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ABSTRACT: In most transportation infrastructure projects, earthworks are 
generally associated with the highest percentage costs and durations. Since these 
tasks are reliant on heavy machinery and repetitive tasks, they are strongly 
susceptible to optimization. This paper presents a study based on the application of 
artificial neural networks (ANN) on data originated from a real earthwork 
construction project. Results show a good adjustment to the data, while emphasizing 
the importance of optimal equipment allocation throughout the construction site. 
Finally, the architecture of an intelligent earthwork optimization system is presented, 
combining both data mining (DM) and modern optimization technologies amongst 
others to support equipment distribution optimization in earthwork projects. 

 
INTRODUCTION 

 
In most transportation infrastructure projects, earthworks tasks such as excavation, 

transportation, spreading and compaction are generally associated with the highest 
percentage costs and durations. The complexity of these tasks can be split between 
combinations of repetitive activities, strongly based on the use of mechanical 
equipment. These activities are susceptible to optimization depending on a large 
number of factors, including available equipment, material types and weather 
conditions, among others. Even though productivity, efficiency and safety in 
construction are increasingly demanding in any construction environment, the 
planning and execution of earthworks tasks are mostly based on the accumulated 
experience of experts or otherwise compiled in country-specific guides. 

With the recent advances in automation and data collection technology in Civil 
Engineering, large databases of construction records gradually become available. 
This includes data related to earthwork design and construction, such as construction 
techniques, cost and/or duration of construction processes or existent materials. In 
earthwork construction context, this data are especially associated with the 
knowledge of the construction layout and the volumes of excavated and transported 
soil, as well as the volume of that material used in embankment construction. 
Moreover, the growing development of the technology used in earthwork equipment 
enhances this data with information regarding various elements, including equipment 
positioning over time and continuous measurement of material compaction level or 
bearing capacity. In this context, Data Mining (DM) is the name given to the process 
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of analyzing raw data (often vast databases, with complex relationships), searching 
for patterns and tendencies in the data, aiming to extract useful knowledge (e.g. 
rules) for the domain user. Guided by domain knowledge and under a semi-
automated process that uses computational tools, DM is an iterative and interactive 
process. DM includes machine learning techniques such as multiple regressions 
(MR), artificial neural networks (ANN) (Haykin 1999) and support vector machines 
(SVM) (Hearst 1998). These techniques are capable of automatically analysing 
complex relationships in the data, turning them into knowledge which can be used to 
predict future performances in new environments and for a better understanding of 
the problem domain variable relationships. 

This paper presents a study based on the application of ANN in an earthwork 
construction database. The DM algorithms have been tested in order to achieve the 
best possible adjustment to the data. Results show the weight of each earthwork 
construction process and its influence on the production line, as well as on the final 
construction rate. These also emphasize the importance of optimization in terms of 
resource distribution in the production line of each work front. Finally, the 
architecture of an Intelligent Earthwork Optimization System based on technologies 
such as artificial intelligence, DM, geographic information systems (GIS) and 
modern optimization is presented, capable of automatically performing the referred 
optimization process. 

 
DATA MINING IN EARTHWORK CONSTRUCTION 

 
ANN in Earthwork Construction 

DM represents the overall process of discovering useful knowledge from data. This 
process that involves several steps, such as selection, pre-processing and processing 
of data, application of DM algorithms, interpretation and processing of knowledge 
(Fayyad et al. 1996). In this context, the application of DM algorithms refers to the 
process of analyzing large databases for patterns and trends in data in order to infer 
trends and rules among the variables, being able to handle large volumes of data in a 
short time and transforming them into knowledge. The rapid development of these 
methodologies can be traced to the increasing emergence of electronic data 
management methods, having successfully been applied to several different areas 
(Gomes Correia et al. 2012; Liao et al. 2012), including engineering, marketing, 
health care or manufacturing and production. It is also often framed in the context of 
a methodology, such as CRISP-DM (Cross Industry Standard Process for Data 
Mining) (Chapman et al. 2000), a highly accepted tool-neutral methodology, 
becoming easier to understand, implement and analyze (Fig.1). 

 

 
FIG.  1. CRISP-DM methodology, adapted from (Chapman et al. 2000) 
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Successful DM applications in earthwork construction comprise the use of different 

DM techniques to predict variables related to execution times and costs. In this 
context, DM techniques, such as MR (Edwards and Griffiths 2000) and ANN (Hola 
and Schabowicz 2010; Schabowicz and Hoła 2008; Shi 1999; Tam et al. 2002), have 
been used to predict productivity or several parts and tasks of the earthwork process, 
such as excavator and hauling processes. In a different perspective, Marques et al. 
(2008) carried out a comparison between the predictive effectiveness of different DM 
techniques, including MR, ANN and SVM, applied to the compaction data present in 
the Guide des Térrasements Routiers (GTR) compaction guide (SETRA and LCPC 
1992), a broadly used reference for supporting the design of compaction processes. 

