
MODUS: Model-based user interfaces prototyping
Marina Machado

HASLab/INESC TEC &
Departamento de Informática /

Universidade do Minho
Braga, Portugal

pg25336@alunos.uminho.pt

Rui Couto
HASLab/INESC TEC &

Departamento de Informática /
Universidade do Minho

Braga, Portugal
rui.couto@di.uminho.pt

José Creisssac Campos
HASLab/INESC TEC &

Departamento de Informática /
Universidade do Minho

Braga, Portugal
jose.campos@di.uminho.pt

ABSTRACT
Model-based methodologies, supported by automatic gener-
ation, have been proposed as a solution to reduce software
development costs. In the case of interactive computing sys-
tems specific challenges arise. On the one hand, a high level
of automation requires the use of detailed models, which is
contrary to the iterative development process, based on the
progressive refinement of user interface mockups, typical of
user centered development processes. On the other hand, lay-
ered software architectures imply a distinction between the
models used in the business logic and in the user interface,
raising consistency problems between the models at each level.
This article proposes a tool supported approach to user inter-
face generation directly from the architectural models of the
business logic. In many situations, user interfaces provide
similar features inside a specific domain. The identification of
the application domain is thus a key factor in supporting the
automation of the generation process.

ACM Classification Keywords
D.2.2. Software Engineering: Design Tools and Techniques;
H.5.2. Information Interfaces and Presentation (e.g. HCI):
User Interfaces

Author Keywords
Model-driven engineering; Model-based user interface
development; Automated user interface generation.

INTRODUCTION
Model-based tools propose to facilitate and accelerate the de-
velopment of User Interfaces (UIs) by providing a degree of
automation to the development process. An increase in the
degree of automation, however, is usually accompanied by a
need for the inclusion of additional information by the user
of the tool, making the development of the models a complex
activity [12]. Additionally, tools that focus on automation
tend to be criticized for poor integration in the software de-
velopment process. On the one hand, model-based generation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

EICS ’17, June 26-29, 2017, Lisbon, Portugal

© 2017 ACM. ISBN 978-1-4503-5083-9/17/06. . . $15.00

DOI: http://dx.doi.org/10.1145/3102113.3102146

tends to have problems integrating with the creative process
of designers, having a negative impact on the quality of the
generated UI [13]. On the other hand, the models used tend to
diverge from the business-layer models used in Model Driven
Engineering (MDE) approaches, raising coordination and pro-
ductivity problems [12].

This paper presents MODUS (MOdel-based Developed User
Systems), a tool supported approach for the semi-automated
generation of user interfaces for Web applications. MODUS
presents the following contributions: a) it takes advantage of
the separation between Web UIs’ content definition and graph-
ical layout to provide designers with the capability to refine
the generated UI; b) it makes use of the business logic archi-
tecture of the system (as a class diagram) as a starting point for
the generation process, thus promoting integration between
business logic and UI development; c) it takes advantage of
a domain definition for the application to limit the need for
additional models in the generation process, enabling a sub-
stantially more automated interface generation (indeed, for the
same application domain, it is found that user interfaces tend
to be similar in navigation, structure and visual components).

In MODUS, the concept of Evolutionary Prototyping [7] is
fundamental. Developers have the ability to edit and refine the
generated interface at all stages of the development process
until the final interface is obtained, thus supporting an iterative
approach to development. The tool supports the selection of
front-end frameworks and templates to be used, as well as
the configuration of the elements in the UI. In this way, the
developer have a greater control over the visual aspect of the
final result.

BACKGROUND

Model-driven engineering vs Model-based user interface
development
In the Model-Driven Engineering (MDE) paradigm [20, 17],
high-level (abstract) models of the problem the system should
provide a solution to, are successively refined into (more con-
crete) models at lower-levels of abstraction, with the ultimate
goal of transforming them into an executable systems [20, 17].
This conversion process can be manual or automated. In both
cases the goal is to ensure a coherent software development
process, ensuring the quality and correction of the final re-
sult. Resorting to an automatic transformation of the models
into the executable code, leads to a reduction in development
time [19].

http://dx.doi.org/10.1145/3102113.3102146

MDE is typically applied to the creation of the business logic
and data layers of systems, but not so much the user inter-
face [11]. Similar efforts to reduce the amount of time and
effort expended in design and development of user interface,
while guaranteeing their quality, lead to Model-based User
Interface Development (MBUID) approaches [19, 5].

