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Abstract: The environmental concerns are having a significant impac¢he operation of power systems. The traditional
Unit Commitment problem, which to minimizes the fuel costddequate when environmental emissions are
also considered in the operation of power plants. This papesents a Biased Random Key Genetic Algorithm
(BRKGA) approach combined with non-dominated sorting @dorce to find solutions for the unit commitment
multiobjective optimization problem. In the first stages BRKGA solutions are encoded by using random
keys, which are represented as vectors of real numbers imtheval [0, 1]. In the subsequent stage, a non-
dominated sorting procedure similar to NSGA Il is employedgproximate the set of Pareto solution through
an evolutionary optimization process. The GA proposed &riant of the random key genetic algorithm, since
bias is introduced in the parent selection procedure, as aglin the crossover strategy. Test results with the
existent benchmark systems of 10 units and 24 hours schgdhdrizon are presented. The comparison of the
obtained results with those of other Unit Commitment (UCtimhjective optimization methods reveal the
effectiveness of the proposed method.

1 INTRODUCTION turn on/off schedule, due to start-up costs/emissions
that have significantinfluence in the problem solution.
The power system generation scheduling is composed  In (Granelliet al., 1992) the problem is formulated
of two tasks: On the one hand, the traditional unit as single objective with an emission limit constraint.
commitment (UC) that involves scheduling the turn- The disadvantage of such an approach is that it does
on and turn-off of the thermal generating units; on the not allow for obtaining solutions with a tradeoff be-
other hand, the economic dispatch (ED), which as- tween costs and emissions. In addition, this type of
signs, the amount of power that should be produced approach leads to solutions maximizing the profit but
by each on-line unit in order to minimize the total disregarding possible solutions with CO2 reduction.
operating costs for a specific time generation hori- The g-constraint method for multiobjective opti-
zon. The traditional configuration of this problem was mization was presented in (Hsiao et al., 1994). This
modified when environmental concerns arised due to method is based on preferences of the objectives. The
the goals imposed by Kyoto protocol. The carbon most important objectives are considered while the
emissions produced by fossil-fueled thermal power other objectives are treated as constraints bounded by
plants should also be minimized. Hence, it is nec- some allowable levels. The main disadvantage of this
essary to consider the emission as another objective.approach is to find weakly non-dominated solutions.
Therefore, we are in the presence of problem with Some of the previous studies of unit commit-
two, usually conflicting, objectives. ment problems including emission constraints have
Several methods have been reported in the liter- been solved using lagrange relaxation methods (Wang
ature concerning to the environmental/economic dis- et al., 1995; Yamin et al., 2007). In (Wang et al.,
patch problem. However, to obtain an optimal solu- 1995) an augmented lagrange relaxation is used
tion, it is important to consider not only the output to solve a unit commitment considering the typi-
generation level of each generating unit but also the cal system constraints such as power balance, min-



imum up/down time and ramp rate constraints and its implementation to the UC bi-objective problem, is
adding transmission and environmental constrains. In given in section 3. Section 4 provides test results and
(Yamin et al., 2007) lagrange relaxation is combined finally in Section 5 some conclusions are drawn.

with evolutionary programming.
Current research is directed to handle both ob-

jectives simultaneously as competing objectives in- 2  UC MULTIOBJECTIVE

stead of simplifying the multiobjective problem to a
single objective problem. Three multiobjective evo-
lutionary algorithms (MOEAS) have been applied to
the Economic Dispatch (ED) problem with meaning-
ful success (Abido, 2003c; Abido, 2003b; Abido,
2003a). Since they use a population of solutions
in their search, multiple Pareto-optimal solutions
can, in principle, be found in one single run. Dif-
ferent MOEAs like Niched Pareto Genetic Algo-
rithm (NPGA) (Horn et al., 1994), Strength Pareto
Evolutionary Algorithm (SPEA) (Zitzler and Thiele,
1998) and Non-dominated Sorting Genetic Algorithm
(NSGA) (Srinivas and Deb, 1994) have been applied
to this problem. These models can be efficiently
used to eliminate most of the difficulties of classical
methods. However, the quality and diversity of the
nondominated solutions presented in (Abido, 2003c;
Abido, 2003b; Abido, 2003a) have not been measured
and assessed quantitively. In (Abido, 2006) a com-
parative study among MOEA techniques was devel-
oped to evaluate their potential to solve the multiob-
jective ED problem. The potential of MOEA to han-
dle this problem is investigated and their effectiveness
to solve the ED multiobjective problem was shown.
It is important to refer that new versions of MOEAs
were presented such as NSGA-II (Deb et al., 2002),
and SPEA2 (Zitzler et al., 2001). The NSGA-II algo-
rithm was also applied to the ED multiobjective prob-
lem in (Basu, 2008).