In all of these studies, it is evident that the selection and allocation of earthworks 
equipment has a major impact in execution times and costs, where equipment 
productivity is a key factor. Since it is well established that productivity depends not 
only on equipment specifications, but also their allocation and work conditions, DM 
becomes an essential tool to analyse the complex relationships between the factors 
that affect it. Whereas nowadays the equipment productivity during design phase is 
subject to a rough estimate based on the experience of the engineer, DM models can 
be used during this phase to accurately predict the real productivity of equipment for 
each potential setup, ultimately allowing for an optimal allocation of resources. 

 
Earthworks database 

Generally, DM applications on earthwork data are based on the learning and 
predictive capabilities of AI algorithms. In fact, these features have great potential 
for engineering applications, considering that the subsequently gained experience by 
DM models can then used as a basis in new construction projects. Thus, DM 
earthwork models rely on the existence of databases to which the learning algorithms 
are applied, while their outcome is limited to the type of present data and the 
experience gained. Thus, the availability of proper data becomes essential for 
successfully building, training and testing DM algorithms, such as ANN and SVM, 
in earthwork construction.  

In this work, a database devised from the earthworks of a Portuguese road 
construction site was used for that purpose. The data regards the activities of 
earthwork equipment throughout 6 months of construction phase, featuring around 
1250 entries (after data preparation) with information on date, work hours, 
atmospheric conditions, number and distance of load trips and resource types, as 
depicted in Table 1. 
 

Table 1 Values extracted from the earthwork construction database 
Work 
Hrs. 

Atm. 
Cond. 

Nr of 
Load 

Excavator 
Registry 

Load 
Zone 

Unload 
Zone 

Resource 
Type 

Transp. 
Volume 

7 Rain   7+850 8+625 Excavator50T  
3 Rain   7+850 8+625 Roller15T   
9 Sun 37 20/871 13+750 12+250 Dumper40T 481 
9 Sun 39 20/871 13+750 12+250 Dumper50T 634 
9 Sun   13+750 12+250 Tractor40T  
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Results and Discussion 
As previously stated, a DM model is dependent on the available data. As such, in 

order to achieve an ideal model with predictive capabilities for a specific target 
variable, it should be built using all the variables with some degree of influence on 
the value of the target variable. However, data regarding those variables is not 
complete or even available in most cases. Moreover, an exceedingly high number of 
variables will generate too much complexity regarding the search of relations and 
patterns amongst variables, often lowering the model’s predictive capability. 

In this work, one of the main purposes for the application of DM algorithms to 
earthwork data was the creation of a model with predictive capabilities regarding the 
final construction rate. Considering the traditional earthwork construction sequence, 
the final construction rate corresponds to the rate of the production line itself, with 
emphasis on the final rate of compaction equipment determined while taking the 
rates of excavation, transport and spreading equipment rates.  Yet, as a consequence 
of the high number of variables with influence on each process comprising the 
earthwork production line, building a single DM model targeting the rate of 
compaction equipment would neither be efficient nor effective, since it would not 
display a suitable predictive ability. Instead, two sequential models were developed, 
the first one targeting the prediction of the daily number of load operations using 
excavation and transportation teams, which was then used as an input for the second 
model regarding the rate of spreading and compaction teams. Note that, since the 
prediction of the number of loads is based on real construction data, it already takes 
into account the durations associated with loading, hauling and return trip. The same 
occurs with the prediction of final compaction rate, since every associated task, such 
as spreading or controlling the layer water content, is inherently being taken into 
account. Figure 2 shows the obtained model results for the target variables, as well as 
the training variables used to predict them and their relative importance. 

Model assessment was mainly based on the value of the error defining the degree 
of learning of a given model, as well as the correlation between the observed and the 
predicted values (Hastie et al. 2009). Two metrics were used: root mean squared 
error (RMSE) and correlation coefficient (R2): 
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where 
! - is the computed network output vector, 
! - is the target output vector, and 
! - is the number of samples in the database. 
 
Results were obtained using the rminer package for the R tool (Cortez 2010). The 

developed models feature RMSE and R2 values equal to 8.325 and 0.855 for the first 
model (number of loads by transportation equipment), and 26.377 and 0.980 for the 
second model (compaction rate), respectively. Moreover, none of the models showed 
a mean absolute deviation above 12%. These values were deemed adequate seeing as 
the data originates from a real construction environment. 
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The analysis of Figure 2b.) shows that the number of loads from transportation 
equipment as predicted by the corresponding model is the main factor influencing the 
prediction of final compaction rate. In other words, the daily work rate of the 
production line up to the compaction process is the main factor affecting the increase 
or decrease of the final compaction rate. 

