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SUMMARY 

High-maturity software development processes, such as the Team Software Process (TSP) and the accompany-

ing Personal Software Process (PSP), can generate significant amounts of data that can be periodically analyzed 

to identify performance problems, determine their root causes and devise improvement actions. However, there 

is a lack of tool support for automating that type of analysis, and hence diminish the manual effort and expert 

knowledge required. So, we propose in this paper a comprehensive performance model, addressing time esti-

mation accuracy, quality and productivity, to enable the automated (tool based) analysis of performance data 

produced by PSP developers, namely, identify and rank performance problems and their root causes. A PSP 

data set referring to more than 30,000 projects was used to validate and calibrate the model.  

 

Received … 

 

KEYWORDS: Personal Software Process; Performance Analysis; Performance Model. 

 

1. INTRODUCTION 

Currently, according to [1], the top two software engineering challenges are the increasing 

emphasis on rapid development and adaptability, and the increasing software criticality and 

need for assurance. The Team Software Process (TSP) [2] and the accompanying Personal 

Software Process (PSP) [3] are examples of processes that can help individuals and teams 

improve their performance and produce virtually defect free software on time and budget [4], 

addressing those challenges. One of the pillars of the TSP/PSP is its measurement frame-

work; based on four simple measures—effort, schedule, size and defects—it supports several 

quantitative methods for project and quality management and process improvement [2].  

Software processes that make intensive use of metrics and quantitative methods, such as 

the TSP/PSP, can generate large amounts of data that can be periodically analyzed to identify 

performance problems, determine their root causes and devise improvement actions [5]. Alt-

hough several tools exist to automate data collection and produce performance charts and 

reports for manual analysis of TSP/PSP data [6][7][8][9], practically no tool support exists 

for automating the performance analysis. There are also some studies that show cause-effect 

relationships among performance indicators (PIs) [10][11], but no automated root cause anal-

ysis is proposed. The manual analysis of performance data for determining root causes of 

performance problems and devising improvement actions is challenging because of the po-

tentially large amount of data to analyze [5] and the effort and expert knowledge required. 

To address those shortcomings, we have been developing models and tools to automate 

the analysis of performance data produced in the context of the TSP/PSP and other high 



maturity processes, namely, identify and rank performance problems and their root causes 

and recommend improvement actions. In [12] we presented a model (validated based on a 

small data set) and a tool to automate the analysis of time estimation accuracy of PSP devel-

opers. In [13] we investigated factors affecting the productivity of PSP developers, based on 

a large PSP data set referring to more than 30,000 projects. In [14] we presented a compre-

hensive performance model (PM), covering the estimation, quality and productivity aspects, 

calibrated based on a large PSP data set, to enable the automated analysis of performance 

data produced by PSP developers. In the current paper we tackle the following research ques-

tion (RQ1): Is it possible to automatically analyze performance data produced in the context 

of the PSP, namely identify and rank performance problems and their potential root causes, 

with a similar accuracy as in manual analysis but with less effort? To that end we present an 

improved approach and PM, with tool support, covering not only the identification of perfor-

mance problems and potential root causes, but also their ranking, with the following main 

contributions: 

 an overall approach for automated model-based process performance analysis and 

improvement recommendation, independent of the process under analysis, with mi-

nor improvements with respect to our previous work (Section 2); 

 a detailed ranking approach for prioritizing the factors affecting the performance 

problems identified in top-level PIs, according to a cost-benefit estimate, independ-

ent of the process under analysis (Section 5); 

 a comprehensive PM to instantiate the overall approach for the PSP, with minor 

simplifications and significant extensions as compared to our previous work; we re-

moved from the PM some factors that exhibited a weak correlation with the top-level 

PIs (Sections 3 and 4); we added to the PM new attributes needed to support the 

ranking approach—sensitivity coefficients between pairs of related PIs and approx-

imate statistical distribution of each PI (Section 5 and Appendix A);  

 a detailed description of a case study demonstrating how the model can be applied 

in the real world and the associated benefits (Section 6); 

 a novel tool, named ProcessPAIR, for automating the performance analysis, freely 

available, and described together with the case study (Section 6). 

The rest of the paper is organized as follows. Section 2 describes our overall approach. 

Sections 3 presents the PM conceived for analyzing PSP performance data. Section 4 de-

scribes the model validation and calibration procedures. Section 5 describes the ranking ap-

proach. Section 6 presents a case study to illustrate the application of the model and compare 

the results of model-based and manual analysis. Comparison with related work and limita-

tions and threats to validity are discussed in Sections 7 and 8. Section 9 presents the conclu-

sions. Appendix A shows the approximate statistical distributions of the PIs. Appendix B 

shows an example of ranking calculations. 

2. OVERALL APPROACH 

An overview of the artifacts and steps involved in our approach for automated performance 

analysis is shown in Fig. 1. In order to enable the automated identification of performance 

problems (B1), one has to first decide on the relevant PIs (A1) and ranges (A3). In order to 

enable the automated identification of root causes of performance problems (B2), one has to 

first decide on the relevant cause-effect relationships (A2). When multiple root causes are 

identified for a performance problem, it is important to rank them according to a cost-benefit 



estimate of improvement efforts (B3). In the approach proposed in this paper (see section 5), 

the cost of improving an affecting PI (root cause) is estimated based on its approximate sta-

tistical distribution (A4), and the benefit on the affected PI is estimated based on a sensitivity 

coefficient (A5). The final step is to recommend improvement actions to address the highest 

ranked causes (B4). To enable the automated recommendation of such actions, a catalogue 

of possible improvement actions for each possible root cause has to be set up (A6). 

 

 

Figure 1. UML activity diagram depicting the main activities and artifacts in our approach. 

 

 

Figure 2. UML class diagram depicting the conceptual structure of the artifacts in our approach. 

 

The conceptual structure of the artifacts involved in our approach is depicted in Fig. 2. A 

performance model comprises a set of performance indicators (top level and nested) and 

dependencies, with their respective attributes. For any given subject under analysis, we as-

sume relevant base measures are available for the projects under analysis. The outputs of the 

model-based performance analysis are indicated in Fig. 2 by derived classes and attributes. 

For each project, it is computed the value, percentile and ‘color’ of each PI, based respec-

tively on the formulas, approximate statistical distributions and ranges defined in the PM; it 
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is also computed the value of a ranking coefficient (see section 5) for each dependency de-

fined in the PM, so that affecting indicators can be filtered and sorted when drilling down 

from higher-level (affected) to lower-level (affecting) PIs. 

In the next sections it will be presented a PM specifically conceived for the PSP, com-

prising artifacts A1 through A5, as well as further details about our approach.  

 

3. MODEL CONSTRUCTION 

Figure 3, Table 2 and Table 3 summarize the PIs and dependencies of the PM that we con-

ceived, based on literature review and PSP specifications, for analyzing performance prob-

lems and root causes in the context of the PSP. The three top-level PIs refer to the major 

performance aspects usually analyzed: predictability, quality and productivity.  

