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Abstract. The underwater environment has some structures that still
need regular inspection. However, the nature of this environment presents
a number of challenges in achieving accurate vehicle position and conse-
quently successful image similarity detection. Although there are some
factors - water turbidity or light attenuation - that degrade the qual-
ity of the captured images, visual sensors have shown a strong impact
on mission scenarios - close range operations. Therefore, the purpose
of this paper is to study whether these data are capable of addressing
the aforementioned underwater challenges on their own. Considering the
lack of available data in this context, a typical underwater scenario was
recreated using the Stonefish simulator. Experiments were conducted on
two predefined trajectories containing appearance scene changes. The
loop closure situations provided by the bag-of-words (BoW) approach
are correctly detected, but it is sensitive to some severe conditions.

Keywords: Appearance-based localization + Bag of binary words -
Place recognition - Loop closure + Stonefish + Autonomous underwater
vehicles

1 Introduction

In the still unknown underwater world, there are structures that need to be
inspected regularly to detect damages or corrosion, for example. Therefore,
autonomous underwater vehicles (AUV) are increasingly being used to assist
humans in some of these dangerous situations. To perform these tasks, the vehi-
cles must be able to navigate in a feasible way but the nature of the underwater
environment presents several challenges to accurate vehicle positioning. In addi-
tion, these tasks require close range navigation, reducing the sensors that can be
used due to perceptual limitations. Typically, these scenarios have higher levels
of distortion and noise caused by factors such as light incidence, wind, sus-
pended particles, currents, or physical factors related to vehicle control. These
problems make the perception of the environment challenging, but the selection
of very robust features is crucial for similarity detection. For robust close-range
operations, vision-based systems are the most attractive solutions for sensing
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the environment, since can operate at a range of less than 3m, providing high
resolution and simplicity [1]. But are the visual approaches able to deal with
the inherent underwater environment challenges? To detect a location that the
vehicle has already visited is an essential aspect to compensate the accumulated
pose deviations [2] but, making this decision independent of the environment -
unsupervised learning - is yet a issue because it requires effective identification
of landmarks to produce a consistent map. Binary algorithms are increasingly
used for place recognition because these features have a very compact repre-
sentation [3]. On the other hand, the visual BoW algorithm is one of the most
commonly used techniques to perform quickly and robustly appearance-based
loop closure recognition [4], which provides results with lower computational
requirements [5]. The BoW approaches have many advantages namely its effi-
cience thanks to the use of an inverted index and potentially hierarchical struc-
tures. Thus, these models represent local features in a fixed-length vector, using
a visual vocabulary where each image feature is associated with a word. Given
the advantages of using binary features and the strengths of BoW techniques,
a behavioral evaluation of a binary BoW technique was previously performed
in [6], based on a traditional learning approach for unsupervised environments -
based on outdoor public datasets - that include scene changes, perceptual aliasing
conditions, or dynamic elements. This BoW technique based on ORB features
shows a good balance to deal with such difficult conditions at low computational
cost. Therefore, it is also important to understand its behavior in an underwa-
ter environment, where locating and creating maps is more difficult because the
underwater world is still unknown and uncontrolled where the appearance of a
place can change over time. According to the previous experiments in outdoor
challenging scenarios and based on a state-of-the-art evaluation of several feature
detectors/extractors on underwater images [6,7], the ORB features are also con-
sidered for underwater environment. Therefore, as main contribution this paper
evaluates the behavior of the binary BoW technique in underwater environment,
to analyze the feasibility of using a purely visual solution for similarity detec-
tion against strict visibility conditions. Given the lack of data in this context, a
typical mission scenario including their common issues that degrade the quality
of the acquired data were simulated.

This work is organized as follows: Sect. 2 provides a general review of basic
work in this area. Section 3 gives an overview of a purely visual place recogni-
tion system. It also describes the used BoW-based approaches and performance
metrics. Section4 describes the Stonefish simulator used to collect underwater
data, recreating real conditions and reports the evaluation of the detection of
previously seen places for the different performed experiments. Finally, the main
conclusions of this work are discussed in Sect. 5.

