
Towards Out-of-the-Box Programming of
Wireless Sensor-Actuator Networks

Gil Ferro Roberto Silva Luı́s Lopes
CRACS/INESC-TEC
University of Porto

Email: {gil.ferro,roberto.silva,luis.lopes}@dcc.fc.up.pt

Abstract—We address the problem of providing users, namely
non specialists, with out-of-the-box, programmable, Wireless
Sensor-Actuator Networks (WSN). The idea is that users get
a package containing a gateway and an undetermined number
of nodes, pre-configured to work as a self-organized wireless
mesh. Each node comes with two pre-installed components: a
small operating system and a virtual machine. The user can
then use a simple, domain-specific, programming language to
implement periodic tasks that are compiled into byte-code, and
can be sent to the nodes for execution. At the nodes, the operating
system manages a task table and schedules non-preemptive tasks
for execution using the virtual machine. No subtle hardware or
software configuration is required from the user as these details
are abstracted away by the virtual machine. We developed a
full specification for a data-layer that follows the aforementioned
guidelines and implemented a complete prototype, integrated
in our own Publish/Subscribe middleware called SONAR. In
this paper we report the first results of using the prototype as
compared to using the low level programming tools provided
with the hardware. We measure a small increase in both resource
consumption and processing overhead suggesting that this data-
layer can be used effectively in WSN, even in cases where nodes
have very limited hardware resources.

I. INTRODUCTION

Programming wireless sensor-actuator networks (WSN) is
a non-trivial task. The multitude of hardware configurations,
highly dependent on the final application, operating systems
and programming languages conspires to make WSN a task
for the technically inclined or even the specialist [1]. This state
of affairs makes the technology unappealing to the masses and
therefore precludes its wider dissemination.

With SONAR [2] we have introduced an architecture that
aims to solve some of these limitations and, specifically, to
make setting up, configuring, programming and monitoring
small to medium sized WSN deployments (up to tens of nodes)
a task accessible to users with minimal background on com-
puters. We do this by making several simplifying assumptions
on the way WSN work, based on what we perceived from
the literature [1], [3], [4] and deployment case studies: (a)
in most deployments there are one or more gateways and an
indeterminate number of nodes with sensors and actuators; (b)
gateways are simple forwarders, they receive data from the
nodes and forward it to a middleware; in some cases they
may receive commands from the middleware and broadcast
them to the nodes; (c) nodes read onboard sensors periodically,
eventually sending data to the gateway; they may receive and
execute commands from the gateway; (d) most applications
require only basic local intelligence at the nodes, e.g., periodic

checks of sensor readings and eventually of some stored state,
to trigger actuation commands, and basic data processing.

The design of a data-layer, based on the aforementioned
assumptions, that effectively shields the user from the hard-
ware/software low-level details of the WSN deployments,
is critical for the SONAR architecture. We established the
following goals: (a) the data-layer must be readily available,
i.e., pre-installed in the gateway and nodes, and be easily
ported to other hardware/software architectures/configurations;
(b) it should introduce only minimal overhead and resource
consumption relative to traditional low-level programming of
WSN; (c) nodes run periodic tasks written in a compact
domain-specific language and compiled to byte-code; (d) the
byte-code is radioed to the nodes where tasks are scheduled for
execution in EDF-style with the assistance of a tiny operating
system, i.e., nodes can be dynamically reprogrammed, and; (e)
tasks are executed in a virtual machine in the nodes.

The main contributions of this paper are as follows: (a) the
specification of a platform independent data-layer for WSN,
including the modules for the gateway and for the nodes; (b)
the specification of STL (Sonar Task Language), a domain-
specific programming language for implementing periodic
tasks, and a virtual machine to execute them in the nodes of
WSN deployments, and; (c) a full prototype implementation
of the data-layer and an evaluation of overhead and resource
consumption relative to equivalent applications implemented
with Arduino’s C/C++/Wiring.

The remainder of the paper is organized as follows.
Section II describes related work and the SONAR Publish/-
Subscribe middleware, for managing datastreams from WSN
deployments, and the data-layer in that context. Section III
describes the STL language and its semantics. Section IV
continues with the byte-code format, the compilation func-
tion and, the virtual machine. Section V introduces the soft-
ware components that make up the gateway and the nodes.
Sections VI and VII give an overview of the prototype
implementation and report the results of our evaluation, in
terms of overhead and resource consumption, with respect to
applications implemented in Arduino’s SDK. The paper ends
with Section VIII where we discuss the approach taken, its
virtues and limitations, as well as current work.

II. RELATED WORK

SONAR [2] is a 3-layer publish-subscribe architecture
(Figure 1) in which clients subscribe to data streams generated
by tasks running on the nodes of WSN deployments.

2015 IEEE 18th International Conference on Computational Science and Engineering

978-1-4673-8297-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSE.2015.20

110

Fig. 1: The SONAR 3-layered architecture.

The data layer abstracts the WSN deployments and pub-
lishes data streams in the Sonar Broker. Each deployment is
composed of a gateway and an indeterminate number of nodes.
The gateway gathers data from the nodes and forwards it to
the broker through a component called WSN Adaptor. Once
the data reaches the broker, it is forwarded to all clients that
subscribed the stream. The gateway also receives commands
from an administration client and forwards them to the nodes.
These commands allow for the dynamic reprogramming of
WSN and include: sending a new task to the nodes, killing
or changing the period of a task already running in the nodes,
and reseting the nodes.