 

 
Figure 3 Performance indicators and dependencies. 

 

3.1 Predictability 

The major predictability PI in the PSP is the Time Estimation Accuracy, which we measure 

by the ratio between actuals and estimates, to simplify ranking calculations. Since in the 

PSP’s PROBE estimation method [2], a time (effort) estimate is obtained based on a size 

estimate of the deliverable (in added or modified size units) and a productivity estimate (in 

size per time units), we indicate in Fig. 3 that the Time Estimation Accuracy is affected by 

the Size Estimation Accuracy and the Productivity Estimation Accuracy (the exact formula 

for this dependency is shown in Table 3).  

Since in the PROBE method productivity estimates are based on historical productiv-

ity [2], we indicate in Fig. 3 that the Productivity Estimation Accuracy depends on the 

Productivity Stability (see exact definition in Table 2). 

Since in the PSP time is recorded per process phase [2], when a productivity stability 

problem is encountered one can analyze the productivity stability per phase, in order to de-

termine the problematic phase(s); hence, we indicate in Fig. 3 a set of PIs for the productivity 
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stability per phase, which together affect the overall productivity stability (the exact formula 

for this dependency is shown in Table 3). Since the scope of the PSP is the development of 

small programs or components of larger programs, the Requirements, High Level Design and 

System Testing phases are absent (they can be found in the more complete TSP [3]). In some 

programming environments the Compile phase may be absent. 

3.2 Quality  

Product quality is usually measured by post-delivery defect density [15]. However, since the 

scope of the PSP is the development of small programs or components of large programs, 

post-delivery defects are seldom known. The PSP proposes an aggregated quality measure—

the Process Quality Index (PQI)—that constitutes an effective predictor of post-delivery de-

fect density [2][16]. Hence, we use the PQI as the top-level quality indicator to analyze. The 

PQI is computed based on five components: the ratio of design time to coding time (indicator 

of design quality); the ratio of design review time to design time (indicator of design review 

quality); the ratio of code review time to coding time (indicator of code review quality); the 

ratio of compile defects to a size measure (indicator of code quality); the ratio of unit test 

defects to a size measure (indicator of program quality).  The components are normalized to 

[0, 1] such that 0 represents poor practice and 1 represents desired practice (see exact formula 

in Table 3). Hence, in Fig. 3 we indicate those components as factors that affect the PQI 

according to a formula.  

In turn, both the Defect Density in Compile and Unit Test are affected by the total density 

of Defects Injected (and found) and the percentage of defects removed before compile and 

test (called Process Yield in the PSP). In fact, high defect densities in compile and test may 

be caused by a large number of defects injected (due to poor defect prevention) or a large 

number of defects escaped from previous defect filters (due to poor design and code reviews).  

According to [2][17], the time spent in reviewing a work product in relation to its size is 

a leading indicator of the review yield (percentage of defects found) and consequently of the 

process yield. In a published study [10], the recommended review rate of 200 LOC/hour or 

less was found to be an effective rate, identifying nearly two-thirds of the defects in design 

reviews and more than half in code reviews. Hence, we indicate in Fig. 3 that the Process 

Yield is affected by the Design Review Productivity and the Code Review Productivity.  

3.3 Productivity  

In general, in the PSP, productivity may be measured in any size units per time units. Any 

size measure can be used (function points, lines of code (LOC), etc.) as long as it correlates 

with effort (in order to enable effort estimation based on size estimation) and can be objec-

tively measured (to automate size measurement and compare actuals and estimates) [2]. In 

this study, we use LOC/hour, in spite of its well-known limitations [18][19][20][21], because 

LOC is the size measure available in the data set we used.  

Since in the PSP time is recorded per process phase, when a productivity problem is en-

countered one can analyze the productivity per phase, in order to determine the problematic 

phase(s). Hence, we indicate in Fig. 3 a set of PIs for the productivity per phase, which to-

gether affect the overall productivity (the formula for this dependency is shown in Table 3).  

In turn, the time spent in the compile and test phases (which in the PSP include defect 

fixing) may be affected by the number of defects to fix, so we indicate in Fig. 3 that the 

Compile Productivity and the Unit Test Productivity may be affected by the Defect Density 

in Compile and Defect Density in Unit Test, respectively. 



4. MODEL VALIDATION AND CALIBRATION 

4.1 Data set 

To validate and calibrate the PM, we used a large PSP data set from the Software Engineering 

Institute (SEI) referring to 31,140 projects concluded by 3,114 engineers during 295 classes 

of the classic PSP for Engineers I/II training courses running between 1994 and 2005. In this 

training course, targeting professional developers, each engineer develops 10 small projects. 

4.2 Model validation 

The PM of Fig. 3 indicates several 'affects according to literature' relationships between pairs 

of PIs, suggested from literature. In order to validate each relationship, using the PSP data 

set previously described, we computed the Pearson’s linear correlation coefficient (rpearson) 

and tested the null hypothesis "H0: r=0" against the alternative hypothesis "H1: r>0" or "H1: 

r<0", depending on the sign of the expected correlation. Since the PIs under analysis may 

have non-linear relationships that are not adequately captured by the Pearson's linear corre-

lation coefficient, we also computed the Spearman’s [22] rank correlation coefficient (rspear-

man). The Spearman's test checks if increasing values of X are monotonically associated with 

increasing (r>0) or decreasing (r<0) values of Y, independently of the form of the relation-

ship. The results are presented in Table 1. In all cases, it was observed a statistically signifi-

cant correlation between the PIs under analysis, regarding both the Person and Spearman 

correlation, so the null hypothesis was rejected. We tested other dependencies, but only pre-

sent in this paper dependencies that exhibited a statistically significant correlation. 

 
Table 1. Results of the correlation tests. 

Affected Indicator (Y) Affecting Indicator (X) 
Correlation tests (H0: r=0) 

H1 n (1) rpearson rspearman p (2) Reject H0?(3) 

Defect Density in Unit Test Process Yield r<0 9612 -0.27 -0.40 <2e-16 Yes 

Defect Density in Unit Test Defects Injected r>0 27648 0.72 0.65 <2e-16 Yes 

Defect Density in Compile Process Yield r<0 9612 -0.24 -0.39 <2e-16 Yes 

Defect Density in Compile Defects Injected r>0 27648 0.74 0.69 <2e-16 Yes 

Process Yield Design Review Productivity r<0 9371 -0.17 -0.23 <2e-16 Yes 

Process Yield Code Review Productivity r<0 9548 -0.17 -0.25 <2e-16 Yes 

Unit Test Productivity Defect Density in Unit Test r<0 27625 -0.20 -0.64 <2e-16 Yes 

Compile Productivity Defect Density in Compile r<0 27625 -0.34 -0.72 <2e-16 Yes 

Product. Estim. Accuracy Productivity Stability r>0 24574 0.46 0.65 <2e-16 Yes 

(1) n denotes the number of data points with defined values for the variables under analysis. 