Gongalves and Resende (2010) introduce the tuto-
rial on the implementation and use of Biased Random
Key Genetic Algorithm (BRKGA) for solving com-
binatorial optimization methods. More recently, in
(Roque et al., 2011) the BRKGA approach is used to

PROBLEM FORMULATION

In the multiobjective UC problem one needs to de-

termine an optimal schedule, which minimizes the

production cost and emission of atmospheric pollu-

tants over the scheduled time horizon subject to sys-
tem and operational constraints. Due to its combina-
torial nature, multi-period characteristics, and nonlin-

earities, the UC problem is a hard optimization prob-

lem, which involves both integer and continuous vari-

ables and a large set of constraints.

Let us now introduce the parameters and variables

notation.

Decision Variables

Y¢;: Thermal generation of unijtat time period, in [MW];

ug ;- Status of unitj at time period (1 if the unit is on; 0 otherwise);
Auxiliary Variables :

Tf”’“’"(t): Time periods for which uni§ has been continuously on-line/off-
line until time period, in [hours;

Parameters

T: Number of time periods (hours) of the scheduling time tamiz

t: Time period index;

N: Number of generation units;

j: Generation unit index;

R;: System spinning reserve requirements at time petiod[MW];

Dy: Load demand at time peridgin [MW];

Ymin;: Minimum generation limit of unitj, in [MW];

Ymax; : Maximum generation limit of unif, in [MW];

Np: Number of the base units;

TS Minimum uptime/downtime of uni, in [hours);

T¢;: Cold start time of unif, in [hours;

Si/c,: Hot/Cold start-up cost of uni, in [$];

SD: Shut down cost of unif, in [$];

Sej: Start-up atmospheric pollutant emission of ujpiin ton—C0O2] if CO2
or [mg/Nn#] if nitrogen oxides;

A9UP: Maximum allowed output level decrease/increase in cantaecpe-

]
riods for unitj, in [MW];

find solutions for single objective Unit Commitment 2.1  Objective Functions

problem.
In this paper the BRKGA algorithm combined

As already said, in the multi-objective problem

with nondominated sorted procedure and MOEA formulation, two important objectives in electrical
techniques is applied to the two standard 10-unit 24- thermal power system are considered. These are
hour test systems presented in (Winter et al., 2003) economy and environmental impacts.

and (Sawaragi et al., 1985). The proposed ap-

On the one hand, the first objective is to minimize

proach BRKGA is combined with a ranking selection the system operation costs composed by generation
method, that is used to focus on different levels of the and start-up costs. The generation costs, i.e. the fuel
nondominated solutions, and a sharing fitness proce-costs, are conventionally given by a quadratic cost
dure as in NSGA. function as in equation (1),

The paper is organized as follows: Following )
the description of the problem formulation, which is Fi(Yej) =aj- (%,j)° +bj-Yj+¢j,
given in section 2, an explanation on the BRKGA and wherea;,bj,c; are the cost coefficients of unjit

1)



Therefore, the cost incurred with an optimal
scheduling is given by the minimization of the total
costs for the whole planning period, as in equation

).

T /N
Minimize Z( {Fj(Ythj) -, (2
&a\=
+SUj-(1—U1j) Uj
3)

+SDj - (1— W j) - Ut—1,1}> :

where§ j andSDO ; are the start-up and shut-down
costs of unitj at time period, respectively.