Sonar tasks are programmed in a domain specific program-
ming language called Sonar Task Language (STL). The tasks
are compiled into a byte-code representation that is sent to the
nodes and executed in loco using the Sonar Virtual Machine
(SVM). Multiple tasks, with different periods, can run in a
WSN node. The management of memory and resources and
the scheduling of the tasks in a node is performed by a tiny
operating system, co-located with the virtual machine. Once
running, a typical task may generate readings from the sensors
in a node and send these periodically to the gateway, that in
turn forwards the data to the broker and henceforward until it
reaches the clients. Sonar clients are very simple, composed
of shell commands that allow the selection of streams for
subscription and the connection to the broker to receive the
data, one connection per stream. The data received by the
client is them sent to the standard output and can be composed
(piped) with other programs developed by users to perform the
desired processing and/or storage of the data.

As we stated in the previous section, the design, imple-
mentation and evaluation of the data layer is the main subject
of this paper. Our goal is to provide a platform that: a)
supports multiple node architectures; b) allows multiple tasks

Fig. 2: The SONAR WSN abstraction.

to run on a single node; c) allows the dynamic reprogramming
of nodes independent of whether or not OTA programming
is available for a platform; d) does all of the above with
limited overhead and resource consumption. Thus, to improve
portability, we decided to implement two generic modules for
nodes: an operating system to manage tasks, and a virtual
machine to execute tasks (Figure 2). The two modules would
come pre-installed in the nodes and be easily ported to multiple
architectures. To simplify the programming of the nodes and
to allows for dynamic reprogramming, we adopted a model
based on tiny tasks, several of which can run in a node at
a given time. Tasks are written in a small domain-specific
language, compiled into byte-code and executed by the virtual
machine. They are sent to the nodes as control messages from
the gateway. In our programming model, tasks never listen for
data and they can only send data to the gateway. The operating
system schedules the tasks in EDF-style, but otherwise no
atempt is made to ensure that deadlines are met. In other words,
we assume that the number of tasks in a node is small and
that the execution time is a small fraction of the period. Both
the operating system and the virtual machine were designed
and implemented to minimize extra resource consumption
relative to the baseline set by native code implementations.
The programming is, however, far simpler with STL, as we
shall see in the next section.

Using virtual machines to support programming models
for WSN is not a novelty. Mate [5] is a compact virtual
machine implemented on top of TinyOS. Programs, called
capsules, may be injected in the network at any time to
perform specific tasks. They are written in a very simple
assembly language and have the capability to move between
sensor nodes. The Regiment [6] macro-programming language
implements the Distributed Token Machine, based on a event-
based programming model. Each token is a typed message
with some data or code that triggers a specific handler upon
reception. Sun Microsystems (now Oracle) introduced the
Squawk [7] virtual machine to support applications for their
SunSPOT devices. Squawk is a very compact Java virtual
machine, with a simplified bytecode layout that runs without an
underlying operating system. Our goal is to develop a compact
virtual machine, in the line of Mate, but associated with a user
friendly programming language. Unlike Mate, however, we are
not interested in the mobility aspects of tasks.

In what concerns operating systems for WSN, TinyOS [8]
is perhaps the most widespread. It provides a simple event-
based execution-model with non-preemptive tasks. The sys-
tem is loaded onto the sensor nodes as a set of modules
linked with the user application. Contiki [9] is also based
in a event-driven execution-model but supports multi-threaded
applications, using very lightweight threads, and the dynamic

111

T ::= sensors {s1 : σ1 . . . sn : σn} Tasks
actuators {a1 : σ1 . . . am : σm}
init {q̃}
[τ̃] loop {r̃}

σ ::= τ̃ !→ τ Types
τ ::= bool | int | float | void
q ::= τ x = v Initializations
r ::= x = e Instructions

| a(ẽ)

| radio [ẽ]

| if e {r̃} else {r̃}
| while e {r̃}

e ::= s(ẽ) | e op e | op e | (e) | v Expressions
v ::= x | u Values
u ::= bools | ints | floats Constants

Fig. 3: The syntax of STL.

loading of program modules. SOS [10], also event-driven, is
built from very small modules these are dynamically loaded,
using a clever memory management scheme. MANTIS [11]
and Nano-RK [12] diverge from the above systems in that
they support preemptive multithreading, required for real-time
systems. Our operating system is much simpler than any of
the aforementioned siblings. Memory management for tasks
is very simple as memory is all allocated statically. The
operating system just manages a table of tasks, schedules tasks
for execution, and processes incoming commands from the
gateway, including new tasks to be executed.

III. PROGRAMMING LANGUAGE

In this section we describe the syntax and semantics of
the domain-specific programming language used to implement
periodic tasks - the SONAR Task Language (STL).

A. Syntax

The syntax for tasks is described in Figure 3. A task T
uses two sets of identifiers, s̃ and ã, to specify the available
sensors and actuators in a given platform. The notation α̃ is
used to denote a sequence of pairwise distinct elements, α, of
a given syntatic cathegory. Each of these identifiers maps to
a unique sensor or actuator in the hardware. This declaration
is thus similar for all tasks running on the same hardware
configuration and in a more concrete syntax would simply be
included by the programmer using a compiler directive.

The code that is actually specific for the task starts with the
init block, used to initialize global task variables. This code
is not executed, rather the compiler will copy the initial values
for each variable directly to the data segment of the bytecode
generated for the program. The loop block, on the other hand,
is the code executed for every (periodic) activation of the
task. It is immediately preceded by the type of message sent
back by the task to the gateway using the construct [τ̃]. The
task only sends messages of this type to the gateway and the
type is checked against all radio statements in the task. The

instructions available to the programmer include: assignment,
actuation - a(ẽ), sending a set of evaluated expressions to
the gateway - radio [ẽ], a conditional execution construct -
if e {r̃} else {r̃}, and a while loop - while e {r̃}. The
expressions are standard except for s(ẽ) that is used to read a
value from a given sensor.