 (2) p is a probability that indicates the statistical significance of the correlation coefficient in the one-tailed test. 

(3) We reject the null hypothesis if p<0.05, for a 5% significance level. 

 

4.3 Model calibration 

Regarding model calibration, we defined a set of thresholds and ranges (see Table 2) for 

classifying values of each PI into three categories: green - no performance problem; yellow 

- a possible performance problem; red - a clear performance problem. To define the ranges 

we took into account the definition of each PI, recommended values from literature, and the 

actual distribution in the PSP data set, so that there is an approximately even distribution of 

data points by the colors, in a way similar to benchmark-based product evaluation [23].  We 



didn’t use thresholds based on mean and standard deviation because many PIs don’t follow 

a normal distribution and some do even exhibit a hybrid continuous-discrete distribution in 

the PSP data set (see Appendix A or Fig. 6). 

 
Table 2.    Performance indicators and ranges (with optimal values underlined). 

Indicator  Formula  
Performance Ranges (1) 

Green Yellow Red 

Time Estimation  

Accuracy 

𝐴𝑐𝑡𝑢𝑎𝑙 𝑇𝑖𝑚𝑒

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑇𝑖𝑚𝑒
 

 

[0.8, 1.2] 

1 
[0.6, 0.8[  

]1.2, 1.4] 

[0, 0.6[  

]1.4,[ 

Size Estimation  

Accuracy 

𝐴𝑐𝑡𝑢𝑎𝑙 𝑆𝑖𝑧𝑒

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑆𝑖𝑧𝑒
 

[0.8, 1.2] 

1 
[0.55, 0.8[ 

]1.2, 1.45] 

[0, 0.55[ 

]1.45,[ 

Productivity  Esti-

mation Accuracy 

𝐴𝑐𝑡𝑢𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦
 

[0.8, 1.2] 

1 

[0.6, 0.8[ 

]1.2 1.4] 

[0, 0.6[ 

]1.4,[ 

Productivity Stabil-

ity  

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦

𝐻𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦∗  
   (*∑size/∑effort)  

[0.8, 1.2] 

1 

[0.6, 0.8[ 

]1.2 1.4] 

[0, 0.6[ 

]1.4,[ 

Process Quality In-

dex 
(see definition in Table 3)  [0.25, 1] [0.06, 0.25[ [0, 0.06[ 

Defect Density in 

Unit Test 

#𝐷𝑒𝑓𝑒𝑐𝑡𝑠 𝑓𝑜𝑢𝑛𝑑 𝑎𝑛𝑑 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 𝑖𝑛 𝑈𝑛𝑖𝑡 𝑇𝑒𝑠𝑡

𝐴𝑐𝑡𝑢𝑎𝑙 𝑆𝑖𝑧𝑒 (𝐾𝐿𝑂𝐶)
 [0, 10] ]10, 30] ]30, [ 

Defect Density in 

Compile 

#𝐷𝑒𝑓𝑒𝑐𝑡𝑠 𝑓𝑜𝑢𝑛𝑑 𝑎𝑛𝑑 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 𝑖𝑛 𝐶𝑜𝑚𝑝𝑖𝑙𝑒

𝐴𝑐𝑡𝑢𝑎𝑙 𝑆𝑖𝑧𝑒 (𝐾𝐿𝑂𝐶)
 [0, 10] ]10, 40] ]40, [ 

Defects Injected 
#𝐷𝑒𝑓𝑒𝑐𝑡𝑠 𝑓𝑜𝑢𝑛𝑑 𝑖𝑛 𝑎𝑙𝑙 𝑝ℎ𝑎𝑠𝑒𝑠

𝐴𝑐𝑡𝑢𝑎𝑙 𝑆𝑖𝑧𝑒 (𝐾𝐿𝑂𝐶)
 [0, 50] ]50, 100] ]100, [ 

Process Yield 
#𝐷𝑒𝑓𝑒𝑐𝑡𝑠 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 𝑏𝑒𝑓𝑜𝑟𝑒 𝐶𝑜𝑚𝑝𝑖𝑙𝑒 & 𝑇𝑒𝑠𝑡

#𝐷𝑒𝑓𝑒𝑐𝑡𝑠 𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑 𝑏𝑒𝑓𝑜𝑟𝑒 𝐶𝑜𝑚𝑝𝑖𝑙𝑒 & 𝑇𝑒𝑠𝑡
× 100 [70,100] [50, 70[ [0, 50[ 

Design to Code Ra-

tio 

𝐷𝑒𝑠𝑖𝑔𝑛 𝑇𝑖𝑚𝑒

𝐶𝑜𝑑𝑒 𝑇𝑖𝑚𝑒
 

[0.5, 1.5] 

1 

[0.2, 0.5[ 

]1.5, 2.0] 

[0, 0.2 [ 

]2.0, [   

Design Review to 

Design Ratio  

𝐷𝑒𝑠𝑖𝑔𝑛 𝑅𝑒𝑣𝑖𝑒𝑤 𝑇𝑖𝑚𝑒

𝐷𝑒𝑠𝑖𝑔𝑛 𝑇𝑖𝑚𝑒
 

[.35, .65[ 

0.5 

[0.2, 0.35[ 

]0.65, 0.9] 

[0, 0.2 [ 

]0.9, [   

Code Review to 

Code Ratio 

𝐶𝑜𝑑𝑒 𝑅𝑒𝑣𝑖𝑒𝑤 𝑇𝑖𝑚𝑒

𝐶𝑜𝑑𝑒 𝑇𝑖𝑚𝑒
 

[.35, .65[ 

0.5 

[0.2, 0.35[ 

]0.65, 0.9] 

[0, 0.2 [ 

]0.9, [   

Productivity 
𝐴𝑐𝑡𝑢𝑎𝑙 𝑆𝑖𝑧𝑒 (𝐿𝑂𝐶)

𝐴𝑐𝑡𝑢𝑎𝑙 𝑇𝑖𝑚𝑒 (ℎ𝑜𝑢𝑟𝑠)
 [35, [ [20, 35[ ]0, 20[ 

Plan Productivity  
𝐴𝑐𝑡𝑢𝑎𝑙 𝑆𝑖𝑧𝑒 (𝐿𝑂𝐶)

𝑃𝑙𝑎𝑛 𝑇𝑖𝑚𝑒 (ℎ𝑜𝑢𝑟𝑠)
 [400, [ [200, 400[ ]0, 200[  

Design Productiv-

ity 

𝐴𝑐𝑡𝑢𝑎𝑙 𝑆𝑖𝑧𝑒 (𝐿𝑂𝐶)