The Cameleon Reference Framework, widely accepted as the
reference architecture for MBUID, specifies four main levels
of modeling [3, 22, 23]:

1. Domain Model and Tasks - description of user tasks and
domain concepts related to their realization.

2. Abstract User Interface (AUI) - description of the user
interface in terms of Abstract Interaction Units or Abstract
Interaction Objects and their relations. A UI is represented
independently of any technology or mode of interaction.

3. Concrete User Interface (CUI) - description of the user
interface in terms of Concrete Interaction Units or Concrete
Interaction Objects, determining layout and interface nav-
igation. A CUI, being dependent on the interaction mode,
describes the application Look & Feel.

4. Final User Interface (FUI) - description of the user inter-
face in terms of the source code, either in a programming
language or mark-up. A FUI can be interpreted or executed
after compiling the code.

Generation in MBUID starts with high-level declarative mod-
els. However, very detailed models of the various aspects of
the interface are often needed. This fact limits the acceptance
of the methodology, since the elaboration of the interface im-
plies increased modeling costs; either in the number of models
or in the effort of elaboration of each one of them [19, 5].

Additionally, the type of models used in MBUID (task models,
UI models) is quite different from those of MDE, meaning
that the two approaches are not as integrated as would be ideal.
Approaches such as [6] addressed the problem by exploring
how to adapt the modeling languages used in MDE to express
the models needed for MBUID. While this solves the need to
learn different modeling languages for each layer’s develop-
ment process, it is still necessary to develop different models
for each of the layers.

We address this issue, proposing an approach based on a semi-
automated UI generation process that starts from the (MDE)
architectural model of the system. Together with the appli-
cation domain’s specification, this model is the basis for the
partial or complete generation of the UI, which can then be
refined with the support of suitable tools.

MBUID tools
The first MBUID tools were typically based on a universal
declarative model, focusing on the idea of a fully automatic
generation process (e.g. [21, 16]). The created UIs tended to be
simple desktop applications, based on Create, Read, Update
and Delete (CRUD) operations, always following the same
visual model. Over time, the UI model became a composition
of declarative models, aiming to improve the quality of the
generated interfaces, at the expense of specifying additional

Figure 1. MODUS overview

models. In these tools the level of automation tended to be low.
An increase in the degree of automation implied the inclusion
of new models with additional information about the interface.
Currently, work on MBUID tools is multifaceted. A major
concern are the challenges brought by the emergence of new
devices and platforms, from UIs that adapt to the computa-
tional platform in use [1, 15] to the generation of families of
UIs [14]. The need to better support the development process
has also been acknowledged [8, 9].

In general, a tension can be observed between the degree of
automation, the modeling effort required, and the customiz-
ability of the generated solutions. More automated tools (e.g.
Integranova M.E.S.1) either require an higher modeling ef-
fort, or are based on restricted models of interaction (typically
CRUD operations), generating rigid UIs that lack in appeal
to the user. More flexible tools (e.g. OutSystems2) are less
automated, needing more user intervention, which increases
development costs.

The approach proposed in this paper intends to reconcile these
two aspects, seeking to contribute to a solution that, from a
minimal set of models, is able to produce user interfaces which
might be tailored to specific needs. The approach is largely
orthogonal to concerns about adapting to the context, focusing
at this stage on providing an efficient solution for development,
starting from architectural models of the business layer. For
web application UIs, the use of front end technologies such
as JavaScript and CSS3 contributes to a significant increase
in compatibility between different devices and platforms at
run time [18]. The integration of these technologies into the
generation process may be an alternative to specifying the
context of use in the models.

THE MODUS APPROACH
Figure 1 presents an overview of the MODUS approach, from
reading the models to generating a (web) UI. Each step of the
process is numbered. User inputs (for a specific application
and domain) are labeled with capitalized letters, while tool
inputs (generic data across domains) in lower case letters.
Arrows represent information flow.

The process starts with (c.f. Figure 1): A) the business logic
architecture for the system as a class diagram (ecore [2] is the
supported format); B) an identification of the target application
1http://www.integranova.com
2http://www.outsystems.com

http://www.integranova.com
http://www.outsystems.com

1 e n t i t y (buye r) .
2 e n t i t y (a d d r e s s) .
3 r e l a t i o n (has , buyer , a d d r e s s , 0 , n) .

Listing 1. Example of Prolog ontology facts.