As we said, for a given platform and configuration, the
hardware description provided by the constructs sensors and
actuators is the same. We use a preprocessing directive - use
- to include this description at the top of all programming
examples in this paper (Figure 4).

sensors {
temperature : void −> f loa t ,
humid i ty : void −> f l o a t
l i g h t : void −> f l o a t

}
actuators {

led : bool −> void
}

Fig. 4: Hardware description for Arduino 2560 prototype WSN
- file “ard2560.hw”.

The example in Figure 5 show a STL program that at
each activation reads the temperature and humidity and radios
the values to the gateway. The example uses two sensors,
designated as temperature and humidity, whose types are
declared in hardware description file “ard2560.hw”. Notice that
the periodicity of the task is not included in the code. It is
an external attribute set with the administration client when
the task is sent to the gateway to be radioed to the nodes. In
this way, users with admin access can dinamically change the
period of running tasks using simple control messages. Note
that, for compactness, some of the examples in this paper use a
slightly sugared version of the syntax, e.g., allowing variables
to be declared in the loop and initialized with expressions, not
just constants.

use ” ard2560 .hw”

[f loa t , f l o a t] loop {
f l o a t t = temperature () ;
f l o a t h = humid i ty () ;
radio [t , h] ;

}

Fig. 5: STL program that reads the temperature and humidity
and radio the results to the gateway.

The language specification is complete with both the op-
erational and static semantics that together define how well-
formed programs are executed.

IV. COMPILER AND VIRTUAL MACHINE

In this section we give the specification for the SONAR
Virtual Machine (SVM), one of the modules pre-installed in
the nodes. The virtual machine executes STL tasks, translated
into byte-code by a compiler. Thus, we begin by defining the
byte-code format and then give the translation function for the
STL source code.

112

p ::= h d b Program
h ::= i1 i2 Header
d ::= ṽ Data Segment
v ::= bools | ints | floats Values
b ::= r̃ Text Segment
r ::= ld i | st i | wrt i1 i2 | rd i1 i2 Instructions

| rad i | bf i | jp i | ret
| bop | uop

Fig. 6: Byte-code syntax.

The byte-code is composed of 4 segments: header, data,
stack and text (Figure 6). The header contains the total size of
the bytecode as well as the offset to the beginning of the text
segment. The stack segment is allocated between the data and
text segment, growing towards the lower addresses. Its size
is calculated at compile time since there are no calls to user
defined functions. The data segment provides space for all the
variables in a STL program. Constants and the initial values
of global variables are stored there by the compiler. The data
segment can be seen as the only activation record required
for the virtual machine since, again, there are no calls to user
functions or user functions in tasks. All variables, of types bool,
int and float, use 4 bytes in the data segment in this version,
but this can and should be optimized to minimize the size of
the byte-code. The text segment is composed of instructions
that have a 1 byte opcode and eventually 1 or 2 extra bytes
for arguments. There are instructions for loading a value to
the stack (ld), storing a value from the stack (st), sending
an actuation command (wrt), reading a sensor (rd), sending
a message over the radio (rad), the usual control flow (bf ,
jp , ret) and, the usual integer and floating-point arithmetic
and logic and relational operators (bop , uop). Bytecode
instructions map almost one-to-one with reduction rules from
the operational semantics. This correspondance is important
for proving that the virtual machine correctly executes the
bytecode, but this is a problem we will not address here.

The translation function receives a syntactic term and
returns a pair of sequences (D,B) (Figures 7 and 8). The
first, D, is the contribution of the term to the data segment, the
latter, B, is the contribution to the text segment. The top level
translation function [[·]], for STL tasks, breaks the translation
into a sequence of pairwise concatenations (operator “:”)
and uses appropriate translation functions for each syntactic
category. We use the same notation [[·]] to simplify the notation,
but these should be seen as distinct functions. The translation
function uses 3 sets which hold integer identifiers for sensors
and actuators, S and A, and data segment offsets for variables
(set Var) and constants (set Const), V and U , defined as
follows:

S = {(si, i) | si ∈ s̃ : τ}
A = {(ai, i) | ai ∈ ã : τ}
V = {(x, i) | x ∈ Var ∧ i = offset(x)}
U = {(u, i) | u ∈ Const ∧ i = offset(u)}

The translation function is quite straightforward. The transla-
tion of an actuation command, a(ẽ), is simply the translation

[[T]] =[[sensors {s̃ : σ}]] :
[[actuators {ã : σ}]] :
[[init {q̃}]] :
[[[τ̃] loop {r̃}]] :
(ϵ, ret)

[[sensors {s̃ : σ}]] =(ϵ, ϵ)

[[actuators {ã : σ}]] =(ϵ, ϵ)

[[init {q̃}]] =[[q̃]]

[[τ x = v q̃]] =(v, ϵ) : [[q̃]]

[[[τ̃] loop {r̃}]] =[[r̃]]

[[r r̃]] =[[r]] : [[r̃]]

[[x = e]] =[[e]] : (ϵ, st : V (x))

[[a(ẽ)]] =[[ẽ]] : (ϵ,wrt : A(a) : |ẽ|)
[[radio [ẽ]]] =[[ẽ]] : (ϵ, rad : |ẽ|)