𝐷𝑒𝑠𝑖𝑔𝑛 𝑇𝑖𝑚𝑒 (ℎ𝑜𝑢𝑟𝑠)
 [300, [ [120, 300[  ]0, 120[  

Design Review 

Productivity 

𝐴𝑐𝑡𝑢𝑎𝑙 𝑆𝑖𝑧𝑒 (𝐿𝑂𝐶)

𝐷𝑒𝑠𝑖𝑔𝑛  𝑅𝑒𝑣𝑖𝑒𝑤 𝑇𝑖𝑚𝑒 (ℎ𝑜𝑢𝑟𝑠)
 

[200,400] 

300 

[115,200[ 

]400,700] 

]0, 115[  

[700,[ 

Code Productivity 
𝐴𝑐𝑡𝑢𝑎𝑙 𝑆𝑖𝑧𝑒 (𝐿𝑂𝐶)

𝐶𝑜𝑑𝑒 𝑇𝑖𝑚𝑒 (ℎ𝑜𝑢𝑟𝑠)
 [120, [ [60, 120[ ]0, 60[ 

Code Review  

Productivity 

𝐴𝑐𝑡𝑢𝑎𝑙 𝑆𝑖𝑧𝑒 (𝐿𝑂𝐶)

𝐶𝑜𝑑𝑒  𝑅𝑒𝑣𝑖𝑒𝑤 𝑇𝑖𝑚𝑒 (ℎ𝑜𝑢𝑟𝑠)
 

[150,300] 

200 

[100,150[ 

]300,500] 

]0, 100[ 

]500,[ 

Compile Productiv-

ity 

𝐴𝑐𝑡𝑢𝑎𝑙 𝑆𝑖𝑧𝑒 (𝐿𝑂𝐶)

𝐶𝑜𝑚𝑝𝑖𝑙𝑒  𝑇𝑖𝑚𝑒 (ℎ𝑜𝑢𝑟𝑠)
 [1500, [ [500, 1500[ ]0, 500[ 

Unit Test Produc-

tivity 

𝐴𝑐𝑡𝑢𝑎𝑙 𝑆𝑖𝑧𝑒 (𝐿𝑂𝐶)

𝑈𝑛𝑖𝑡 𝑇𝑒𝑠𝑡  𝑇𝑖𝑚𝑒 (ℎ𝑜𝑢𝑟𝑠)
 [300, [ [100, 300[ ]0, 100[ 

Postmortem   

Productivity 

𝐴𝑐𝑡𝑢𝑎𝑙 𝑆𝑖𝑧𝑒 (𝐿𝑂𝐶)

𝑃𝑜𝑠𝑡𝑚𝑜𝑟𝑡𝑒𝑚  𝑇𝑖𝑚𝑒 (ℎ𝑜𝑢𝑟𝑠)
 [400, [ [200, 400[ ]0, 200[ 

(1) Open ranges are represented with the Bourbaki notation. 



 

The first step is the definition of an optimal value for each PI. In most cases, the optimal 

value follows directly from the semantics of the PI, being it the maximum of the scale (e.g., 

1 for the PQI), the minimum (e.g., 0 for the Defect Density in Unit Test), or a special value 

in between (e.g., 1 for Estimation Accuracy and Productivity Stability). In other cases, in 

order to balance conflicting aspects such as quality and productivity with an ultimate eco-

nomic impact, we selected a recommended value from literature (we could not calibrate those 

values from the PSP data set, because some economic impacts occur later in the process). 

Regarding the Code Review Productivity (also called Review Rate), if reviews are performed 

too fast then the quality of the reviews may suffer; if reviews are performed too slowly, then 

the productivity is negatively affected. In this case, we selected the recommended value of 

200 LOC/hour [2][17]. A similar reasoning was followed for the Design Review Productivity. 

As for the Design to Code Ratio, Design Review to Design Ratio, and Code Review to Code 

Ratio (components of the PQI) the optimal values selected correspond to the desired values 

indicated in the definition of the PQI [2][16].  

After defining the optimal values, the thresholds for the 'green', ‘red’ and ‘yellow’ ranges 

were calibrated in a systematic way based on the PSP data set. In case the optimal value is 

located in one of the extremes of the scale, the 'green' range is also located in the same ex-

treme of the scale, the 'red' range in the other extreme, and the 'yellow' range in the middle. 

In these cases, thresholds were computed from the data set based on terciles and subsequently 

rounded to a few precision digits. In case the optimal value is located somewhere in the mid-

dle of the scale, we determined a ‘green’ range around the optimal value containing approx-

imately 1/3 of the data points, and considered 'red' values to exist in both ends of the scale. 

5. RANKING APPROACH 

5.1 Introduction 

The PM presented so far allows the automated identification of performance problems and 

potential root causes for individual developers. However, when multiple potential root causes 

are identified for a performance problem, it does not provide enough information to prioritize 

or rank those root causes. For example, Fig. 4 suggests 5 potential causes for the poor produc-

tivity in project 7— poor productivity in Plan, Design, Design Review, Unit Test and Post-

mortem phases — but does not indicate their relative importance. We propose next an ap-

proach to rank those factors according to a cost-benefit estimate of improvement efforts.  

Let X1, ..., Xn be a set of lower-level PIs that affect the value of a higher-level PI Y. We 

rank the factors Xi according to a cost-benefit estimate of improving each factor Xi whilst 

keeping the other factors unchanged. We assume that the above relationship can be described 

by a function Y=f(X1, ..., Xn), representing an exact formula for deriving Y or a regression 

formula derived from historical data. We also assume that an optimal value oi (see Section 

4.3) and an approximate cumulative distribution function Fi are defined for each Xi. 

The benefit of a change in the value of a factor Xi can be expressed by the resulting varia-

tion in the value of Y, i.e., ∆𝑌/𝑌. As for the cost of changing the value of a factor Xi, intui-

tively, the closest the value is to the optimal value, in terms of percentiles, the more difficult 

(and less relevant) it is to improve it. Let us denote by Pi(x)=Fi(oi)-Fi(x) the ‘percentile dis-

tance’ of a value x of Xi to the optimal value. Our base heuristic is that equal relative varia-

tions in the 𝑃𝑖′𝑠 have similar costs. So, we take as cost estimate the relative variation ∆𝑃𝑖/𝑃𝑖. 



We approximate the cost-benefit ratio using partial derivatives (for small variations) to derive 

a ranking coefficient (𝜌𝑖): 

∆Y/Y

∆𝑃𝑖/𝑃𝑖

= [
∆𝑌

∆𝑋𝑖

(
𝑋𝑖

𝑌
)] × [

∆𝑋𝑖

∆𝑃𝑖

(
𝑃𝑖

𝑋𝑖

)] ≈ [
𝜕𝑌

𝜕𝑋𝑖

(
𝑋𝑖

𝑌
)] × [

𝑑𝑋𝑖

𝑑𝑃𝑖

(
𝑃𝑖

𝑋𝑖

)] = 𝜎𝑋𝑖→𝑌 × 𝜋𝑃𝑖→𝑋𝑖
= ρi 

For example, a value 𝜌𝑖 = 0.5 means that a 1% relative variation in the current percentile 

distance to the optimal value of Xi, will produce approximately a 0.5% relative variation in 

the value of Y. This way, if a factor Xi produces a bigger relative variation in the value of Y 

than a factor Xj, for the same relative variations in the percentile distance to the optimal value 

of Xi and Xj, then we will have 𝜌𝑖 > 𝜌𝑗. The obtained ranking coefficient 𝜌𝑖 is the product of 

two coefficients further analyzed next. 