1 e c o m m e r c e _ a d d r e s s _ p a t t e r n (A) :−
2 e n t i t y (A) , % Addres s i s an e n t i t y
3 r e l a t i o n (_R , U, A, _M, _N) , % User has Addres s
4 h a s _ a t _ l e a s t (O, A, 1) , % Order has a t l e a s t 1

Addres s
5 d i f f e r e n t (A,U) , d i f f e r e n t (A,O) , d i f f e r e n t (O,U) .

Listing 2. Example of a Prolog relationship pattern

domain; C) optionally, additional information regarding the
UI generation (e.g. the front-end and the framework to use).
The user interface generation proceeds through three steps.
In the first step (labeled 1, in Figure 1), the relevant entities
in the business logic model are identified using the available
architectural patterns and semantic knowledge database for the
domain. In the second step, the concrete UI is defined. This
makes use of a predefined abstract user interface model for the
particular domain. In the third step, the final UI is specified,
resorting to available templates. This includes defining the
presentation modes for the entities, and views layouts.

Standard Classes inference
The identification of relevant entities in the architectural model
makes use of the notion of standard classes, i.e. classes com-
monly found in a specific application domain. An example
is the Article class (entity) in the eCommerce application
domain. The identification of these classes supports the identi-
fication of which classes in the architecture represent relevant
domain entities, and guides the development process. The
process of associating a domain entity to a class in the archi-
tectural model consists of two steps. The first step corresponds
to identifying, in the class diagram, the architectural pattern in
which the standard class exists. The second step consists in
comparing the class and the entity level, in order to retrieve a
matching value.

For the first step, an inference process based in [4] is used. The
class diagram is translated into a Prolog ontology. Listing 1
presents an example where a buyer can have several addresses.
Lines 1 and 2 declare the existence of entities buyer and
address. Line 3 declares the existence of a relationship (has)
between the two entities. The 0 and n parameters represent the
lower and upper bounds of the multiplicity (of address) in
the relationship. Queries are then used to verify the existence
of patterns. A knowledge base defines the relevant patterns
for the domain. A pattern corresponds to a set of relationships
which exist between a standard class (the candidate entity)
and other classes in the model. Listing 2, defines the pattern
for the Address standard class, in the eCommerce domain.
This pattern defines that A (Address) must be an entity of the
ontology, a class U (the User) must exist that has addresses,
and some other class O (the Order) must have, at least, one
address. A, U and O must be distinct entities.

Patterns can overlap, which means that for any given standard
classes in a pattern more than one potential match in the archi-
tectural model might be identified. A mechanism is required
for selecting the most appropriate candidate. This is achieved
in the second step of the process.

In the second step, for each standard class there is a dictio-
nary entry, which aggregates its synonyms, alongside their
probability to match that class’s name. The name of an entity
in the model is searched for in the dictionary. The matching
percentage varies according to the name similarity, and prob-
ability defined in the dictionary. The entity with the biggest
probability is then associated to the standard class in question.
A similar analysis is performed for classes attributes.

Concrete UI – Content and Navigation Map
MODUS generates Web UIs, hence constituted by a set of
interlinked web pages. Each page will have a layout, which
defines its visual structure, and a set of entities, which define
its contents. Representation modes define how an entity should
be presented.

MODUS resorts to an auxiliary model to represent the UI to be
generated, the contents and navigation map. This consists of a
diagram (based on UML’s Statecharts) that defines all of the
information required to create the UI. It defines the pages and
page fragments (partials) of the UI, as well as the navigation
between the different elements. Due to the need to represent
not only navigation, but also UI contents in the model, the
elements of the content and navigation map are interpreted as
follows (cf. Figure 2):

State Represents a full page, a partial (a page fragment), a
page section or an entity’s representation. The specific
role of a state is defined by annotations in its name and its
location in the diagram. If a state is inside another state, then
it is an element of the page represented by that state (e.g.
#left-sidebar). Partials are identified, by preceding their
names with ’_’ (e.g. _index_list_product). Specific
page elements or entity identifiers are delimited by ’<’ ’>’
(e.g. <product>). Remaining states identify pages (e.g.
homepage). States contain attributes to represent auxiliary
information.

Final state Represents an exit transition.

Initial state Represents the landing page of the application.

Transition Represents either a transition, a substitution or a
composition, depending on the target element. A transition
to a page represents navigation to that page. A transition
to a partial (see label 7) represents replacing the current
page’s contents with the partial’s contents. A transition to
an entities representation represents content composition.