 In order to support the confirmation of this approach, the developed sequential 
models were used to determine the compaction rate of a virtual construction site with 
similar characteristics of the original one, but with different excavation and 
transportation teams (spreading and compaction teams as well as compaction fronts 
were fixed, so as to facilitate the deductions made from the devised test). In the new 
distribution, the same equipment used in the original setup was redistributed 
throughout the same excavation areas and hauling trajectories, altering the 
excavation-hauling teams locally, but keeping the exact same active equipment fleet 
globally. Results showed a decrease of approximately 15% in the final compaction 
rate corresponding to the new equipment distribution. The compaction values found 
in the GTR compaction guide were used as a reference to control the maximum 
predicted compaction rates. This decrease could be interpreted by bearing in mind 
that there is a limit to the maximum rate of a specific compaction team, which is 
likely being exceeded in some work fronts for the current equipment distribution, 
while other work fronts are not receiving enough compaction material to achieve a 
satisfactory compaction rate. Thus, the compactors at the end of the production line 

FIG.  2 Relation between values yielded by prediction models and the 
observed values (above), including relative importance (%) of variables for each 

model (below) for: a.) Number of transport loads, b.) Compaction rate 
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are being forced to suffer idle periods, ultimately lowering the global compaction 
rate. Even though this exercise resulted in a decrease in the final compaction rate for 
the new equipment distribution when compared to the original setup, its purpose was 
considered fulfilled. However, only one distribution will be equivalent to the best 
possible work rate with the current available equipment fleet, which can be found by 
automatic optimization in terms of resource allocation (see next section). In this 
perspective, these results show the importance of equipment fleet optimization 
throughout construction phase, as well as the effectiveness of DM tools in earthwork 
construction projects. 

In the next section, a potential framework for an intelligent earthwork optimization 
system is explored, which is capable of combining both DM tools and modern 
optimization, supporting the optimal or near optimal automatic distribution of the 
equipment fleet (resource allocation) throughout the construction site. 
 
FRAMEWORK FOR AN INTELLIGENT EARTHWORK OPTIMIZATION 
SYSTEM 

 
Apart their limitations, DM models represent a very effective tool when integrated 

into more complex systems. An example of such has been suggested by Michalewicz 
et al. (Michalewicz et al. 2007), in which a prediction module is combined with an 
optimization method in order to not only solve an optimization problem, but profit 
from the ability to be fed new data which is immediately included into the learning 
process in real time. This fact inherently gifts the system with the aptitude for 
working in dynamic environments, such as Civil Engineering projects. In this 
context, this section features the framework for an intelligent earthwork optimization 
system, following the architecture already presented by Gomes Correia and Magnan 
(Gomes Correia and Magnan 2012). 

The proposed system architecture is depicted in Figure 3 and integrates 3 main 
modules (Equipment, Spatial and Optimization modules) which are capable of 
acquiring and working with data from both design and construction phases of an 
earthwork project. The flow of information is illustrated by the direction of the 
arrows, connecting the different modules and the user interface. Thus, both the 
Equipment and the Spatial modules are expected to receive user input regarding 
equipment data (e.g. availability, specifications and associated costs), as well as 
spatial data (e.g. global positioning of excavation and compaction fronts and possible 
trajectories for transportation equipment), respectively. The Spatial module also has 
access to equipment specifications, such as maximum equipment speed, dimensions 
or CO2 emissions and uses GIS to allow for an optimal determination of shortest 
paths within the construction site. Finally, the optimization module connects all other 
modules using an optimization algorithm to attempt to find an optimal or near 
optimal solution for the equipment fleet distribution throughout all phases of the 
construction process, while accessing the data from the other modules and retrieving 
the outcome to the user. The optimization is carried out using modern optimization 
(e.g. genetic algorithms), evaluating the performance of several potential solutions 
(equipment fleet distributions) both in terms of costs and construction durations. This 
evaluation is carried out by means of a fitness function, for instance based on object-
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oriented simulation of the whole construction process for each potential solution, 
allowing for the determination of both costs and construction time in each equipment 
fleet configuration. 

Moreover, assuming the availability of GPS equipment in each fleet element, it 
becomes possible to include the option to, through the GPS receivers, determine the 
real productivity of each equipment in construction phase, allowing the system to 
automatically update and re-optimize itself in real-time as the construction carries on. 

 

 

 

 

 

 

 

FINAL REMARKS 
 
In this paper, two sequential ANN models were applied to earthwork construction 

data. The first model refers to the prediciton of the daily number of loads obtained by 
excavation and hauling teams, which is then used as an input variable in the 
prediction of the final compaction rate of the production line for a specific equipment 
fleet distribution. The developed models were built using real construction data from 
a Portuguese road construction site and achieved R2 values higher than 0.85. 

Results show not only a good adjustment to the data, but also the weight of each 
variable on the production line of the earthwork construction project, as well as on 
the final construction rate. The importance of optimization in terms of equipment 
allocation in work fronts is also emphasized by using the developed models to 
predict the compaction rate of a new equipment distribution and subsequent results. 
This possibility of automatic optimization is subsequently explored in the presented 
architecture for an Intelligent Earthwork Optimization System combining DM, 
modern optimization and GIS technologies, so as to support optimal equipment fleet 
allocation through design and construction phases is presented. 
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FIG.  3 Proposed system architecture (adapted from Gomes 
Correia and Magnan 2012) 
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