2 Related Works

Proper loop closure detection must be use to correct accumulated drifts dur-
ing navigation and mapping. Therefore, simultaneous localization and mapping
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(SLAM) systems rely on a robust place recognition method for a robot to per-
form successful autonomous navigation. In this context, the first vocabulary app-
roach for recognizing previously visited locations in an image sequence based on
efficient - binary - features was proposed in [8]. It uses FAST keypoints and
BRIEF descriptors and the vocabulary is built offline based on a hierarchical
BoW model. BRIEF descriptor has been shown to tolerate only small scale or
rotation changes. In order to not limit the system to only rectilinear trajecto-
ries and loop events with a similar viewpoint, this work was later extended by
using ORB features [9]. It achieved higher recall (strength of the algorithm to
recognize known places) than BRIEF in outdoor scenarios with larger viewpoint
differences. Usually, the BoW model is predefined based on features extracted
from a training set, which is limiting: the model is environment-dependent and
cannot handle changes. This is critical in cases where the robot operates in
uncontrolled environments, such as in the underwater scenario. Therefore, an
appearance-based navigation and mapping method where visual vocabularies are
created as visual information becomes available during vehicle survey was pre-
sented in [10]. From experiments, this incremental vocabulary approach showed
be a promising solution but the inherent difficulty of the underwater environ-
ment makes the performance of the method slightly inferior to that in urban
environments. Thus, in addition to the severe visibility conditions, the lack of
robust, stable, and matching features in some areas is a relevant challenge for
performing location recognition in the underwater environment. Later, a stereo-
SLAM to detect loop closure situations in an underwater coast area was pro-
posed [11]. The method was validated in an indoor water tank (marine scenario
without 3D structure) and in a real outdoor region without compromised vis-
ibility. Compared with other state-of-the-art odometry methods, the proposed
approach detects all loop closure situations with less motion estimation error,
computational time and system resources in both scenarios.

3 Visual Place Recognition

Place recognition puts image retrieval (IR) in the practical context of physical
agents operating in a physical world, and it is used to search an image database
for images with similar visual content to a query image. The matching between
current and database images is based on a ”“similarity measure”. This measure
determines which images are considered most relevant to the query image, where
using a suitable similarity measure a high accuracy can be achieved. Thus, the
information about the scene is independent of pose and error estimation, mak-
ing these methods a possible solution for fast and robust loop closure detection.
Since databases can be very large, it is important to develop techniques for fast
access and search to facilitate similarity retrieval. Thus, a data structure that
stores data in an appropriately abstracted and compressed form - indexing - is
required [12]. In the context of place recognition, the most appropriate approach
is the inverse index, which maps each index term to a document list in which it
occurs. The indexing techniques can be divided into hash and non-hash-based.
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The hash-based techniques use hash functions with search keys as parameters
to generate address of data record. They has been used as an efficient way to
store, group, and search data, namely for a high amount of data. On the other
hand, the non-hash indexing techniques are generally used to speed up access of
data. In such case, there are two main strategies for clustering: hierarchical (or
agglomerative) clustering and algorithms based on point assignments. For the
intended context, the tree-based structures (hierarchical) are the most appropri-
ate. They are not considered best for large databases, but they are good for small
databases, easy to understand, and allow efficient data entry (ordered data) and
search. Therefore, also based on a comparative study of diverse place recog-
nition methods [13], the DBoW2! and DLoopDetector? libraries were used [8]
using ORB features. DBoW2 implements a hierarchical tree for approximating
nearest neighbors in the image feature space and creating a visual vocabulary
based on K-Means++ clustering. Along the BoW, an inverted and direct files
can be kept to allow fast queries and feature comparisons. On the other hand,
DLoopDetector was used for detecting loops in an image sequence. It implements
temporal and geometric constraints between arbitrary pairs of images of the loop
candidates to achieve more consistent results in detecting similar places. More
detailed, for each current image, their features are converted into a bag-of-words
vector, v; and the database is searched for v, resulting in a list of matched
candidates based on the weights of the words and their normalized scores (L1
distance). Only matches whose score exceeds a minimum threshold « are con-
sidered. The geometrical checking is based on direct index, taking advantage of
the BoW vocabulary. The main steps for image similarity detection are shown
in Fig. 1.

q
‘ Image database
—*l Loop candidates | » | Temporal checking | »l ical checkil |»| Detected loops

o> min. Threshold? C.)

Direct index

Visual vocabulary

Fig. 1. Overview process of DLoopDetector for image similarity detection.