Condition Denotes the set of identifiers related with a transi-
tion (see label 8).

The example in Figure 2 describes a UI with an initial
homepage, which has a section #left-sidebar, which con-
tains the partial _index_sidebar_category. The partial is
composed by the repetition of _show_sidebar_category,
which in turn includes the sidebar representation of the

Figure 2. Extract of a contents and navigation map

Category class. This combination, is commonly used to rep-
resent a list of a partial, or an entity according to a given mode.
The homepage is composed of a list of Product displayed
using the min representation, and each element redirects to the
Product page, unless the state is _index_min_product.

Final UI components generation
For UI generation to be possible for a given technology, map-
pings from representations modes and layouts to that technol-
ogy must be available. HTML templates are provided by the
tool to support this mapping. The templates can be modified
by the user at runtime, thus personalizing the components that
will compose the FUI. UI components are created by parsing
these templates and adapting them to the provided input.

This templates-based generation process, allows the genera-
tion algorithms to be generic. Adding, removing or modifying
the templates does not affect the generation process itself. This
is particularly relevant in the context of user interfaces, since
it means that by changing or adding templates it becomes pos-
sible to adapt to new user interface styles or different devices’
characteristics.

MODUS TOOL
The MODUS tool supports the described approach. The tool
was implemented in Java as an Eclipse plugin [2]. The plugin
uses several Eclipse features, as is the case of a WYSIWYG
HTML editor and graphical editors for ecore. As a plugin,
users can integrate MODUS in their work flow, avoiding the
need to learn a completely new tool. Once the plugin is in-
stalled, the context menu for ecore files will provide the option
to create a new user interface with MODUS (see Figure 3).

Starting the process
The first step of the approach is to provide a class diagram to
the generation process. In practice, the diagram is uploaded in
the IDE, and then the context menu used to start the plugin on
that diagram. Before proceeding the tool first validates the file
and highlights any errors it finds. MODUS then opens the main
user interface (see Figure 4) where it is possible to specify the
application domain, and the user interface specifications. At
each step, help is provided.

Figure 3. The context menu

Figure 4. MODUS main window

Mapping Standard Classes to the model
Figure 5 presents the interface which shows the mapping be-
tween standard classes in the domain and classes from the
model. The interface shows the result of the matching process,
which can be modified by the user. The attributes buttons open
similar windows where each entity’s attributes are presented.

Content and Navigation Map
After the mapping is concluded, the content and navigation
map for the domain is used (c.f. Figure 2). The user might
edit the model, using an available Statecharts editor, or upload
a new model.

Managing Entities representation Modes and Layouts
Figure 6 presents the interface for managing the entities repre-
sentations. Entities are selected through the drop down at the
top (Select an Entity). Once an entity is selected, on the left
side (Display Mode List) the presentation modes available for
that entity are presented. Selecting a mode, shows its details
on the right side pane. Similarly to presentation modes layouts
can also be edited.

Figure 5. Managing standard classes’ associations

Figure 6. Managing entities display modes

Interface generation
Once the previous steps are concluded, the FUI can be gen-
erated. The final interface presents relevant entities in the
business logic, according to the defined content and naviga-
tion map, using the chosen presentation modes and layout.
Figure 7 presents a user interface generated by the MODUS
plugin using the content and navigation map introduced in
Figure 2. The list of Product can be seen towards the right
in the middle of the page. It is worth noting that this inter-
face depicts a completely automatic generated interface. The
objective is to show the viability to create meaningful user in-
terfaces by automated means. With the inclusion of front-end
frameworks, such as Bootstrap3 and Foundation4, the interface
can be further personalized.

CONCLUSIONS AND FUTURE WORK
This papers presented MODUS, a MDE and MBUID based
approach to support the generation of user interfaces, with a
high automation level. In MODUS, class diagrams and the ap-
plication domain are the core elements. Class diagram define
the entities that are to be presented in the UI. The application
domain provides the information to perform several assump-
tions regarding the UI, avoiding the need to create full UI
models. Entities presentation modes and page layouts imple-
ment the principle of separating content and style. This way,
templates define aesthetics and structural details, supporting
more complex and complete UIs.

In order to support the approach, the MODUS Eclipse plugin
was developed. The plugin supports each step of the automatic
generation process. Through the plugin it was possible to
prove the viability of generating the complete user interface
for an application, with meaningful content. The support for
user customizations has shown to improve the quality of the
resulting UI.