[[if e {r̃1} else {r̃2}]] =[[e]] : (D′, B′)

where
(D1, B1) = [[r̃1]]

(D2, B2) = [[r̃2]]

D′ = D1 : D2

j1 = 2 + |B1|
j2 = |B2|
B′ = bf : j1 : B1 : jp : j2 : B2

[[while e {r̃}]] =[[e]] : (D,B′)

where
(D,B) = [[r̃]]

j = 2 + |B|
B′ = bf : j : B : jp : −j − 2

[[ϵ]] =(ϵ, ϵ)

Fig. 7: Translation to bytecode (part I).

of the arguments ẽ, followed by a wrt instruction with the
integer identifier for the actuator A(a) and the number of
expressions, |ẽ|, as the arguments. Similarly, reading a sensor,
s(ẽ), translates into the translation of the expressions followed
by a rd instruction with the integer identifier for the sensor
S(s) and the number of expressions, |ẽ|, as the arguments.
Likewise, the translation for radio [ẽ] is simply the translation
of the expressions to be sent, followed by a rad instruction
with the number of expressions, |ẽ|, as the argument.

The state of the virtual machine is represented as the term
[D|S|B]j , where j is the program counter and is used to travel
the instructions in the text segment. The halted machine is
represented by a special state denoted ⊥. To run a task T in
the virtual machine we use the translation function to get its
byte code [[T]] = (D,B) and set its initial state to:

[D| 0 . . . 0︸ ︷︷ ︸
k

|B]0

where k is the maximum stack size computed by the compiler
and included in the bytecode. The computation proceeds
according to the reduction rules presented in Figure 9, of the

113

[[e1, . . . , en]] =[[e1]] : · · · : [[en]]
[[s(ẽ)]] =[[ẽ]] : (ϵ, rd : S(s) : |ẽ|)

[[e1 bop e2]] =[[e1]] : [[e2]] : (ϵ,bop)

[[uop e]] =[[e]] : (ϵ,uop)

[[x]] =(ϵ, ld : V (x))

[[u]] =(u, ld : U(u))

[[ϵ]] =(ϵ, ϵ)

Fig. 8: Translation to bytecode (part II).

B[j] = ld B[j + 1] = i v ← D[i]

[D|S|B]j → [D|v, S|B]j+2

B[j] = st B[j + 1] = i D′ ← D + {i : v}
[D|v, S|B]j → [D′|S|B]j+2

B[j] = rd B[j + 1] = i B[j + 2] = n
f ← sensors[i]

v ← f(v1, . . . , vn)

[D|v1, . . . , vn, S|B]j → [D|v, S|B]j+3

B[j] = wrt B[j + 1] = i B[j + 2] = n
g ← actuators[i]
g(v1, . . . , vn)

[D|v1, . . . , vn, S|B]j → [D|S|B]j+3

B[j] = rad B[j + 1] = n send(v1, . . . , vn)

[D|v1, . . . , vn, S|B]j → [D|S|B]j+2

B[j] = bf B[j + 1] = i

[D|false, S|B]j → [D|S|B]j+2+i

B[j] = bf B[j + 1] = i

[D|true, S|B]j → [D|S|B]j+2

B[j] = jp B[j + 1] = i

[D|S|B]j → [D|S|B]j+2+i

B[j] = bop

[D|v2, v1, S|B]j → [D|v1 bop v2, S|B]j+1

B[j] = uop

[D|v, S|B]j → [D|uop v, S|B]j+1

B[j] = ret
[D|S|B]j → ⊥

Fig. 9: Transition rules for SVM.

form: c1 . . . cn
S → S′

where the ci are preconditions or actions that must be fulfilled
to make the transition from the current state, S, to a given
state, S′, possible. For example, when the current instruction
(the one the program counter j is indexing) is ld (1st rule), the
next byte contains i, the offset of a variable or a constant in

the data segment, and we use it to access the value (denoted as
v ← D[i]). The new state has the same data and text segments
but the stack has the value v on top of it, and the program
counter was updated to j + 2. Similarly for st (2nd rule),
we have a value v in the stack in the current state and we
make a transition to a state where that value has been removed
from the stack and copied to position i in the data segment
(denoted as D′ = D + {i : v}). The arrays sensors (3rd
rule) and actuators (4th rule) provide the pointers to built-
in functions associated with the identifiers. For example, the
rd instruction (3rd rule) has two arguments: i, the index that
identifies the built-in sensor function to be called, and n, the
number of arguments that function takes. The latter, v1 . . . vn,
are all stored at the top of the stack. The rule evolves by
calling a built-in function f ← sensor [i] with the arguments
taken from the stack, f(v1 . . . vn) and placing the result of the
call, v, at the top of the stack. The function send (5th rule) is
a built-in that sends data over the radio. Finally, instructions
bop and uop (9th and 10th rules) actually encapsulate a set of
rules that include the usual arithmetic, relational and logical
binary and unary operators.