5.2 Sensitivity coefficient 

The first coefficient, 𝜎𝑋𝑖→𝑌  = 
𝜕𝑌

𝜕X𝑖
(

X𝑖

𝑌
) , is a sensitivity coefficient [24][25] that computes the 

impact of small variations in the value of a factor Xi on the value of Y, whilst keeping all the 

other factors unchanged. For example, a value 𝜎𝑋𝑖→𝑌 = 2.0 means that a 1% variation in the 

current value of Xi will produce approximately a 2% variation in the current value of Y. The 

multiplier Xi/Y makes the coefficient independent of the measurement scales used. Inherent 

to this coefficient are the following assumptions: (i) the higher ordered partial derivatives are 

negligible for small variations, so that 𝜎𝑋𝑖→𝑌 ≈
∆Y/Y

∆𝑋𝑖/X𝑖
 ; (ii) there is no correlation between the 

factors, so that one factor can be changed at a time [24].  

Table 3 shows the computation of the sensitivity coefficient for the dependencies identi-

fied in the PM of Fig. 3. For example, the overall productivity (Prod) is related with the 

productivity per phase (Prodk) according to the formula 𝑃𝑟𝑜𝑑 = 1/ ∑
1

𝑃𝑟𝑜𝑑𝑘
𝑘 , where k denotes 

a process phase. From this formula and the definition of productivity as a size by effort ratio 

we can derive the sensitivity coefficients 𝜎𝑃𝑟𝑜𝑑𝑘→𝑃𝑟𝑜𝑑 =
𝑃𝑟𝑜𝑑

𝑃𝑟𝑜𝑑𝑘
=

𝑒𝑓𝑓𝑜𝑟𝑡 𝑖𝑛 𝑝ℎ𝑎𝑠𝑒 𝑘

𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑒𝑓𝑓𝑜𝑟𝑡
. This for-

mula basically tells that Prodk will be ranked higher for the phases that consume more effort. 

This implies that productivity improvement efforts should be directed towards the more time 

consuming phases (according to this coefficient alone). 

5.3 Percentile coefficient 

The second coefficient, 𝜋𝑃𝑖→𝑋𝑖
 =

𝑑𝑋𝑖

𝑑𝑃𝑖
(

𝑃𝑖

𝑋𝑖
) =

𝐹𝑖(𝑥)−𝐹𝑖(𝑜𝑖)

𝑥𝐹𝑖
′(𝑥)

 , which we call a percentile coefficient, 

computes the impact of small variations in the current percentile distance (Pi) of Xi to the 

optimal value (oi) on the value of Xi. We denote by 𝐹𝑖
′(𝑥) the first derivative of 𝐹𝑖(𝑥), repre-

senting the probability density function. For small variations we’ll have 𝜋𝑃𝑖→𝑋𝑖
 ≈

∆X𝑖/X𝑖

∆𝑃𝑖/𝑃𝑖
 . For 

example, a value 𝜋𝑃𝑖→𝑋𝑖
= 1.0 means that a 1% relative reduction in the current percentile 

distance of Xi to the optimal value (say, from 0.50 to 0.495) will produce approximately a 

1% variation in the current value of X.  

The cumulative distribution function Fi needed for calculating the percentile coefficient  

𝜋𝑃𝑖→𝑋𝑖
 can be obtained by computing a theoretical distribution that best fits the historical data, 

or by linear interpolation between a few percentiles computed from the historical data. Since 

some of the PIs exhibit a hybrid continuous-discrete distribution, with non-zero probability 

at one or both ends of the scale (see Process Yield, Defect Density in Compile, and Defect 



Density in Unit Test in Appendix A), we opted for the second method. The shapes of the 

cumulative distribution functions Fi constructed this way from the historical data are depicted 

in Appendix A. The calculation of 𝜋𝑃𝑖→𝑋𝑖
 with this approach is illustrated in Fig. 8 in Appen-

dix B. An example of ranking calculations is also illustrated in Appendix B.  

 
Table 3. Dependencies and sensitivity coefficients between related performance indicators. 

Affected Indicator 

(Y) 

Affecting Indicator  

(Xi) 

Exact Formula or Regres-

sion Formula Y=f(X1, ..., Xn) 

Sensitivity Coefficient 

 𝜎𝑋𝑖→𝑌  = 
𝝏𝒀

𝝏𝐗𝒊
(

𝐗𝒊

𝒀
) 

Time Estimation Ac-

curacy (TimeEA) 

Size Estimation Accuracy 

(SizeEA) 
𝑇𝑖𝑚𝑒𝐸𝐴 =  

𝑆𝑖𝑧𝑒𝐸𝐴

𝑃𝐸𝐴
 

1 

Productivity Estimation 

Accuracy (PEA) 
-1 

Productivity Estima-

tion Accuracy (PEA) 

Productivity Stability 

(ProdS) 
PEA~0.593 + 0.455 × ProdS 0.455 × 𝑃𝑟𝑜𝑑𝑆/𝑃𝐸𝐴 

Productivity Stability 

(ProdS) 

Productivity Stability in 

Phase k (ProdSk) 
𝑃𝑟𝑜𝑑𝑆 = 1/ ∑

𝐻𝑖𝑠𝑡𝐹𝑘

𝑃𝑟𝑜𝑑𝑆𝑘
𝑘 , where  

HistFk=historical fraction of time in phase k 

Fraction of time in phase k  

(in current project) 

Process Quality In-

dex (PQI) 

Defect Density in Unit Test 

(DDUT) PQI = min (
10

𝐷𝐷𝑈𝑇 + 5
, 1) ×

min (
20

𝐷𝐷𝐶 + 10
, 1) ×

min (
𝐷2𝐶

1
, 1) ×

min (
𝐷𝑅2𝐷

0.5
, 1) ×

min (
𝐶𝑅2𝐶

0.5
, 1)

 

-DDUT/(DDUT+5),  if 
DDUT > 5; 0, otherwise 

Defect Density in Compile 

(DDC) 

−𝐷𝐷𝐶/(𝐷𝐷𝐶 + 10),  if 

DDC > 10;  0, otherwise 

Design to Code Ratio 

(D2C) 
1, if D2C < 1;  0, otherwise 

Design Review to Design 

Ratio (DR2D) 

1, if DR2D < 0.5; 0, other-

wise 

Code Review to Code Ra-

tio (CR2C) 