In its current instantiation the choice of modeling languages
was influenced by, on the one hand, the technology being used
to implement the plugin and, on the other hand, the fact that
the approaches goal is to support software engineers. This is

3http://getbootstrap.com
4http://foundation.zurb.com

Figure 7. A MODUS generated user interface

particularly relevant in the case of the content and navigation
map. A Statecharts based approach was chosen both because
there were editors available for the language, and because
it was a language that software engineers will know. One
possible criticism, however, is that this is not a standard use
of the language, so some level of training will in any case be
needed, and some confusion might arise from the fact that
non conventional meaning is being assigned to the language
constructs. While a more formal evaluation of the language
currently used is still needed, we envisage that languages
from the MBUID area (see e.g. [10]) could be adopted with
advantage over the current solution.

Acknowledgments
This work was financed by the ERDF – European Regional
Development Fund through the Operational Programme for
Competitiveness and Internationalisation - COMPETE 2020
Programme, and by National Funds through the FCT – Fun-
dação para a Ciência e a Tecnologia (Portuguese Foundation
for Science and Technology) within project POCI-01-0145-
FEDER-006961.

REFERENCES
1. S. Berti, F. Correani, G. Mori, F. Paternò, and C. Santoro.

2004. TERESA: A Transformation-based Environment
for Designing and Developing Multi-device Interfaces. In

http://getbootstrap.com
http://foundation.zurb.com

CHI ’04 Extended Abstracts on Human Factors in
Computing Systems (CHI EA ’04). ACM, 793–794. DOI:
http://dx.doi.org/10.1145/985921.985939

2. F. Budinsky. 2004. Eclipse Modeling Framework: A
Developer’s Guide. Addison-Wesley.

3. G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L.
Bouillon, and J. Vanderdonckt. 2003. A unifying
reference framework for multi-target user interfaces.
Interacting with Computers 15 (2003), 289–308.

4. R. Couto, A.N. Ribeiro, and J.C. Campos. 2012. MapIt:
A Model Based Pattern Recovery Tool. In Model-Based
Methodologies for Pervasive and Embedded Software, 8th
International Workshop, MOMPES 2012. Revised Papers.
19–37. DOI:
http://dx.doi.org/10.1007/978-3-642-38209-3_2

5. P.P. da Silva. 2001. User Interface Declarative Models
and Development Environments: A Survey. In 7th Intl.
Conf. on Design, Specification, and Verification of
Interactive Systems (DSV-IS’00). Springer, 207–226.

6. P.P. da Silva and N.W. Paton. 2003. User interface
modeling in UMLi. IEEE Software 20, 4 (July 2003),
62–69. DOI:http://dx.doi.org/10.1109/MS.2003.1207457

7. A.M. Davis. 1992. Operational prototyping: a new
development approach. IEEE Software 9, 5 (Sept 1992),
70–78. DOI:http://dx.doi.org/10.1109/52.156899

8. Alfonso García Frey, Jean-Sébastien Sottet, and Alain
Vagner. 2014. Towards a Multi-stakehoder Engineering
Approach with Adaptive Modelling Environments. In
Proceedings of the 2014 ACM SIGCHI Symposium on
Engineering Interactive Computing Systems (EICS ’14).
ACM, 33–38. DOI:
http://dx.doi.org/10.1145/2607023.2610273

9. Werner Gaulke and Jürgen Ziegler. 2015. Using Profiled
Ontologies to Leverage Model Driven User Interface
Generation. In Proceedings of the 7th ACM SIGCHI
Symposium on Engineering Interactive Computing
Systems (EICS ’15). ACM, 254–259. DOI:
http://dx.doi.org/10.1145/2774225.2775070

10. J. Guerrero-Garcia, J.M. Gonzalez-Calleros, J.
Vanderdonckt, and J. Munoz-Arteaga. 2009. A
Theoretical Survey of User Interface Description
Languages: Preliminary Results. In 2009 Latin American
Web Congress. 36–43. DOI:
http://dx.doi.org/10.1109/LA-WEB.2009.40

11. B. Hailpern and P. Tarr. 2006. Model-driven
Development: The Good, the Bad, and the Ugly. IBM
Syst. J. 45, 3 (July 2006), 451–461. DOI:
http://dx.doi.org/10.1147/sj.453.0451

12. G. Meixner, F. Paternò, and J. Vanderdonckt. 2011. Past,
Present, and Future of Model-Based User Interface
Development. i-com 10, 3 (2011), 2–11. DOI:
http://dx.doi.org/10.1524/icom.2011.0026

13. P.J. Molina. 2004. A Review to Model-Based User
Interface Development Technology. In Proc. of the First
International Workshop on Making model-based user
interface design practical: usable and open methods and
tools.