Algorithm 1 The gateway program
function MAIN()

ATTACH(RADIO RCV, HANDLERADIOMSG)
ATTACH(SERIAL RCV, HANDLESERIALMSG)
loop

MICROSLEEP()
switch (src)

case RADIO:
msg ← READRADIORCVBUFFER()
FORWARDTOADAPTER(msg)

case SERIAL:
msg ← READSERIALRCVBUFFER()
FORWARDTONODES(msg)

end switch
end loop

end function

function HANDLERADIOMSG()
src ← RADIO

end function

function HANDLESERIALMSG()
src ← SERIAL

end function

V. OPERATING SYSTEM

A node in a SONAR deployment may run multiple periodic
tasks that generate data streams. Users with administration
access to the deployments can program tasks, compile them
and inject them in the deployment via the WSN Adaptor (a
Web service) which then forwards the tasks to the gateway
to be radioed to the nodes. A simple protocol, implemented
on top of the MAC layer, allows tasks, eventually divided into
multiple blocks, to be sent over-the-air to the nodes. On arrival,
the tasks are reassembled and installed in the nodes. Other
control messages are also forwarded from the gateway to the
nodes. From the nodes, the gateway receives data messages
that it forwards to the deployment’s Adaptor to be forwarded

114

to the SONAR Broker. Thus, the gateway does not run tasks, it
acts simply as a message forwarder: it receives data messages
from nodes in the deployment and passes them to the Adaptor,
and receives control messages (including new tasks) from the
Adaptor and radios them to the nodes in the deployment.
Algorithm 1 shows this basic component. The gateway is
initialized by attaching two handlers for interrupts signaling
radio (from the nodes) and serial port (from the Adaptor) data
reception. It then sleeps most of the time. When one of the
interrupts is detected, the corresponding handler is executed
and a flag is set to identify the source. The remainder of the
loop then processes the incoming message.

Each node in a SONAR deployment has 2 pre-installed
components: a small operating system and the SONAR virtual
machine. The operating system is responsible for processing
incoming control messages, for managing memory resources
for tasks and for scheduling them EDF-style. Nodes keep
information about tasks in a table. For each task, an entry
in the table stores: a boolean - indicating if the entry is valid;
three integers - the identifier, the period and the next activation
of the task, respectively, and; an array of bytes - the bytecode
for the task. The identifier is attached to messages sent by the
task to the gateway so that the latter can distinguish to which
stream the data it is receiving belongs to. This information is
used to schedule the tasks and to prepare their execution with
the SVM. The operating system executes a loop as described
in Algorithm 2. The currently active task is identified by its
integer index in the task table, denoted curr in the following
algorithms.

Algorithm 2 The node main loop
function MAIN()

ATTACH(RADIO RCV, HANDLERADIOMSG)
ATTACH(RTC ALARM, HANDLERTCALARM)
loop

RUN()
SCHEDULE()
SLEEP()
LISTEN()

end loop
end function

A brief initialization attaches handlers for radio reception
and real-time clock interrupts. The node then enters the loop
and executes the following procedures: RUN, that executes
the current task; SCHEDULE - that selects the next task to
be executed; SLEEP - that sleeps until the next task must be
activated, and, finally - LISTEN - that listens for incoming
radio commands that may have been received while executing
elsewhere in the loop. The first 3 procedures are executed
only if there are valid tasks in the table, i.e., the predicate
TABLEEMPTY evaluates to false.

Procedure RUN (Algorithm 3) gets the stored state for the
current task, its data, stack and text segments, and runs the
task in the SVM. Note that changes to variables in a task are
made directly in the data segment of the bytecode so that any
state is preserved in between successive activations of the task.
The virtual machine preserves the invariant that the stack S is
empty when a task begins to execute and when it exits. Finally,
the procedure adjusts the next activation time for the task by

Algorithm 3 Run current task
function RUN

if ¬TABLEEMPTY() then
(D,S,B)← GETBYTES(curr)
RUNSVM(D,S,B)
t← RTCTIME()
p← GETPERIOD(curr)
SETNEXTACTIV(curr, t+ p)

end if
end function

adding its period to the current time given by the Real-Time
Clock (RTC).

Algorithm 4 Select next task
function SCHEDULE()

if ¬TABLEEMPTY() then
min← MAX INT
for 0 < i < MAX TASKS do

if TASKVALID(i) then
t← GETNEXTACTIV(i)
if t ≤ min then

min← t
curr ← i

end if
end if

end for
end if

end function

The SCHEDULE procedure (Algorithm 4) computes the
index of the (valid) task with the closest activation time. This
becomes the next task to be executed by the operating system.
Otherwise the predicate TABLEEMPTY will evaluate to true.

Algorithm 5 Sleep until next task activation
function SLEEP()

if ¬TABLEEMPTY() then
t← GETNEXTACTIV(curr)
RTCALARM(t)

end if
MICROSLEEP()

end function

Procedure SLEEP (Algorithm 5) computes the time until
the next task activation and programs an alarm to wake up the
node. The node then goes to sleep. This specification builds on
the underlying assumption that tasks, being so small, execute
in only a tiny fraction of their corresponding periods. In other
words, if a task has a period p and an execution time, per
activation, of t, then t ≪ p. Otherwise we make no effort
to schedule tasks within their periods. Since t is in the order
of milliseconds we find this assumption adequate for practical
purposes.