1, if CR2C < 0.5;  0, other-

wise 

Defect Density in 

Unit Test (DDUT) 

Process Yield (PY) 𝐷𝐷𝑈𝑇 ~ 28.5 − 0.20 × 𝑃𝑌 − 0.20 × 𝑃𝑌/𝐷𝐷𝑈𝑇 

Defects Injected (DI) DDUT ~ − 1.6 + 0.38 × DI  0.38 × 𝐷𝐼/𝐷𝐷𝑈𝑇 

Defect Density in 

Compile (DDC) 

Process Yield (PY) DDC ~28.33 − 0.22 × 𝑃𝑌 − 0.22 × 𝑃𝑌/𝐷𝐷𝐶 

Defects Injected (DI) DDC ~ − 0.19 + 0.45 × DI  0.45 × 𝐷𝐼/𝐷𝐷𝐶 

Process Yield (PY) 

Design Review Productiv-

ity (DRProd) 
𝑃𝑌  ~ 57.59 −  0.0030 ×
𝐷𝑅𝑃𝑟𝑜𝑑 −  0.0048 ×
𝐶𝑅𝑃𝑟𝑜𝑑  

− 0.0030 × 𝐷𝑅𝑃𝑟𝑜𝑑/𝑃𝑌 

Code Review Productivity 

(CRProd) 
− 0.0048 × 𝐶𝑅𝑃𝑟𝑜𝑑/𝑃𝑌 

Productivity (Prod) 
Productivity in Phase k  

(Prodk) 
𝑃𝑟𝑜𝑑 = 1/ ∑

1

𝑃𝑟𝑜𝑑𝑘𝑘
 Fraction of time in phase k 

Unit Test Productiv-

ity (UTProd)  

Defect Density in Unit Test 

(DDUT) 
UTProd~552 − 4.2 × DDUT −4.2 × 𝐷𝐷𝑈𝑇/𝑈𝑇𝑃𝑟𝑜𝑑 

Compile Productivity 

(CompProd) 

Defect Density in Compile 

(DDC) 

CompProd~2308 − 17
× DDC 

− 17 × 𝐷𝐷𝐶/𝐶𝑜𝑚𝑝𝑃𝑟𝑜𝑑 

  

6. CASE STUDY 

6.1 Case study design and planning 

The objective of the case study described in this section, related with RQ1, is to show that it 

is possible to automatically analyze the performance data of an individual PSP developer in 

order to identify and rank performance problems and potential root causes, based on the PM 



and approach proposed in this paper with tool support, with a similar accuracy as in manual 

analysis but with less effort.  

In this case, the performance data under analysis refers to 7 projects performed by a 

PSP developer during the PSP Fundamentals and Advanced training, using a programming 

language without an explicit Compile phase. The projects deal with numerical and text pro-

cessing problems. The data was recorded using the SEI’s PSP Student Workbook. In the end 

of the PSP training (and at regular times afterwards) developers should analyze their personal 

performance along the series of projects developed, and document their findings and a set of 

prioritized and quantified process improvement proposals in a Performance Analysis Report 

(PAR); such PAR is also available in this case and will be used for comparison purposes. 

The automated analysis was conducted with version 2.2 of our novel ProcessPAIR tool 

available in http://blogs.fe.up.pt/processpair/. The tool is able to import and automatically 

analyze the performance data recorded by PSP developers in the SEI’s PSP Student Work-

book or the Process Dashboard tool (http://www.processdash.com/). The ProcessPAIR tool 

comprises a core framework, independent of the process under analysis, and an extension for 

the PSP, providing the PM described in this paper and loaders from the PSP tools.  

6.2 Case study data collection: model-based performance analysis outcomes  

After selecting the PM, the type of input file, and the input file to analyze, the tool performs 

the analysis and makes the results of the analysis available in multiple views. 

Table View. This view presents the detailed evaluation of all PIs for all projects under 

analysis, as depicted in Fig. 4. Initially, it shows only the 3 top-level PIs (non-shaded lines 

in Fig. 4). Each cell is colored green, yellow or red, in case its value suggests no performance 

problem, a potential performance problem, or a clear performance problem, respectively, ac-

cording to the performance ranges described in Section 4. Cells with missing data are left 

blank.  As indicated by the red cells in Fig. 4, the main top-level performance problems occur 

in time estimation (projects P1, P3 and P7) and in productivity (projects P6 and P7).  By 

expanding the nodes in this view, one can drill down to lower level PIs, following the hier-

archical structure of the PM, in order to identify potential causes of performance problems.  

For example, the red colored cells in Fig. 4 suggest that the time estimation problems in P3 

and P7 have different causes: a size estimation problem in P3, and a productivity estimation 

problem in P7. As another example, the red colored cells in Fig. 4 suggest that the poor 

productivity in P7 may be caused by poor productivity in the Plan, Design, Design Review, 

Unit Test and Postmortem phases. Information about the relative importance of those poten-

tial causes can be found by skipping to the “Diagram View”, as depicted in Fig. 5. 

Diagram View. The goal of this view it to help identifying and prioritizing, project by 

project, the causes of performance problems, so that subsequent manual root cause analysis 

and improvement actions can be properly focused. The child indicators are sorted according 

to the value of the ranking coefficient described in Section 5. As explained there, the ranking 

coefficient represents a cost-benefit estimate that relates the cost of improving the value of 

the child indicator with the benefit on the value of the parent indicator. To facilitate the anal-

ysis, child PIs with a ranking coefficient below some configurable threshold can be hidden, 

as illustrated in Fig. 5 for a 0.1 threshold. Such a threshold excludes child PIs which improve-

ment by say 10% (in terms of reduction of the percentile distance to the optimal value) is 

estimated to lead to ≤1% improvement in the value of the parent PI. For example, the diagram 

of Fig. 5 suggests that the major cause for the poor productivity in project 7 is the poor 

productivity in the Design phase (with a ranking coefficient of 15.9), followed (by a large 

http://blogs.fe.up.pt/processpair/
http://www.processdash.com/


distance) by the poor productivity in the Plan, Unit Test, Design Review and Postmortem 

phases. Similarly, the diagram suggests that the major cause for the poor time estimation in 

project 7 is the productivity instability in the design phase, followed by the productivity in-

stability in the unit test phase (with a much smaller ranking coefficient). 

Indicator View. This view provides useful information to visually inspect the behavior 

of each PI, as compared to the benchmarks embodied in the PM, as illustrated in Fig. 6. The 

chart on the right suggests a trend for improvement of the Process Yield in the data under 

analysis. The chart on the left reveals a hybrid continuous-discrete distribution in the training 

data set, with roughly 10% of the data points in each extreme of the scale. 

Report View. This view presents a textual description of the main performance prob-

lems encountered and potential causes (properly filtered and prioritized), aggregated or on a 

project by project basis. Due to space limitations we only present a synthesis in Table 4. 