On the other hand, the second objective is to
minimize the total quantity of atmospheric pollutants
emission. The emissions are generally expressed as
quadratic function:

Ei(Y%p) =0 (M2 +B Y+, (4)
whereaj, Bj,y; are the emission coefficients of unit
So, the total emission of atmospheric pollutants is
expressed as follows:

T /N
Minimize Z( {Ej(Ythj) - u; (5)
t= =1
+58 - (1—Ut-1j)- Ut,j}> :

whereSgq is the start-up atmospheric pollutant emis-
sions of unitj at time period.

2.2 Constraints

The constraints can be divided into two sets: the de-
mand constraints and the technical constraints. Re-

garding the first set of constraints it can be further

The second set of constrains includes unit output
range, minimum number of time periods that the unit
must be in each status (on-line and off-line), and the
maximum output variation allowed for each unit.

3) Unit Output Range Constraints

For each time periotiand unitj, the real power out-
put of each generator is restricted by maximum and
minimum production limits.

Ymin -t <Y <Ymax- . (8)

4) Ramp rate Constraints

Due to the thermal stress limitations and mechanical
characteristics, the output variation levels of each on-
line unit in two consecutive periods are restricted by
ramp rate limits.

A< Y-V <ALP

) Minimum Uptime/Downtime Constraints

the unit has already turned on or off, there will be
a minimum uptime/downtime time before it is shut-
down or started-up, respectively.

-I—Jon(t) 2

9)

Toff

min,j -

Tom; andT (1) > (10)

3 MULTIOBJECTIVE UC
OPTIMIZATION

3.1 Decoding procedure

The decoding procedure is commonly used in all
four multiobjective optimization algorithms. For
each chromosome, the corresponding solution is per-
formed in two main stages, as it can be seen in Figure
2 in (Roque et al., 2011). Firstly, the output genera-
tion level matrix for each unit and period is computed
from random key value. In this solution, the units
production is proportional to their priority, which is
given by the random key value. By doing so, each

divided into load requirements and spinning reserve element of the output generation matr; is given

requirements, which can be written as follows:
1) Power Balance Constraints

as the product of the percentage vectors by the peri-
ods demand;. Here each component of the percent-

The total power generated must cover the total load age vectors are given by corresponding random key

demand, for each time period.
N

ZYLJ"U'[,jZDtate{lvzv“'aT}' (6)
=1

2) Spinning Reserve Constraints

The spinning reserve is the total amount of real power

generation available from on-line units net of their
current production level.

N
ZYmax-um >R+Di,tef{1,2,....T}. (7)
=1

entrie divided by the sum of the all random key val-
ues as illustrated in algorithm 1 (Roque et al., 2011).
Then, these solutions are checked for constraints sat-
isfaction using a repair algorithm presented in (Roque
etal., 2011).

3.2 Repair algorithm
The idea of this technique is to convert any infeasi-

ble individuals to a feasible solution by repairing the
sequential possible violations constraints in the UC



problem. The repair algorithm is composed by several performed to set the individuals of the next gen-
steps. Firstly, the output levels are adjusted in order  eration; after sorting the intermediate population

to satisfy the output range constraints. Next, we have , only the best individuals are selected based on
the adjustment of output levels to satisfy ramp rate its rank and crowding distance; a new generation
limits. It follows the repairing of the minimum up- is then obtained mantaining the population size

time/downtime constraints violation. Afterwards, the fixed; the algorithm stop criterium is the max-
output levels are adjusted in order to satisfy spinning imum number of generations previously estab-
reserve requirements. Finally, the output levels are lished.