Finally, procedure LISTEN (Algorithm 6) checks for any
incoming messages while the main loop was running. We
assume that the nodes have the means to receive and to buffer
messages asynchronously, by programming an appropriate
handler to process the corresponding hardware interrupts. If

115

Algorithm 6 Handle Incoming Radio Message
function HANDLERADIOINTERRUPT()

interrupted ← TRUE
end function

function LISTEN()
if interrupted then

msg ← READRADIORCVBUFFER()
tag ← GETTAG(msg)
switch (tag)

case TASK :
i← GETID(msg)
p← GETPERIOD(msg)
b← GETBYTES(msg)
ADDTASK(i, p, b)

case PERIOD :
i← GETID(msg)
p← GETPERIOD(msg)
CHANGEPERIOD(i, p)

case KILL :
i← GETID(msg)
REMOVETASK(i)

case RESET :
for i = 0 . . . TABLESIZE − 1 do

REMOVETASK(i)
end for

end switch
interrupted ← FALSE

end if
end function

a message is received, its tag is checked to identify its type
and it is processed accordingly. At this point, there are 4
types of control messages: TASK - sends the identifier, the
period and the bytecode for a new task to be executed in the
node; PERIOD - sends the identifier and the new period for a
running task in the node; KILL - sends the identifier of a task
to be invalidated in the node, and; RESET - that invalidates
all tasks running on a node. When a new task is reassembled
and copied to the task table, its next activation is set to
GETNEXTACTIV(curr) + δ, where δ is a delay introduced to
make sure that the task is schedulable in the next loop run,
i.e., its activation time is in the future when the SCHEDULE
procedure is called.

VI. PROTOTYPE IMPLEMENTATION

We implemented a full prototype of the specification for
the data layer for a WSN composed of Arduino Mega 2560
devices. Each node is equipped with a XBee Series 2 radio,
a SHT-15 temperature and humidity sensor, a light-dependent
resistor sensor, a red LED and, a Adafruit Chronodot Real-
Time Clock. We used the C/C++/Wiring language and the
available Arduino libraries whenever possible. One of the
devices acts as the gateway and is connected to a desktop
computer through a USB port. The computer runs the Adaptor
web service that connects the data layer with the SONAR
Broker web service and provides a remote interface for the
administration of the deployment. The binaries for the gateway
and for the nodes (including the OS and the SVM) are

TABLE I. MEMORY CONSUMPTION AND CODE SIZE.

Flash (256 kb) SRAM (8 kb) #lines
gateway 15.3 kb (6%) 1.0 kb (13%) 677

node 22.7 kb (9%) 2.7 kb (34%) 1325

loaded into the devices before they are deployed physically.
Henceforth, programming is done through clients by injecting
tasks into the mesh as described previously in this paper.

Table I shows the memory footprint and total number of
code lines for both the gateway and the nodes in this imple-
mentation. In this case the SVM in the nodes is configured to
support a maximum of 8 tasks, each with a maximum bytecode
size of 200 bytes. At this stage no effort was made to optimize
the code both in terms of size and energy consumption. This
SVM configuration, although quite generous, is actually quite
compact and fits easily in the Mega 2560. Even in its current
state, with support for 8 tasks, it almost fits in the smallest
AVR Atmel micro-controller, the ATMega32 (32 kb Flash,
2 kb SRAM), with 2.7kb used versus 2kb available SRAM.
The task management data structures are by far the largest
loaded into the SRAM by our code. They take up 1.1kb
(56% of used SRAM) and 0.6kb (35% of used SRAM),
respectively, for 8 and 4 task configurations. The remainder
of the space is used by the Arduino libraries, some of which
are overkill for our needs, so there are some opportunities
for optimizations. Moreover, of the 1325 lines of code in the
nodes, 37% correspond to the OS, 23% to the SVM, and just
40% correspond to hardware specific code, e.g., modules for
sensors, actuators, radio, and real-time clock. These numbers
give us confidence that porting (and optimizing) this data-layer
to more resource constrained devices will not present major
problems.

VII. EVALUATION

We implemented a set of tasks to analyze the energy
consumption and computational overhead of our prototype.
The tasks test radio transmission, access to sensors and ac-
tuators and computation. Each test was implemented both in
STL, running on top of SVM in each node, and directly
in Arduino’s native C/C++/Wiring. To measure the timings
and the energy consumption, we connected a multimeter in
series with one node (Figure 10) and registered the electric
current variation associated with the execution of each task.
The multimeter we used was a TENMA 72-7732A. A Keysight
InfiniiVision MSO-X 2002A oscilloscope was also used for
some measurements.

A. Experimental Results

The first tasks test radio transmissions. Figure 11 presents
the STL code for a task that radioes 64 bytes, simulating a
case where, for example, a task is programmed to radio 16
sensor readings (floating point values) to the gateway. The 64
bytes refer only to the payload of the messages which carry
an additional 10 bytes of header information.

Figure 12 (blue line) shows current intensity vs. time when
running the task with a period of 10 seconds. The first records
the successful reception of the message by the node (our code
puts the red LED on for 1.0 second). After the reception, one

116

Fig. 10: Multimeter and oscilloscope setup.

use ” ard2560 .hw”

[f loa t , . . . , f l o a t] loop {
radio [2.0 , 2.0 , 2.0 , 2.0 ,

2.0 , 2.0 , 2.0 , 2.0 ,
2.0 , 2.0 , 2.0 , 2.0 ,
2.0 , 2.0 , 2.0 , 2.0] ;

}

Fig. 11: Transmission of data.

more peak (around t = 20) is visible, corresponding to the
moments where the node radioed the 64 bytes. We would
expect five more peaks within that time interval, given the
period of the task. Their absence is due to a sampling problem
related with the number of measurements the multimeter can
execute per second. We ran the task again with a delay of 500
ms inserted and, sure enough, the other peaks became visible
(black line). This delay was used only to allow the graphical
visualization of the peaks. All the measurements given here
were performed without the delay. Also, given the limited time
resolution of the multimeter, we decided to use the digital
oscilloscope to make all timing measurements. In this figure,
the last, wide peak is due to a retransmission.