14. Andreas Pleuss, Stefan Wollny, and Goetz Botterweck.
2013. Model-driven Development and Evolution of
Customized User Interfaces. In Proceedings of the 5th
ACM SIGCHI Symposium on Engineering Interactive
Computing Systems (EICS ’13). ACM, 13–22. DOI:
http://dx.doi.org/10.1145/2494603.2480298

15. Roman Popp, David Raneburger, and Hermann Kaindl.
2013. Tool Support for Automated Multi-device GUI
Generation from Discourse-based Communication
Models. In Proceedings of the 5th ACM SIGCHI
Symposium on Engineering Interactive Computing
Systems (EICS ’13). ACM, 145–150. DOI:
http://dx.doi.org/10.1145/2494603.2480334

16. A.R. Puerta, H. Eriksson, J.H. Gennari, and M.A. Musen.
1994. Beyond Data Models for Automated User Interface
Generation. In People and Computers IX, Proceedings of
HCI ’94. Cambridge University Press, 353–366.

17. J. Rech and C. Bunse. 2008. Model-Driven Software
Development: Integrating Quality Assurance.
Information Science Reference - Imprint of: IGI
Publishing.

18. A.I. Sampaio and J.C. Campos. 2014. Towards a
Framework for Adaptive Web Applications. In HCI
International 2014 - Posters’ Extended Abstracts, Part I
(Communications in Computer and Information Science),
C. Stephanidis (Ed.), Vol. 434. Springer, 240–245. DOI:
http://dx.doi.org/10.1007/978-3-319-07857-1_43

19. E. Schlungbaum. 1996. Model-based User Interface
Software Tools Current state of declarative models. GVU
Center Technical Reports GIT-GVU-96-30. Georgia
Institute of Technology.

20. T. Stahl, M. Voelter, and K. Czarnecki. 2006.
Model-Driven Software Development: Technology,
Engineering, Management. John Wiley & Sons.

21. P. Szekely, P. Luo, and R. Neches. 1993. Beyond
Interface Builders: Model-Based Interface Tools. ACM
Press, 383–390.

22. J. Vanderdonckt. 2005. A MDA-Compliant Environment
for Developing User Interfaces of Information Systems.
In Advanced Information Systems Engineering: Proc.
17th International Conference, CAiSE 2005, O. Pastor
and J. Falcão e Cunha (Eds.). Springer, 16–31. DOI:
http://dx.doi.org/10.1007/11431855_2

23. J. Vanderdonckt and F. Bodart. 1993. Encapsulating
Knowledge for Intelligent Automatic Interaction Objects
Selection. In Proceedings of the INTERACT ’93 and CHI

’93 Conference on Human Factors in Computing Systems
(CHI ’93). ACM, 424–429. DOI:
http://dx.doi.org/10.1145/169059.169340

http://dx.doi.org/10.1145/985921.985939
http://dx.doi.org/10.1007/978-3-642-38209-3_2
http://dx.doi.org/10.1109/MS.2003.1207457
http://dx.doi.org/10.1109/52.156899
http://dx.doi.org/10.1145/2607023.2610273
http://dx.doi.org/10.1145/2774225.2775070
http://dx.doi.org/10.1109/LA-WEB.2009.40
http://dx.doi.org/10.1147/sj.453.0451
http://dx.doi.org/10.1524/icom.2011.0026
http://dx.doi.org/10.1145/2494603.2480298
http://dx.doi.org/10.1145/2494603.2480334
http://dx.doi.org/10.1007/978-3-319-07857-1_43
http://dx.doi.org/10.1007/11431855_2
http://dx.doi.org/10.1145/169059.169340

	Introduction
	Background
	Model-driven engineering vs Model-based user interface development
	MBUID tools

	The MODUS Approach
	Standard Classes inference
	Concrete UI – Content and Navigation Map
	Final UI components generation

	MODUS Tool
	Starting the process
	Mapping Standard Classes to the model
	Content and Navigation Map
	Managing Entities representation Modes and Layouts
	Interface generation

	Conclusions and Future Work
	References