adjusted for demand requirements satisfaction at each

time period. For details about the repairing mecha-

nisms, the reader is refered to (Roque et al., 2011). 3.4 NPGA

3.3 NSGA

. . . A Niched pareto genetic algorithm was presented in
A fast and elitist non-dominated sorted genetic algo- (o et al., 1994). This thecnique involves the addi-
rithm (NSGA 1) (Deb et al., 2002) is used to approx- o of two specialized genetic operators: Pareto dom-

|rr111ate tE.e set IOf Pareto ‘F‘]Olcl;t.'on' Ln tr}'s approach, ination tournaments and fitness sharing. These oper-
the ranking selection method Is used to focus on NoN- 4 4jjow for selection based on partial ordering of

dominated solutions \_Nhlle_ the crowding dlstan_ce IS the population, as well as, to preserve diversity in the
computed to ensure diversity along the nondominated population

front. The population of sizél, is used for selec- o ] ]
tion, crossover, and mutation to create a new offspring ~ Tournament selection is used to adjust selection
population of equal size. The rank procedure is em- Pressure by changing the tournament size. Two can-
ployed by different levels of domination until all in-  didates are chosen at random from the current popu-
dividuals in the intermediate combined population, of lation. A comparison set ddlomindividuals is also
size N, are ranked. Firstly, the nondominated solu- chosen randomly. Each of the candidates are com-
tions are assigned with same rank value and thereaftefared to each individual in the comparison set. If a
the crowding distance is computed. The nondomi- candidate is dominated by the comparison set, and
nated solutions must be emphagized more than anyothel' is not, it loses the Competition. If there are tour-
other solution. In order to find individuals of the next Namentties, i.e. neither or both are dominated by the
front, the solutions of the first front are temporarily comparison set, the decision is based on the fitness
ignored, and the above procedure is repeated to findsharing of individuals, using niche counts as calcu-
subsequent fronts. The individuals of the new popu- ated for the objective space in (Horn et al., 1994).
lation are selected from the intermediate population, Each canditate niche count is computed in the objec-
they are chosen from subsequent nondominated frontstive space, using its evaluated objective values. The
in the order of their ranking. To choose exactly the candidate with lowest niche count wins the tourna-
population members, the solutions of the last front are ment. Tournaments are held until the next generation
sorted considering the crowding distance by descend-is filled. Then crossover and mutation operators are
ing order. The NSGA-II approach proposed by (Deb applied to the new population. As already said, in the
et al., 2002) was implementated as follows: case of a tie, the population density around each can-
didate is computed within a specified distance, known

* Generate random population, decoding the indi- a5 the niche radiusshare The niche count for candi-
viduals and evaluate the solutions; datei is given by:

e Sort the population using non-domination-sort.
For each individual, rank and crowding distance di
m = {ZjePop(

) if dij<Oshare

e For each generation the follows steps are given: I dij >=Oshare
Select the parents, which are fit for reproduction (11)
by using the binary tournament selection based on  The winner of the tied tournament is the competi-
the rank and crowding distance; genetic operators tor with the lowest niche count. As in (Horn et al.,
copy, simulated binary crossover and mutation are 1994), the fitness sharing is updated continuously,
applied under selected parents; the offspring pop- once the niche counts are calculated using individuals
ulation is combined with parents (the size of in- in the partially filled population of the next genera-
termediate population is the double); selection is tion, rather than that of the current generation.

Oshare

are assigned;



3.5 SPEA o After the recombination, of the mating pool, the
crossover and mutation operators are applied and

The Strenght Pareto Evolutionary Algorithms a new population is created;

(SPEAs) was introduced in (Zitzler and Thiele, ¢ The gigorithm stops when the maximum number

;998) and an improve version, known as SEEA Il of generations is reached.

is given in (Zitzler et al., 2001). In this algorithm,

nondominateq _solutions are_stored in an external 3.6 BRKGA adapted to multiobjective

set. The individuals are assigned according to the .

Pareto dominance concept. When the nondominated UC optimization

solutions exceds a previously fixed size for the _ ] )

external set, the number of individuals in the external We also use the ranking selection method for ordering

set is reduced by means of a truncation thecnique, asthe nondominated solutions according to the Pareto

in (Zitzler et al., 2001). If the number of nondomi- domination concept while the crowding distance is

nated individuals is less than the predefined externalused to break ties by chosing the best indiduals to

set size, the external set is filled up by dominated b€ included in new population. For details about the

individuals. The fitness assignment occurs in two BRKGA approach, the reader is refered to (Gongalves