Figure 13 depicts the data obtained in one execution of
this task. When the message is sent over the radio, a slight
increase in the voltage (≈ 0.1V) is detected, allowing us to
time a full execution at 135ms. Similar measurements were
done for messages carrying 4, 8, 16, 32 and 64 bytes (see

0 20 40 60 80 100
85

90

95

100

Measurement number

C
ur

re
nt

(m
A

)

Fig. 12: Radioing a 64 byte data message.

below) to assess how power varies with message size.

0 135

0.65

0.7

0.75

0.8

Time (ms)

∆
Vo

lta
ge

(m
V

)

64 bytes radio

Fig. 13: Oscilloscope data of task execution

To test the access to sensors, we wrote a STL task (Fig-
ure 14) that accesses the temperature and humidity sensors in
sequence. A similar program was written in C++ for Arduino.
Figure 15 shows 6 executions of the STL task (black line)
and of the Arduino code (red line). The graph plots current
intensity vs. time when running the task with a period of 10
seconds. The fact that the peaks for the red and black lines
are out of phase is due to overhead in the reception and initial
scheduling of the task, otherwise the approximate periodicity
is observed. The first peak is, again, due to the reception of
the task in the node. This color code - black for STL and red
for Arduino - will be used for all figures henceforth.

use ” ard2560 .hw”

[] loop {
f l o a t t = temperature () ;
f l o a t h = humid i ty () ;

}

Fig. 14: Access to sensors.

0 20 40 60 80 100
85

90

95

100

Measurement number

C
ur

re
nt

(m
A

)

Fig. 15: Temperature and humidity sensors access.

The third task tests computation within the microprocessor.
The task computes the 1000th term of the logistic map [13], a
famous simple map that produces a series of numbers between
0 and 1. Figure 16 shows the STL code and Figure 17 shows
the execution of 6 such tasks. A careful measurement with
the oscilloscope, for this and the other examples, allowed us
to conclude that the peaks are well approximated by a square
wave with a maximum current of 98.9mA.

Finally, a task tests the triggering of actuators by alter-
natively activating and deactivating the external red LED.

117

use ” ard2560 .hw”

[] loop {
f l o a t x = 0 . 2 ;
f l o a t k = 4 . 0 ;

i n t i = 0 ;
while (i < 1000) {

x = k ∗ x ∗ (1 .0 − x) ;
i = i + 1 ;

}
}

Fig. 16: Computation of the logistic map.

0 20 40 60 80 100
85

90

95

100

Measurement number

C
ur

re
nt

(m
A

)

Fig. 17: Computing the logistic map.

Figure 18 presents the code for the task. Figure 19 shows

use ” ard2560 .hw”

i n i t {
bool s ta te = f a l s e ;

}

[] loop {
l ed (s t a t e) ;
s t a t e = ! s t a t e ;

}

Fig. 18: Access to extenal LED (actuators).

the execution of 6 tasks. The task activations correspond to
the observed peaks in the graph, except for the first one. After
a task is executed the current stabilizes in one of 2 levels,
corresponding to LED disconnected and LED connected, with
a difference of 4.3mA.

The intensity of the current in the Arduino Mega 2560
board varies between a base value, when the board is in sleep
mode, not running a task, and a peak value, when a task is
being executed by the virtual machine. The same values are
observed for the corresponding Arduino programs. Table II
shows the base and peak values for current, voltage and
instantaneous power in the experiments. The Arduino 2560
provides a set of sleep modes with different levels of energy
savings and hardware components turned off. Our prototype
uses the IDLE mode, which is not the most power efficient
but allows us to wake up the board in time to properly receive

0 20 40 60 80 100
85

90

95

100

105

C
ur

re
nt

(m
A

)

Fig. 19: External red LED access.

asynchronous messages from the gateway. In order to save
as much power as possible while in IDLE mode, we disable
also: the analog-to-digital converter, the peripheral interface, 3
different timers and the two wire interface.

From these base and peak values, and from the execution
times of the tasks, we can compute the total energy spent
by a SONAR task and by the corresponding native Arduino
program. The values were computed from the measurements
using the following equations for the instantaneous power and
energy consumption:

P = V × I

E = P ×∆t

These equations are adequate as we measured the profile of
the tasks to be well approximated by rectangles of height equal
to the peak intensity and width equal to their execution time.
Table III shows, for each test: the size in byte of the STL task
and then, the time and energy consumed to execute both the
STL tasks and the equivalent Arduino program.

TABLE II. BASE AND PEAK VALUES

base value peak value
current (mA) 86.3 98.9
voltage (V) 5.0 5.0

power (mW) 432 495

TABLE III. ENERGY CONSUMPTION

task size time (ms) energy (mJ) STL
ArdSTL Ard STL Ard

comp 121 160 27 79.1 13.4 5.9
temp 37 275 247 136.0 122.1 1.1
hum 37 274 80 135.5 39.6 3.4
lum 37 37 11 18.3 5.4 3.4
act 71 38 13 18.8 6.4 2.9
rad-4 36 74 36 36.6 17.8 2.1
rad-8 50 80 40 39.6 19.8 2.0
rad-16 54 89 49 44.0 24.2 1.8
rad-32 78 105 66 51.9 32.6 1.6
rad-64 126 135 99 66.8 49.0 1.4

B. Discussion

The analysis of the measured data allowed us to con-
clude some interesting facts about the current prototype.
The Sonar operating system and the virtual machine in the