For evaluation against ground truth were counted the cases where the algo-
rithm recognizes the queried image as a known place successfully (TP) or incor-
rectly (FP). The cases where the algorithm does not falsely recognize the queried
image as a known place (FN) are also considered. Then, precision and recall met-
rics are computed: the first describes the robustness of the algorithm to detect a
place without error; while recall determines the strength to detect known places
without loss. To find an ideal combination of precision and recall, the Fl-score
- harmonic mean of both metrics - is also computed.

! https://github.com/dorian3d /DBoW?2.
2 https://github.com/dorian3d /DLoopDetector.
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4 Experimental Results

In this section, an evaluation of the behavior of the proposed BoW scheme based
on ORB features is provided for image similarity detection in underwater sce-
narios with challenging scenes. Experiments were conducted on several datasets
created by the Stonefish simulator, including some common strict visibility con-
ditions caused by external and inherent environment factors. First, in Sect. 4.1,
the used Stonefish simulator tools and the predefined trajectories are described.
Then, in Sect. 4.2, the performance of the binary BoW method for detecting
previously seen locations under different operating conditions is demonstrated.
All experiments were performed using an AMD Ryzen 7 2700X @ 3.7 Ghz with
16 GB RAM computer.

4.1 Stonefish Simulator

To evaluate the ability of the BoW technique in underwater environments, some
datasets were created using the Stonefish simulator [14]. This is an open-source
C++ library - version 1.1.0 - that aims to create realistic simulations of marine
robots, taking into account the effects of light absorption and scattering. So,
this library allows to simulate the ocean and atmosphere parameters. In terms
of the ocean rendering it is possible to recreate currents, ocean optics - effects
encountered in ocean waters, and to include suspended particles. Referring to
atmosphere, it allows to create winds and to change sun’s position on the sky.
Therefore, to recreate a mission operation, port and archaeological seafloors were
simulated, resorting to rendering process. Next, a camera was installed on the
AUV and its parameters were configured to simulate an Allied Vision Mako G-
125B/C GigE camera. Thus, a FOV of 44.2° is used and each image is composed
of 300 x 200 pixels that corresponds an area of 2.7m?2. In addition, positioning
information was acquired by an odometry sensor - ground truth. Both sensors
were configured with the same acquisition rate (10 Hz).

To collect data, the AUV was configured to autonomously perform close
range predefined trajectories between waypoints. Thus, two different paths were
defined: trajectory A is a simple route that ends at the starting position - just
one situation where a loop closes. Trajectory B is a more complex path in the
form of an “8”. So, there are two different loop-closure situations where in the one
of them, the robot revisits that area with a different point of view. Figure 2 shows
the complete trajectories, highlighting the respective loop situations. Considering
the intended context, each trajectory was performed with different parameters
configurations to evaluate the impact of the scene appearance changes in visual
place recognition. First, diverse water types were tested based on three Jerlov
measurements to cover wide spectrum of the coastal water types. Next, to sim-
ulate the effects of different depths (that can indicate shallow and deep waters),
three sun inclination angle were tested. Lastly, suspended particles were also
included in the scenario to simulate some dinamism. Figure 3 shows an illustra-
tion of the effects of these environment parameters in the acquired images.
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Fig. 2. Predefined trajectories performed by the AUV in the simulation environment.
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Fig. 3. Effect illustration of the three turbidity levels (1) and sun position (2) and the
existence of suspended particles (3).

4.2 Loop Closure Detection

To measure the performance of the BoW scheme in the detection of the previ-
ously seen places, a ground truth for loop closure was created for each scenario.
Each pose file is used to generate the ground truth, using approximately 1m as
the threshold for placing two images at the same location based on the cam-
era footprint. In addition, only the loops for which the difference between their
image number and the image number of the previously detected loop is greater
than the frequency F are considered as final loops, to prevent multiple loops from
being detected in one second. The evaluation against the ground truth is done
using the precision and recall metrics. Thus, for each sequence TP, FP and FN
are counted as below described in Sect. 3. Full-indexing vocabularies - created
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offline, but with images of the performed trajectory - are built for each scenario,
to model the operating environment and evaluate the performance for detection
of previously seen places similarly to online approaches. All experiments are
based on the extraction of up to 1500 features per image.

The precision-recall curves for all scenarios in the Trajectory B, varying the
threshold similarity parameter («), between 0.2 and 0.35 are shown in Fig. 4.