different stages. The individuals are assigned by the @nd Resende, 2010; Roque et al., 2011). The ini-

strengths of its dominators in both the external set tial population with sizeNy, is criated by generating

and the population. Strenght represents the numberthe random keys. Given population of chromosomes

of individuals in the population and in the external set (random keys) a decoding procedure is applied such

covered by individual considered. The fitness of each that at each chromosome corresponds a feasible UC

individual is given by the sum of the strenghts of its solution, that is an output generation level matrix and

dominators in the external set and in the population. the corresponding unit status matrix both satisfying
If individuals have equal fitness value, the density the UC constraints. The fitness function used to eval-

estimation technique, as given in SPEA2 (Zitzler uate the solutions includes both the total operational
et al., 2001), is used. This technique results from an €osts and CO2 emissions. We adopt a fitness proce-
adaptation of th&—th nearest neighbor method. The dure similar to that of NSGA-II, given in (Deb et al.,
basic idea of the truncation procedure is to remove 2002). Therefore, the population is sorted based on
the individual which has the minimum distance to the nondomination. Each solution is assigned a fit-
another individual. If there are several individuals Ness (rank) equal to its nondomination level. The bi-
with minimum distance, the individuals with second 2ased selection and biased crossover operators and the
smallest distances to another individual are removed introduction of mutants are used to create a offspring

and so on. The SPEA-Il approach proposed by Population, also of siz&ly. On the one hand, the bi-
(Zitzler et al., 2001) implementates the following @sed selection ensures that one of the parents used for

steps: mating comes from a subset containing the best so-
lutions of the current population. On the other hand,
the biased crossover chooses with higher probability
an allele from the best parent. Mutants are generated
as the initially population and are introduced directely
e Compute fitness values of individuals in the pop- on the next generation.

e Generate the initial population, decoding the indi-
viduals and evaluate the solutions and create the
empty external pareto-optimal;

ulation and in the external set; We start by combining the current population with
e Copy nondominated individuals of the population the néwly obtained one. The combined population
to the external set: size is the double (&,) of the current population and

) it is sorted by the nondomination criterium (Fast Non-
e Foreach generation: Update the external set keep-qominated Sorting Approach).

ing only the nondominated solutions. When the

: . N The nondomination criterium leads to several lev-
number of nondominated solutions is higher than

o . o els of nondominated fronts. For the first level, the
the specified size for the external set, it is reduced ,ondominated individuals of the combined popula-
by applying the truncation thecnique. If the num- - iqn are chosen. Second level, corresponds to a front
ber of nondominated individuals is less than the ,niaining individuals only dominated by the individ-
external set size, the external set is filled up by 55 of the first level front. All other levels are defined
dominated individuals; in a similar way, that is, in each level a front contain-

e The mating pool is filled using binary tournament ing individuals dominated by all previous hondomi-
selection with replacement on the updated exter- nated fronts is obtained. In order to obtain the new
nal set; population we go through the generated fronts, in as-



cending order of level, and include all its individuals 4 COMPUTATIONAL
until we reachNp. At the last nondominated front EXPERIMENTS AND RESULTS
level to be included if only some of the individuals
are to be chosen, the descending order of crowding
distance is used as a selection criterium.

The multiobjective BRKGA flowchart is illus-
trated in Figure 1.

4.1 GA parameters
4.1.1 BRKGA Configuration

The BRKGA final parameter values were decided

after some empirical experiments have been per-
< formed. The experimented values were chosen using

the guidelines provided by (Gongalves and Resende,

& 2010; Deb et al., 2002), as well as, the computational
B experiments in (Roque et al., 2011). The current pop-
< ulation of solutions is evolved by the GA operators
onto a new population as follows:
Elit set is formed by 20% of best solutions; 40%
d of the new population is obtained by introducing mu-
itornon-eite | (" pop y g
< L tants; Finally, the remaining 60% of the population
is obtained by biased reproduction, which is accom-
<+ New plished by having both a biased selection and a biased
populaton T Em ] crossover. Moreover, we set the number of genera-
popuALen tions to 100 (10), the_population size to 40K) and
T the crossover probability to.D.
e