118

nodes introduce the highest overhead for tasks that are purely
computational, by a factor of 5.9, for a cycle with 1000
iterations. However, a closer look at the ratio between the
execution times in STL and Arduino (Figure 20) shows that
part of this overhead includes an initial setup time by the
node’s operating system. In fact, as the number of iterations
grows, the contribution of this initial overhead gets diluted and
the real ratio between STL and Arduino (native) operations
stabilizes at around 4.5 (the bars represent 95% confidence
intervals). This is expected, and is due to the fact that we
are running byte-code tasks on top of a virtual machine,
rather than native code generated from C++ programs. We
believe that optimizations of the byte-code generator and of
the virtual machine implementation will diminish this gap
but it will otherwise be always present. It is the price of
portability and dynamic reprogramming. The difference for
other tests is far more modest. with access to sensors and
actuators around 3 times slower and radio transmission of
any size around 2. Though we throughly analysed the code
that accesses the temperature sensor, we cannot yet explain
the lower overhead (only a factor of 1.1 slower) relative
to the other sensors and actuators (globally around 3 times
slower). As the energy consumed is proportional to the time
the task takes to execute, clearly the optimizations must focus
on this aspect, all other being the same for STL tasks and
for Arduino programs. We believe, however, that even in this
unoptimized state our prototype compares well with Arduino
native code with the added benefits of simplified programming
and dynamic reprogramming.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
·104

4

6

8

10

iterations

STL
Ard

Fig. 20: SVM overhead vs. size of problem.

VIII. CONCLUSIONS

In this paper we present a specification for a compact,
portable, data-layer that can be used to suport seamless
dynamic reprogramming of WSN, based on the notion of
periodic, non-preemptive, tasks. The idea is that users get a
package containing a gateway and an undetermined number
of nodes, pre-configured to work as a self-organized wireless
mesh. The gateway is a simple forwarder of data and control
messages. The nodes come with two pre-installed components:
a small operating system and a virtual machine to run the
tasks. Tasks are injected in the network by clients, through the
gateway, with the mediation of an Adaptor web service. The
current implementation has both low memory footprint, and is
highly modular and portable, with only 40% of the code of
the nodes hardware specific.

We report measurements of the resource consumption for

our system as compared to traditional C++ programming for
Arduino. We show that, despite our code not being optimized,
we compare favorably with native code performance (a factor
of 2 or 3), except for pure computational tasks were the over-
head is more noticeable (a factor of 4.5). On the other hand, our
system is portable across distinct WSN architectures, simplifies
programming greatly and allows the dynamic programming of
WSN.

ACKNOWLEDGMENT

We would like to thank our colleague Carlos Machado, for
his advice and expertise. This work is sponsored by projects
SENSING (contract: NORTE-07-0124-FEDER-000058) and
RTS (contract: NORTE-07-0124-FEDER-000062).

REFERENCES

[1] L. Lopes, F. Martins, and J. Barros, Middleware for Network Eccentric
and Mobile Applications. Springer-Verlag, 2009, ch. 2, pp. 25–41.

[2] E. Neto, R. Mendes, and L. Lopes, “An Architecture for Seamless Con-
figuration, Deployment, and Management of Wireless Sensor-Actuator
Networks,” in 3rd International Conference on Sensor Networks (SEN-
SORNETS 2014), Lisbon, Portugal, 2014, pp. 73–80.

[3] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A Survey
on Sensor Networks,” IEEE Communications Magazine, vol. 40, no. 8,
pp. 102–114, 2002.

[4] J. Yick and B. Mukherjee and D. Ghosal, “Wireless Sensor Network
Survey,” Computer Networks, vol. 52, pp. 2292–2330, August 2008.

[5] P. Levis and D. Culler, “Maté: A Tiny Virtual Machine for Sensor
Networks,” in International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS X). ACM
Press, October 2002, pp. 85–95.

[6] R. Newton and M. Welsh, “Region Streams: Functional Macroprogram-
ming for Sensor Networks,” in First International Workshop on Data
Management for Sensor Networks (DMSN’04), Toronto, Canada, 2004.

[7] D. Simon, C. Cifuentes, D. Cleal, J. Daniels, and D. White, “Java on
the Bare Metal of Wireless Sensor Devices – The Squawk Java Virtual
Machine,” in Virtual Execution Environments (VEE’06), June 2006.

[8] TinyOS, “The TinyOS Documentation Project,” available at
http://www.tinyos.org.

[9] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki - a Lightweight and
Flexible Operating System for Tiny Networked Sensors,” in Proceedings
of the First IEEE Workshop on Embedded Networked Sensors (Em-
Nets’04), Tampa, Florida, USA, November 2004.

[10] C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava, “A Dynamic
Operating System for Sensor Nodes,” in Proceedings of the 3rd In-
ternational Conference on Mobile Systems, Applications, and Services
(MobiSys’05). New York, NY, USA: ACM Press, 2005, pp. 163–176.

[11] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker,
C. Gruenwald, A. Torgerson, and R. Han, “MANTIS OS: An Embedded
Multithreaded Operating System for Wireless Micro Sensor Platforms,”
ACM/Kluwer Mobile Networks & Applications (MONET), Special Issue
on Wireless Sensor Networks, vol. 10, no. 4, pp. 563–579, August 2005.

[12] A. Eswaran, A. Rowe, and R. Rajkumar, “Nano-RK: An Energy-
Aware Resource-Centric Operating System for Sensor Networks,” in
Proceedings of the IEEE Real-Time Systems Symposium (RTSS’05),
December 2005.

[13] J. C. Sprott, Chaos and Time-Series Analysis. Oxford University Press,
2003.

119