0.95

0.9

Precision

0.85

—=— water type =0.1
water type = 0.25
—¥— water type = 0.28
—o— sunangle = 70°
sun angle = 50.77°
0.8 —— sunangle = -3.08°
suspended particles

02 03 04 05 06 07 08 09 1 1.1
Recall

Fig. 4. Precision-recall curves in all scenarios in the Trajectory B for different values
of the similarity threshold, a.

In water type = 0.28 and sun position = 50.77° conditions the behavior of
the algorithm is not consistent: for some similarity values, a 100% of precision
is not achieved (false loops are detected) which is not intended in a navigation
context, since it may cause inappropriate trajectory adjustments and so, an
incorrect pose estimation. In general, better precision-recall results are obtained
with a similarity threshold of 0.2 or 0.3. Even so, with o = 0.2 the similarity
requirements are low, considering distant features as the same points and an
overfitting result is obtained. Thus, the o = 0.3 showed to be the most suitable
and, so was used for all following experiments.

Thus, the three levels of turbidity - 0.1, 0.25 and 0.28 - were tested for
both trajectories. As the Jerlov parameter increases, the image becomes darker,
decreasing the image contrast which makes that the various elements there are in
the image are no easily noticeable, as visible in Fig. 3 (1). For trajectory A with
a Jerlov parameter configured to 0.1 the algorithm only fails to detect one loop
closure (FN), as can be seen in Fig. 5. Therefore, a precision of 100% and a recall
of 85.71% were obtained, which means that all loop situations were well detected.
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In addition, combined with the wrongly not detected situation, resulted in an
Fl-score of 92.31%. In such scenario, the algorithm performance decreases only
8% as the Jerlov parameter increases, which was not expected given the strict
visibility conditions visible to the naked eye. This can perhaps be explained by
the fact that it is a simple trajectory with only one long-term loop acquired in
same viewpoint in the different timestamps. Even so, looking at the number of
the extracted features and the final matches between images, there is a decrease
in this factor with increasing turbidity. So, it is then noticeable a higher difficulty
in the detection of robust features, which can compromise a suitable navigation
in this strict conditions.

Trajectory A: Water type = 0.1

GT

20 *  GTloops

O Detected loops
True positives

#  False negatives

y [m]

x[m]

Fig. 5. Appearence-based loop closure for Trajectory A with water type=0.1.

For trajectory B the quality of the algorithm’s performance deteriorated as
the Jerlov parameter increased, as expected. Figure 6 shows the obtained results
for each simulated water type (wt) value. In this trajectory, there are two loop-
closure situations which makes harder to get a general good performance. As
can be seen in this case, the decrease in image quality caused a delay in loop
detection, and in the worst case, the algorithm is not able to detect the first loop
situation.
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Fig. 6. Appearence-based loop closure for Trajectory B, varying the water type.

Table 1 shows the performance of the algorithm in detecting similar places,
achieving an accuracy of 100% for all cases, which means that no loops were
falsely detected, i.e. there are distinctive features.

Table 1. Results in the Trajectory B, varying the water type.

wt = 0.1 | wt = 0.25| wt = 0.28
Precision 100%

Recall | 87.50% | 69.57% 35.29%
Fl-score | 93.33% | 82.05% 52.17%

Contrary, recall decreased over the course of the experiments as environment
conditions change, making the extraction of matching features more difficult.
Thus, at wt = 0.25, the algorithm fails to detect 7 loop closure situations, imply-
ing a 20% decrease in recall. Even so, in both cases, it is able to deal with different
viewpoints. In the last scenario, a larger reduction in recall is observed since none
loop in the crossing area was detected. Thus, the algorithm does not deal with
some challenges at the same time: dark environment, short loop situation (little
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overlap between images and small similarity area), and viewpoint changes. This
behavior is not reliable in a navigation context, since a false negative result can
produces wrong trajectory adjustments and so, an unreliable pose estimation.

Next, the sun position was changed between the three inclination angles
-3.08°, 50.77° and 70° - to evaluate the effects of illumination variation on
the similarity detection of between images. This test is crucial to simulate the
different common scenarios in underwater operations, namely deep areas (—3.08°)
or shallow waters (70°). Figure 3 (2) shows the effect of each sun angle inclination
in the acquired images. Table 2 illustrates the obtained quantitative results for
trajectory A. For an angle of —3.08°, the behavior of the algorithm is similar
to wt = 0.28, since the visibility is also very low (darker scenes). However, in
this sun experiment there are more two false detections (false negatives), which
corresponds to a 27% decrease in recall. At an angle of 50.77°, the algorithm
achieves higher performance with a 12.5% increase in recall. In the last scenario,
the obtained recall is the same compared to the previous result (sun angle =
50.77°), but there is a decrease in the number of extracted features as well
as identifiable matches. Although the image quality is higher for humans, the
algorithm is more sensitive to this last configuration - 70° of sun inclination -
compared to the worst visibility condition in terms of water type (wt = 0.28)
and shows a lower recall - 77% versus 62.5%. In fact, bright scenes have lower
image contrast, which makes the feature extraction and so, a similarity detection
more difficult.

