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This volume contains the Proceedings of the First International Workshop on Learning
with Imbalanced Domains: Theory and Applications - LIDTA2017. This Workshop is co-
organised by the Laboratory of Artificial Intelligence and Decision Support - INESC TEC
and Department of Computer Science, Faculty of Sciences, University of Porto, Portugal
and the Department of Computer Science, Virginia Commonwealth University, Richmond
VA, USA. The Workshop is co-located with the European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD) 2017
and is held on the 22nd of September 2017 in the Hotel Aleksandar Palace, in Skopje,
Macedonia.

Many real-world data-mining applications involve obtaining and evaluating predictive
models using data sets with strongly imbalanced distributions of the target variable. Fre-
quently, the least-common values of this target variable are associated with events that
are highly relevant for end users (e.g. unusual returns on stock markets, diagnosis of rare
diseases, intrusion detection, anticipation of catastrophes, crime prevention, popularity pre-
diction in social media, etc.). This problem has been thoroughly studied in the last decade
with a specific focus on classification tasks. However, the research community has started
to address this problem within other contexts such as regression (Torgo et al., 2013), ordi-
nal classification (Pérez-Ortiz et al., 2014), multi-label classification (Charte et al., 2015),
association rules mining (Luna et al., 2015), multi-instance learning (Wang et al., 2013),
data streams (Krawczyk et al., 2017) and time series forecasting (Moniz et al., 2017a). It
is now recognized that imbalanced domains are a broader and important problem posing
relevant challenges for both supervised and unsupervised learning tasks, in an increasing
number of real world applications. Evidence of the new trends and challenges regarding
this problem have been put forward in recent works (Branco et al., 2016; Krawczyk, 2016).

Tackling the issues raised by imbalanced domains is crucial to both academia and in-
dustry. To researchers, it is an opportunity to develop more adaptable and robust sys-
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tems/approaches for very complex tasks. These tasks are in fact those that, in many cases,
industry is already facing today. These are very diverse and include the ability to prevent
fraud, to anticipate catastrophes, and in general to enable a more preemptive action in an
increasingly fast-paced world.

This workshop received a diversity of high quality inter-disciplinary contributions dis-
cussing various aspects of learning from imbalanced domains. Overall, there were 17 paper
submissions for LIDTA2017, out of which 13 papers were accepted for inclusion in workshop
proceedings: 8 full papers and 5 posters. The full papers cover different aspects of learning
from imbalanced domains. Namely, these contributions address pre-processing in classifica-
tion and regression tasks, multi-label classification, one-class learners, unsupervised domain
adaptation of Part-of-Speech taggers, and real-world applications. Let us briefly describe
the accepted full papers. In Skryjomski and Krawczyk (2017) a study regarding the impact
of the different types of minority class instances on SMOTE pre-processing algorithm is
presented. A new method for stratification of multi-label data is proposed by Szymański
and Kajdanowicz (2017). In Branco et al. (2017) a pre-processing strategy for regression
tasks that combines two approaches based on data properties is introduced. A new stacking
method for improving MLkNN method for multi-label classification is proposed by Pakrashi
and Namee (2017). Bellinger et al. (2017) provides practical guidelines regarding when to
use binary classification with some corrective measures and when to use one-class classifiers.
Another work Zhu et al. (2017) explores the impact of class ratio used in the training sets
on the performance of resampling-based ensembles in the context of churn prediction data.
The combination of a convolutional neural network with additional static features is ex-
plored by Günnemann and Pfeffer (2017) for predicting engines damage using noise signals
related with the engine internal excitation. The work of Cui et al. (2017) explores the effect
of imbalanced domains in the problem of unsupervised domain adaptation of part-of-speech
taggers.

Concerning the accepted posters, these contributions approach different topics on im-
balanced learning, spanning from post-processing methods, new ensembles, loss functions
and real-world applications. In Krasanakis et al. (2017) a framework for tuning plug-in
rules while reducing the posterior certainty loss in imbalanced classification problems is
being described. An evaluation of the performance of ensemble learners in imbalanced re-
gression tasks is presented by Moniz et al. (2017b), studying the impact of characteristics
such as data set size and imbalance ratio, in the performance of such tasks. A bilinear and
log-bilinear loss functions which are used for controlling the error location in deep learning
models are introduced in Resheff et al. (2017). The work of Fayet et al. (2017) compares
three different unsupervised anomaly detection methods using different feature sets in the
context of speakers profiles. Finally, Ksieniewicz and Woźniak (2017) present the notion of
exposer, a tool for visualizing the data distribution. This was used as a cornerstone for a
new ensemble method which is composed by a set of exposers generated on different feature
subsets.

The workshop included a talk by Professor Nitesh Chawla, from the University of Notre
Dame, entitled “Marking the 15-year anniversary of SMOTE: Origin, Progress and Oppor-
tunities” and a discussion table where the future challenges of imbalanced domain learning
were discussed.
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All of 8 accepted full papers were assigned a presentation slot, together with time for
questions and answers. For authors of papers accepted as posters, we offered a lighting
presentation to attract the interest of participants, and then a possibility for a more in-
depth discussion during coffee breaks and lunch time.

We would like to thank all of the authors and the Program Committee members that
enabled a successful workshop for their hard work and commitment. We also want to
deeply thank the ECML/PKDD 2017 Workshop and Tutorial Chairs for their support in
the logistics of this workshop.
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