to 1653, stage n shows
1699 occurrences of this NC. In theory both numbers should match
since every product passes exactly one machine at each produc-
tion stage. The reason for this inconsistency is incomplete datasets.
These can be the result of technical defects with scanned barcodes
or neglected data entry by operators, among other problems. The
same type of inconsistency accounts for the discrepancies between
Table 7a and b.

Similar matrices as presented in Tables 6a,b and 7a,b can be
obtained for all other NCs presented in Table 5 [29] but including
these figures is beyond the scope of this paper.
5. Conclusion

This paper proposed a methodology designed to help identify
the root causes of nonconformities in a simpler and more agile
manner. Following the methodology leads to the construction of
tables providing a visual depiction of the problem areas. The
general KDD framework provides a starting point which is then
adapted to the problem in hand. This adaptation involved in-
tegrating a concentration measure (HHI) used in economics as the
DM algorithm. A visual depiction of the knowledge generated
helps identify the root causes in environments similar to mass
production.

The proposed methodology can be used as a quality tool. Its use
has been validated in an application to the automotive industry.
The methodology produces data tables where cells are shaded
according to the concentration of a specific incident linked to
particular machines. These tables help single out the possible main
contributors of NCs by making them visible to the user. With this
information the root cause can be further investigated.

Results indicate that it is possible to identify individual ma-
chines as being possible sources for the NCs. The applied visuali-
zation technique reveals the machines that indicate a high con-
centration of a specific NC.

This quality tool serves as an instrument in the data analysis
step. The information produced allows the user to perform selec-
tive analysis to identify the root cause and introduce corrective
action. The highly visual results ease the interpretation and facil-
itate analysis to constantly improve manufacturing quality.

The methodology integrates different disciplines, namely IT,
quality control and economics. Integrating a well-known eco-
nomics concept into a general IT framework provides it with an
additional field of application in the area of quality. Practitioners –
such as quality engineers in industrial companies – can use the
tool to identify root causes in high volume production processes



Table 7
(a) Result presentation of NC14 allocated to machines of process stage n�1 and (b) stage n.

A B C D
1 4 3 7 3
2 2 3 4 232
3 2 2 5 7
4 17 1 7 74
5 13 4 0 1
6 4 6 103 7
7 25 6 4 7
8 3 7 10 6
9 3 11 9 7
10 4 4 6 23

Line

M
ac

hi
ne
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um
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r

9NC14

A B C D E F G H I J K L M N O P Q R S T
1 0 0 0 3 0 2 0 1 0 0 0 0 0 0 1 0 2 4 0 2
2 1 0 1 0 0 1 1 0 0 0 0 1 0 0 4 1 0 2 0 0
3 0 2 0 0 0 0 0 0 0 1 0 3 0 0 2 1 1 1 0 0
4 0 0 0 0 0 1 0 0 0 0 0 0 0 0 5 0 0 3 0 0
5 0 5 1 0 0 0 0 0 1 0 1 1 0 3 0 0 1 0 1 2
6 0 9 0 2 0 1 0 0 0 0 0 1 1 1 0 1 0 1 0 1
7 0 0 0 1 0 0 0 1 2 0 0 0 0 3 0 1 0 0 1 0
8 0 0 1 0 1 2 0 0 0 0 0 1 1 2 0 0 1 0 1 1
9 0 1 0 0 0 0 0 2 0 0 2 0 3 1 3 0 0 3 0 0
10 0 2 2 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
11 0 1 0 0 0 1 2 0 1 7 0 1 0 1 0 0 2 0 10 0
12 0 0 0 1 0 0 0 0 0 5 0 0 0 5 1 1 0 0 24 0
13 1 0 1 4 0 1 0 2 0 2 0 1 0 0 1 0 1 1 1 2
14 0 0 1 2 0 0 0 1 0 5 2 3 0 2 0 1 0 0 3 2
15 0 3 0 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 1 1
16 0 2 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
17 0 0 0 0 0 0 1 0 5 1 1 1 1 0 0 0 1 0 1
18 2 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 1 6
19 0 2 0 0 1 2 1 0 0 0 0 1 0 2 1 2
20 0 2 0 0 0 2 0 0 0 1 0 1 0 0 0 1
21 0 1 0 2 0 0 0 0 2 0 0 0
22 0 2 0 0 1 0 0 0 0 0 1 1
23 0011000
24 1010000
25 0 0 0 2
26 0 1 0 0
27 0 39 0 0
28 0 35 0 0
29 0 0 0 0
30 0 0 0 0
31 0 0 0
32 308 0 0
33 0 0 0
34 0 2 0
35 1 0 0
36 0 0
37 0
38 0
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ne
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um

bb
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Line9NC14

Table 6
(a) Result tables of NC8 allocated to machines of process stage n�1 and (b) stage n.

A B C D
1 24 0 1 2
2 1478 1 0 6
3 1 0 2 0
4 0 0 2 0
5 0 0 0 14
6 82 0 0 1
7 0 0 0 15
8 3 1 2 3
9 7 1 3 1
10 0 0 0 3

M
ac

hi
ne

 n
um
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11 LineNC8

A B C D E F G H I J K L M N O P Q R S T
1 0 0 0 0 0 0 0 0 0 0 267 0 1 0 0 0 15 0 0 0
2 0 0 0 0 0 0 0 0 0 0 315 1 0 0 0 0 0 15 0 0
3 0 0 4 0 0 0 0 0 0 0 0 3 0 1 0 0 2 0 0 0
4 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
6 0 0 0 7 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1
7 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 138 0 0 0 0 0 0 0 0 0
16 0 0 0 0 1 0 0 0 0 0 154 0 0 0 1 0 0 0 1 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 8 0 301 0 0 0 0 29 3 0 0
20 0 0 0 1 0 2 0 304 0 1 1 1 7 0 0 0
21 0 0 0 0 0 0 0 0 8 0 0 0
22 0 0 0 0 1 1 0 0 7 0 0 0
23 0100000
24 1000000
25 38 4 0 0
26 23 0 0 0
27 0 0 0 0
28 0 0 0 0
29 0 0 0 0
30 0 0 0 0
31 0 0 0
32 0 0 0
33 0 0 0
34 0 0 0
35 0 0
36 0 0
37 0
38 0

11 Line
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bb
er

NC8
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with numerous machines and diverse NCs. As such, the tool is
applicable to industries other than the one in the application
studied. However, it is advantageous if the database provides
comparable data and information is similarly available. As with the
results presented, the visual representation of the data helps in
gaining a quick understanding of which NCs show the highest
concentrations for machines across different production stages.

While initial findings are promising, further research is neces-
sary. As a start, the success rate can be checked to further validate
this tool. This can be done by recording the number of positive
cases versus the false positive cases. In this respect, if the machine
identified with this tool is the true origin of the specific NC, this
constitutes a positive case. If the root cause is attributable to
something else it would constitute a false positive case. This tool
was developed to be used offline. However, with further devel-
opments the method can be integrated into an installed IT system
of a company. After it is tailored to the specific conditions it can
operate as an online tool. In this case, the initial data input step
would become obsolete. Automated alerts can be set for critical
values and time to react would be reduced.

As this paper demonstrates combining knowledge of different
disciplines can result in the emergence of new methods, tools and
knowledge. The authors highly encourage cross-discipline and
interdisciplinary research.
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