Table 2. Results in the Trajectory A, varying the sun position.

angle = —3.08° | angle = 50.77° | angle = 70°
Precision 100%
Recall 50.00% 62.50% 62.50%
Fl-score 66.67% 76.92% 76.92%

Figure 7 shows the results of the same experiment but, now for trajectory
B. It can be seen that increasing the illumination level, the algorithm leads to
better loop-closure detections but, when the sun inclination is high (clear and
bright scenes), the performance decreases and some loops are not detected. Once
again, this can be explained by the fact that higher sun inclination produces
more unstructured images that make feature extraction more difficult. Another
problem caused by a higher sun inclination can be the appearance changes caused
by the vehicle shadow. These changes are dynamic and therefore can affect the
similarity detection between images acquired in different timestamps. Thus, in
Table 3, the significant drop in place recognition performance is demonstrated
for extreme sun inclinations. In the darker scenario (-3.08°), the algorithm has
a delay in starting similarity detection - one more false negative. Nevertheless,
both cases are not suitable for real-world use, since there are many unrecognized
loop closures. In the best cases (sun inclination = 50.77° and wt = 0.1), the
algorithm behaves similarly and fails to detect 3 loop closures.
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Fig. 7. Appearence-based loop closure for Trajectory B, varying the sun position.

Table 3. Results in the Trajectory B, varying the sun position.

angle = —3.08° | angle = 50.77° | angle = 70°

Precision 100%
Recall 23.53% 84.62% 33.33%
F1-score 38.10% 91.67% 50.00%

Lastly, the suspended particles effects are therefore shown in the Fig. 8.
It was expected that the algorithm would misdetect loop-closure situations
(precision<100%) and fails to detect others (FN), as the dynamics change the
appearance of the scene. But, only the last situation occurs, perhaps because
the amount of particles possible to simulate is small and sparse. Compared to
the experiment without particles (wt = 0.1), the recall decreases only by 3%.
Moreover, the number of final matches are also lower which can indicates that
the particles added no value in the feature extraction - no matchable features.
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Fig. 8. Appearence-based loop closure for Trajectory B with suspended particles.

5 Conclusions

In this paper, a behavioral evaluation of a BoW technique based on ORB features
for an underwater scenario was presented, including some common problems of
a typical operation mission that affect the quality of the acquired images. The
Stonefish simulator was used, relying on its configuration features to render the
seafloor and some general inherent conditions for the intended context. A simple
trajectory with an one-time and long-term loop closure situation was performed
by the AUV. All loops detected by the algorithm were correctly identified. In this
data, the scene changes did not affect too much the overall performance, since the
loop closure situation was always detected, albeit with a delay of one detection
in the worst case of water type and sun position, achieving a recall of 77.78%
and 50%, respectively. For trajectory B, the algorithm performance decreases
as the Jerlov parameter increases. With wt = 0.25, the recall rate decreases by
20% as the algorithm fails to perform 7 detections. With poorer visibility (wt =
0.28), the algorithm fails to detect the first loop closure situation - can be dan-
gerous in the navigation context since there are no trajectory adjustments and
consequently an incorrect pose estimate is obtained. Sun inclination experiments
showed poor place recognition performance for extreme values (—3.08° and 70°).
The first case illustrates a depth operation where a darker environment produces
scenes without large differences in intensity, i.e. recognisable features. Contrary,
shallow waters (70°) can produce unstructured images and shadows, which also
makes feature extraction a harder task. Thus, it has been showed that visual
similarity detection is nevertheless sensitive to some visibility conditions, which
are common in uncontrolled and challenging scenarios. So, it could be interesting
to combine cameras with other sensors to evaluate a possible hybrid solution for
place recognition. In the near future, the parameters will be dynamically changed
during the simulation and a performance evaluation will be accomplished in a
scenario with repetitive patterns and few features.
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