T 4.1.2 SPEA, NSGA, and NPGA Configurations
Cond omont papsaton” | D | Peintre sopinas
Figure 1: Flowchart of BRKGA multiojective algorithm. The a_'g.o””.‘ms are implemented according to their
description in the literature. The other operators (re-
combination, mutation, sampling) remain identical.
To ensure the same conditions of application of the
3.6.1 Genetic operators in BRKGA method BRKGA, identical population size of 40 and
number of generations of 100 to BRKGA are used for
. . . each algorithm.
Biased Selectlpn: Pair of parents are .sele_cteq _from The NPGA, NSGA II, and SPEA2 parameters val-
parent population. The parent pqp_ulauon IS d|v.|de.d ues are choosen using the guidelines proposed in (Deb
|r_1t0 two sets: The elit s_et, comprising the best mc_h- etal., 2002). Some complementary computational ex-
y|du_als_, gnd the non-elit set, comprising the rémain- ,eriments are performed, where other appropriate val-
Ing |nd|y|duals. One pafef?t is selected from the e!|t ues of the GA parameters are arrived at based on the
set, while the other parent s chosen from the remain- gaiigtactory performance of trials conducted for this
ing, non-elite, individuals. application with different range of values. For NPGA,
Biased Crossover: Given two parents and a spec-the niche radiusshare= 0.1 was choosed as in (Horn
ified probability of crossover, the crossover inter- et al., 1994) and several computational experiments
changes the genes or alleles to produce a new individ-were made in order to choose the size of the compar-
ual. As already mentioned, genes are chosen by usingson settyom The parameter ranges between 5% and
a biased uniform crossover, that is, for each gene a309%. The results obtained have shown a favorable
biased coin is tossed to decide on which parent the value oftyomto be 10%.
gene is taken from. This way, the offspring inherits  For NPGA and NSGA Il real coding an intermedi-
the genes from the elite parent with higher probabil- ate crossover similar to Matlab crossover operator has
ity (0.7 in our case). been employed. The childs are obtainecCasd; =
Mutants: To ensure diversity and to avoid prema- Pareny + rand.ratio.(Parenp — Parent) and
ture convergence, we introduce a percentage of newChild, = Parenp — rand.ratio.(Parenp — Parent)
individuals, called mutants, in the population. These where rand is random number in the interfgall], the
individuals are randomly generated as was the caseratio crossover was set2land the crossover probabil-
for the initial population. ity to 0.8. The Gaussian mutation is used as in Matlab



Toolbox Opimization withscale= 0.1,shrink= 0.5.
The mutation rates has been setto 0.2.

For SPEA2, we use a population of size 40 and an
external population of size 40, so that overall popu-
lation size becomes 80. The uniform crossover and
simulated binary crossover operators are applied with
probability Q7 and 09, respectively. For real-coded
crossover, the probability distribution used in the sim-
ulated binary crossover operator has been set up dis-
tribution indicenc of 5. Like in (Deb and Agrawal,
1995), we use the polynomial mutation described as
follows: if x; is the decision variable selected for mu-

T
NSGA
SPEA
NPGA
BRKGA.NSGA

>0+ 0l

CO2(t-CO2)

. . . . a
tation with a probabilitypm, the result of the mutation 2r : Bos -z SN
. / . . AN A
is the new value; obtained by a polynomial proba- Lo I
bility distributionP(8) = 3. (Nm+1) (1—3]). X- and 03 B Be 08 e T T

>§U are the lower and upper boundxf respectively,

andr; is arandom number in the intenjal 1]. Hence Figure 2: Pareto-optimal fronts obtained from different al
' gorithms in a single run.

we have . .
X = X + ()&J L) 5 Table 2: Percentage of Nondominated Solutions of set B
i — A i |)- 1 covered by those in set A.
with setA/setB | BRKGA | NSGAIl | NPGA | SPEA2

BRKGA 67.3 99.5 70.3

1 . NSGA Il 13.9 76 8.8

. 1 _ .
_ (@)t —1 N It <05 (12) NPGA 0 10.3 0
1-— |2(1 — ri)| m+1 if ri>=0.5. SPEA2 13.9 61.3 98.8