 

 

Figure 4 Evaluation of top-level and nested (shaded) PIs in the case study for projects 1 to 7.  

 



 

Figure 5 Ranked potential causes of performance problems in project 7 of the case study. 

 

 

Figure 6 Example of analysis of an individual PI in the case study. 

hidden if “show only

major issues” is selected



6.3 Case study data analysis: comparison of manual and model-based analysis 

Table 4 compares the results of manual analysis (extracted from the Performance Analysis 

Report produced by the developer) and the results of model-based analysis (consolidated 

from the Report View produced by the tool), showing that similar conclusions are drawn. In 

this case, the manual analysis took 8 hours as reported by the developer, whilst the model-

based analysis took just a few seconds. This allows us to answer positively to RQ1. However, 

the information in Table 4 also shows that the manual analysis can go deeper in causal anal-

ysis—in this case by attributing the productivity problems in the design phase to long design 

documents. Hence the main advantage of the model-based analysis is that it can point out 

problematic areas to focus in subsequent manual analysis, making it more efficient and ef-

fective.  

 
Table 4. Comparison of problems and root causes identified in manual and model-based analysis. 

Manual Analysis (PAR)  Model-Based Analysis 

Poor time estimation accuracy, with time under-

estimation in P3 caused by size underestimation, 

and time underestimation in P7 due mainly to an 

inefficient and unstable design process. 

Significant time estimation problems in 3 pro-

jects (P1, P3, P7), possibly caused in P3 by a 

size estimation problem, and in P7 by produc-

tivity instability in several phases, notably in 

the design phase. 

Product quality problems, with average defect 

density in unit test well above the recommended 

value of 5, caused by a high number of defects 

injected. 

Potential process quality problems in 2 pro-

jects (P4 and P7), possibly caused in P7 by a 

high number of defects injected and a small de-

sign review to design ratio.  

Productivity problems, namely at design phase, 

caused by an inefficient design process (long de-

sign specification documents following PSP 

templates). 

Significant productivity problems in projects 

P6 and P7, caused by slow performance in sev-

eral process phases, notably in the design 

phase. 

 

7. RELATED WORK 

7.1 Process performance models 

Our approach draws a strong inspiration from process performance models (PPMs). In the 

context of the CMMI process improvement framework, a PPM is a description of the rela-

tionship among attributes of a process or sub-process and its outcomes, developed from his-

torical performance data and calibrated using collected process and product measures [26]. 

In the case of continuous variables, a PPM often takes the form of a regression equation, 

relating controllable or uncontrollable factors (x) with outcomes (y), together with an indi-

cator of the degree of variability in the model, such as the R2 statistic. In the case of discrete 

variables, PPMs may be based on Bayesian networks [27].  

PPMs are useful for project management and process management and improvement. In 

the latter case, PPMs help organizations identify and leverage important relationships among 

process factors and outcomes, and estimate the effects of alternative process changes.  

The creation of a PPM usually involves the following steps, among others: (1) decide 

what outcomes to analyze; (2) hypothesize factors to investigate; (3) select the modeling 

techniques to use; (4) obtain relevant data; (5) fit the model to the data and evaluate the 

degree of fitness according to statistical and business criteria [27].  



Examples of PPMs that can be constructed and applied in the context of the TSP/PSP, 

together with examples of outcomes and factors to consider for a few sub-processes, are de-

scribed in [17]. An example of a PPM created by a TSP team for establishing a target code 

review rate (number of lines of code reviewed per hour), based on the predicted impact on 

the code review yield (percentage of defects found in code reviews), is as follows [17]: 

 Regression equation:   Code Review Yield = 146 – 0.364  * Code Review Rate  

 R2 = 94.1%,   p-value = 0.000 

Possible factors to consider for analyzing the code review yield are factors currently 

collected by TSP (requirements inspections rate, high-level design inspections rate, detailed 

design review rate, detailed design inspection rate, code review rate, code review/coding 

time) and factors requiring further data collection (code complexity, encapsulation, program 

language & tools, code review checklist, coding skills and experiences with the languages 

and tools used, code review skills and experiences, quality of reused source code) [17]. 

Our work is strongly influenced by the concept of PPMs, with several similarities and 

differences. As for the similarities, we applied the steps indicated above for the derivation 

and validation of several components of our model: (1) selection of top-level PIs (outcomes); 

(2) selection of child PIs (factors); (3) selection of exact equations or regression equations 

relating parent and child PIs; (4) obtention of a large PSP data set with historical data; (5) 

computation of regression equations and correlation coefficients, in the case of PIs not related 

by exact equations. Our work is novel, because it was not done before for the PSP in a com-

prehensive way. We focused our attention on factors for which historical data is available for 

model validation and calibration. We privileged factors that are related by exact equations 

with the outcomes under analysis, to minimize context sensitivity. Regarding the differences, 

there is a small difference in terms of vocabulary, because we use the term “model” to refer 

to the network of related PIs, together with additional attributes for the nodes (approximate 

statistical distribution, recommended ranges) and edges (sensitivity coefficients, correlation 

coefficients), whilst in the PPM nomenclature a model refers to a single outcome and a set 

of factors. The main difference is that our model conveys additional elements needed to iden-

tify performance problems (in the outcomes) and rank potential root causes (factors): recom-

mended ranges for each PI; approximate statistical distribution of each PI; sensitivity coeffi-

cients (derived from the exact or regression equations). 

7.2 Benchmark-based software evaluation  

In our approach, in order to enable the automated identification of performance problems, 

after deciding on the relevant PIs, one has to decide on the relevant ranges. Our approach for 

defining such ranges draws inspiration from the benchmark-based approach developed by 

researchers of the Software Improvement Group [23][28] to rate the maintainability of soft-

ware products, with adaptations for process evaluation instead of product evaluation. 

In [23][28], the authors claim that the effective use of software metrics is hindered by 

the lack of meaningful thresholds. They also note that thresholds have been proposed for a 

few metrics only, mostly based on expert opinion and a small number of observations, or 

systematically derived based on unjustified assumptions about the statistical properties of the 

metrics (such as normality).  Hence, they propose a method to empirically derive in a sys-

tematic way metric thresholds from measurement data (benchmarks), in order to determine 

risk profiles and maintainability ratings for products under analysis. They propose a discrete 

rating schema (from 1 to 5 stars), based on thresholds that correspond to the 20%, 40%, 60% 



and 80% quantiles.  In our case, we use a similar schema, with 3 instead of 5 intervals, to 

assess process and product metrics. 

7.3 Defect causal analysis 

Many process improvement approaches (e.g., Six Sigma [29] or FMEA [30]) described in 

literature and practiced in industry include causal analysis activities for determining the 

causes of defects and other problems [31]. However, most of the techniques are essentially 

manual. Defect Causal Analysis [32] is one of the prominent methods for analyzing defects 

and identifying root causes for improvement in software engineering. Furthermore, the learn-

ing capability of DCA from defects enable improvement of processes and products, which is 

a significant benefit in the context of continuous improvement strategies [33].  

The DCA process involves 6 steps to be performed in DCA workshops [32]: (1) select 

problem sample; (2) classify selected defects (e.g., using ODC); (3) identify systematic errors 

(e.g., with Pareto charts); (4) determine main causes (e.g., using Fishbone or cause-effect 

diagrams); (5) develop action proposals; (6) document meeting results. 

The DCA approach is essentially complementary to our approach. The main advantage 

of our performance analysis approach is that it has the potential to identify relevant perfor-

mance problems and causes in a fully automatic way, so that subsequent manual activities 

can be conducted in a more focused and efficient way, to further determine root causes and 

devise improvement actions. The DCA technique becomes particularly useful when prob-

lems associated with high defect density are identified by our approach. 

8. LIMITATIONS AND THREATS TO VALIDITY 

In the case study presented, using real world data, the conclusions obtained by the model-

based analysis are very close to the ones obtained by the developer in his manual analysis. 

This suggests that our approach can be helpful in performance analysis and process improve-

ment, by pointing out the areas to focus in manual analysis. However, further experiments 

need to be conducted to quantify the benefits that can be achieved with our approach. 

Some choices that we made in the model construction and calibration process and in the 

definition of the performance analysis and ranking method may have to be adjusted when 

applying our approach in varying contexts, as discussed next. 

Our choice of PIs was constrained by the data available, so relevant factors may have 

not been captured by those PIs, such as application domain, expertise, development technol-

ogy, among others. However, in case data about those factors is available, our approach can 

be easily extended to take them into account.  

The omission of a relevant factor Z is particularly misleading when Z acts as confound-

ing factor, that is, when Z affects variables X and Y present in the model in such a way that 

they erroneously seem inter-dependent. We tried to avoid confounding factors by focusing 

whenever possible on dependencies that are determined by formulas, and by backing up by 

relevant references and studies from the literature other types of dependencies.  

Although the data set used for model validation and calibration refers to a homogeneous 

set of projects and processes, it contains data from a broad set of contexts (regarding user 

expertise, programming language, development environment, etc.), which may diminish the 

precision of the conclusions that can be drawn from the model derived from that data set. 

However, that is not an inherent deficiency of our approach, but rather a limitation of the data 

available for modeling and analysis. 



Our ranking method uses a novel cost-benefit heuristic to prioritize the factors to address 

in subsequent improvement actions. Although we successfully experimented the heuristic in 

several cases, since it uses very limited data (statistical distribution and sensitivity coeffi-

cients), it is possible that relevant cost or benefit drivers are not captured by the heuristic. 

In the range calibration process, we tried to combine recommended values from litera-

ture with thresholds derived from the historical data, reason why the calibration process is 

not fully automatic. This complicates the adaptation of our approach for other data sets. In 

the future, we intend to investigate fully automated calibration processes. 

We used LOC/hour for measuring productivity, in spite of its known limitations, because 

it is the metric available in the data set. Although the usage of LOC/hour for phase ranking 

purposes is not so much problematic (it reduces to effort comparisons), false positives or 

false negatives may occur in the identification of overall productivity performance problems.  

Although our approach and tool are general and can be instantiated for any process, the 

model presented in this paper is applicable only to analyze PSP performance data. We intend 

to replicate our approach to other processes without such a well-defined measurement frame-

work as the PSP, so we expect to encounter difficulties regarding data availability, data qual-

ity, and standardization. 

9. CONCLUSIONS AND FUTURE WORK 

We presented a performance model to enable the automated identification and ranking of 

performance problems and their root causes, and reduce the manual effort of performance 

analysis in the PSP. The performance analysis approach presented in this paper is currently 

automated in our ProcessPAIR (Process Performance Analysis and Improvement Recom-

mendation) tool. The tool analyzes performance data produced by PSP developers in their 

projects, and pinpoints performance problems and a ranked list of possible root causes.  

As future work we plan to build a comprehensive catalogue of improvement actions to 

recommend for the highest-ranked causes, build similar models for analyzing performance 

data produced in the context of other processes, and conduct further experiments to assess 

the benefits of our approach.  
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APPENDIX A – APPROXIMATE CUMULATIVE DISTRIBUTION FUNCTIONS 
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Figure 7 Approximate cumulative distribution functions for all PIs in our model derived from the 

PSP data set.  
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APPENDIX B – EXAMPLE OF RANKING CALCULATIONS  

Table 5 presents the calculations performed to rank the factors that affect the overall produc-

tivity in “Program 7” of the case study. Figure 8 illustrates how a percentile coefficient is 

computed from the historical data. Regarding the sensitivity coefficient, the phases that con-

sume more effort (i.e., with lower productivity) – Design, Unit Test, Plan and Code – are 

ranked at the top 4 positions. However, the productivity in Code is significantly closer to the 

optimal value (in terms of percentiles) than for the other phases; so, when computing the 

combined ranking coefficient, the productivity in Code goes down to the 6th position. In the 

final ranking, the top two phases which productivity should be improved (to improve the 

overall productivity with the best cost-benefit ratio) are the Design and Plan phases.  
 

Table 5. Example ranking calculations for the factors that affect the overall productivity. 

i Variable 

Value  

(LOC/ 

hour) 

Percen-

tile (Fi) 

Probabil-

ity  

Density 

(F'i)  

Percentile  

Coef. (πi)  

𝐹𝑖(𝑥) − 𝐹𝑖(𝑜𝑖)

𝑥𝐹′𝑖(𝑥)
 

Sensitivity 

Coef. (σi) 

𝑃𝑟𝑜𝑑

𝑃𝑟𝑜𝑑𝑘

 

Ranking 

Coef. (ρi) 

πi × σi 

 

0 Productivity 8.63 0.07 0.00936    

1 Plan Productivity 73.5 0.10 0.00223 5.48 (2nd) 0.118 (3rd) 0.64 (2nd) 

2 Design Productivity 19.4 0.02 0.00142 35.65 (1st)  0.446 (1st) 15.9 (1st) 

3 Design Review Prod. 100.0 0.07 0.00066 4.12 (3rd) 0.086 (5th) 0.35 (4th) 

4 Code Productivity 87.8 0.45 0.00693 0.91 (6th) 0.098 (4th) 0.09 (6th) 

5 Code Review Product. 163.6 0.18 0.00211 0.23 (7th) 0.053 (7th) 0.01 (7th) 

7 Unit Test Prod. 67.9 0.18 0.00353 3.42 (4th) 0.127 (2nd)  0.43 (3rd) 

8 Postmortem Product. 120.0 0.20 0.00220 2.86 (5th) 0.072 (6th) 0.21 (5th) 

 

 
Figure 8 Computing the percentile coefficient for Code Productivity based on percentiles extracted 

from the historical data. 
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