The distribution index)m, was set to 15 and the mu-

tation probability to 01. Table 1 has the population On the other hand, with regard to NPGA, a BRKGA
size, the crossover and mutation probabilities, and thefront dominates on average 99.5% of the correspond-
number of generations used in each approach. ing NPGA front, while the nondominated set pro-
duced by NPGA never dominates the front obtained
by BRKGA. Finally, the nhondominated set achivied
_ BRKGA | NSGAIl | NPGA | SPEA2 by BRKGA dominates about 70.3% of the nondomi-
Population size 20 20 20 20 nated solutions found by SPEA2 while the front ob-

Table 1: GA Parameters.

Crossover probability 0.7 0.8 0.8 0.9 . . .
Mutation probabilty 02 02 o1 tained by SPEA2 dominates only in less than 13.9%.
N. Generations 100 100 100 100
4.3 Case 2results
4.2 Case 1 results In this section, we provide the results obtained for

case study 2. For problem details see Appendix B

Here, we present the results obtained for case studyand the reference thereir_1. The BRKGA average yal—
1. The problem data is provided in Appendix A. The U€S of the coverage metric measure over 10 optimiza-

BRKGA has the most widely spread front, as it can be tion runs are showed in Table 3. We can oberve that

seen in Figure 2, and the average values of the cover-the nondominated solutions of SPEA2 and BRKGA

age metric measure (Zitzler and Thiele, 1999), over covers relatively higher percentages of the other solu-
10 optimization runs, as shown in Table 2. We can UONS:

oberve that the nondominated solutions of BRKGA Table 3: Percentage of Nondominated Solutions coverages.

covers relatively higher percentages of the other solu- SetA/setB | BRKGA | NSGAIl | NPGA | SPEA2
tions. BRKGA 88.5 75 30.3
On the one hand, as can be seen in Table 2, on NSGAII 11 49 4
average the nondominated set achieved by BRKGA NPGA 223 40 1038
dominates about 67.3 % of the nondominated solu- SPEA2 84.8 98.5 925
tions found by NSGA II. However, the front obtained
by NSGA Il only dominates in less than 13.9 % of In Table 3, we can observe that, on average,

the nondominated solutions produced by BRKGA. the nondominated set achieved by BRKGA domi-



decision makers the capability of making better deci-
sions. Given that the approachs have similar decode
procedures, the improvement in performance is most
likely due to elitism. Elitism also guarantees that no
good solutions are lost.

N
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Table 4: Generation constraints in case study 1. Table 10: Load demand (MW) in case study 2.
Unit | Ymay Y miry T,‘;"m] Tf’“'fm Ramp rate Hour Loa(d de;nand Hour Loa(d de)mand
(MW) MW) h h MW /h MW, MW,
T 455 (150 (3) (e) ( 251/) ) 1 1459 13 1154
2 455 150 8 8 250 2 1372 14 1138
3 130 20 5 5 80 3 1299 15 1124
4 130 20 5 5 80 4 1280 16 1095
5 162 25 6 6 100 5 1271 17 1066
6 80 20 3 3 80 6 1314 18 1037
7 1372 19 993
: ® = 3 3 » 8 1314 20 978
9 55 10 1 1 55 9 1271 21 963
10 1242 22 1022
10 % 10 1 L 5 11 1197 23 1081
12 1182 24 1459

Table 5: Data fuel costs evaluation in case study 1.

Unit A B; C; [ startup cost
($/MW2h) | (s/Mwh | ($/h)

T 0.000528 | 17.809 | 1100 2950
2 0000341 | 18.986 | 1067 5500
3 0.0022 18.26 770 605
4 0.002321 1815 748 616
5 0.004378 21.67 495 990
6 0007832 | 24.486 | 407 187
7 0000869 | 30514 | 528 286
8 0004543 | 28512 | 726 33
9 0002442 | 20997 | 7315 33
10 | 0001903 | 30569 | 737 33




