
S2Dedup: SGX-enabled Secure Deduplication
Mariana Miranda, Tânia Esteves, Bernardo Portela∗, João Paulo

INESC TEC & U. Minho, ∗NOVA LINCS & U. Porto

ABSTRACT
Secure deduplication allows removing duplicate content at
third-party storage services while preserving the privacy of
users’ data. However, current solutions are built with strict
designs that cannot be adapted to storage service and applica-
tions with different security and performance requirements.
We present S2Dedup, a trusted hardware-based privacy-

preserving deduplication system designed to support mul-
tiple security schemes that enable different levels of perfor-
mance, security guarantees and space savings. An in-depth
evaluation shows these trade-offs for the distinct Intel SGX-
based secure schemes supported by our prototype.

Moreover, we propose a novel Epoch and Exact Frequency
scheme that prevents frequency analysis leakage attacks
present in current deterministic approaches for secure dedu-
plication while maintaining similar performance and space
savings to state-of-the-art approaches.

CCS CONCEPTS
• Security andprivacy→ File system security;Hardware-
based security protocols; • Information systems→Dedu-
plication; Cloud based storage.

KEYWORDS
Deduplication, Security, Trusted Hardware
ACM Reference Format:
Mariana Miranda, Tânia Esteves, Bernardo Portela∗, João Paulo.
2021. S2Dedup: SGX-enabled Secure Deduplication. In The 14th

Work funded by National Funds through the FCT—Fundação para a Ciência
e a Tecnologia (Portuguese Foundation for Science and Technology) through
project PAStor «UTA-EXPL/CA/0075/2019» (M. Miranda), project HADES
«PTDC/CCI-INF/31698/2017» (B. Portela), PhD grant «DFA/BD/5881/2020»
(T. Esteves), and NOVA LINCS «UIDB/04516/2020» (B. Portela). We would
like to thank our shepherd Jeanna Matthews and the anonymous reviewers
for their insightful comments that helped us improve this paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SYSTOR ’21, June 14–16, 2021, Haifa, Israel
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8398-1/21/06. . . $15.00
https://doi.org/10.1145/3456727.3463773

ACM International Systems and Storage Conference (SYSTOR ’21),
June 14–16, 2021, Haifa, Israel. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3456727.3463773

1 INTRODUCTION
A recurrent behaviour noticeable in storage services is that
identical data is being stored repeatedly while consuming un-
necessary space. Deduplication strives at eliminating these
redundant copies to save storage space and costs. Indeed,
cloud storage providers, like Dropbox and Google Drive,
employ deduplication to eliminate redundant data stored by
their users [11, 27, 38], while studies show that deduplication
can reduce stored data by up to 83% and 68% in backup and
primary storage systems, respectively [34]. However, this
approach is only feasible when security is not a central con-
cern, as revealing cross-user duplicates to untrusted servers
has been shown to expose privacy vulnerabilities [25, 45].

To avoid privacy breaches, standard practices suggest that
users should encrypt their data before outsourcing it to third-
party storage services. However, this leads to the scenario
where identical data, owned by different users, results in ci-
phertexts with distinct content, thus making it impossible to
apply deduplication. To enable cross-user deduplication over
encrypted data, the conventional approach is to employ con-
vergent encryption (CE) [21]. Namely, data is encrypted at
the users’ premises with a deterministic encryption scheme
in which the secret key is derived from the data content
itself. This means that identical content encrypted by differ-
ent users will generate matching ciphertexts, thus enabling
deduplication. However, by revealing matching ciphertexts,
these schemes provide considerably less security guarantees
than standard encryption schemes, which potentially hinders
their usability in scenarios handling sensitive data [32].
Recently, there has been an emergence of hardware-

assisted security technologies (e.g., Intel SGX [18], ARM
TrustZone [12]). The trusted execution environments pro-
vided by these can be leveraged to aid the process of secure
deduplication, as it allows for sensitive data to be handled
in its original form (i.e., plaintext) at an untrusted storage
server. However, the applicability and advantages of these
technologies are still vaguely explored for deduplication [20].

This paper presents S2Dedup, a secure deduplication sys-
tem that leverages Intel SGX to enable cross-user privacy-
preserving deduplication at third-party storage services. Un-
like previous work [16, 20, 27, 32], S2Dedup aims at: i) en-
abling multiple secure schemes that can be adapted to the

https://doi.org/10.1145/3456727.3463773
https://doi.org/10.1145/3456727.3463773
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3456727.3463773&domain=pdf&date_stamp=2021-06-14

SYSTOR ’21, June 14–16, 2021, Haifa, Israel M. Miranda et al.

performance and security requirements of different appli-
cations; ii) designing a deduplication scheme with stronger
security guarantees than deterministic ones; and iii) avoid-
ing the network performance overhead imposed by auxiliary
trusted remote servers for performing secure deduplication.
Namely, the paper provides the following contributions:
a) Design and Prototype. The design and implementation

of a secure deduplication system that takes advantage of the
security functionalities provided by trusted hardware (Intel
SGX), and resorts to state-of-the-art frameworks to develop
efficient user space storage solutions, namely SPDK [8, 9].
b) Secure Deduplication Schemes. A modular and extensi-

ble design that allows straightforward integration of state-
of-the-art and novel secure deduplication schemes within
S2Dedup. This enables tailored deployments for applications
with distinct security and performance requirements.

c) Epoch and Exact Frequency Scheme. A novel secure
scheme that combines the concept of deduplication epochs
with the idea of limiting the number of duplicates per unique
chunk. By masking the frequency of duplicate copies, this
solution leaks less sensitive information to an adversary.
d) Experimental Evaluation. An extensive evaluation of

S2Dedup open-source1 prototype, including more than 300
hours of experiments and resorting to synthetic and real
trace workloads, in which S2Dedup’s Epoch and Exact Fre-
quency scheme is compared against state-of-the-art secure
deduplication solutions [20, 32]. Results show that S2Dedup
enables more robust security techniques while maintaining
similar deduplication effectiveness and performance.

2 BACKGROUND AND RELATEDWORK
This section overviews Intel SGX and discusses relevant
related work for secure deduplication.

2.1 Intel Software Guard Extensions (SGX)
Intel SGX [5, 18], provides a set of instructions in recent
Intel’s processors that ensure integrity and confidentiality.
This is achieved by assuming that any layer in the computer’s
software stack (firmware, hypervisor, OS) is potentially ma-
licious, thus SGX only trusts the CPU’s microcode and a
few privileged containers, known as enclaves. Enclaves are
private regions of memory whose contents are protected and
unable to be accessed by any process outside of it, including
those running at higher privilege levels. Also, computational
outputs can be remotely attested with respect to the code of
the enclave that produced them. This enables external clients
to establish secure channels between specific enclaves, en-
suring trustworthy executions in untrusted environments.

In this paper, Intel SGX was picked over other alternatives
(e.g., ARM TrustZone [12]) due to its reliable computing
1https://github.com/mmm97/S2Dedup

and security features, as well as, its wide usage across both
academia [19, 23, 26, 29, 40, 49] and industry [1, 2].

2.2 Secure Deduplication
Deduplication is a widely used technique that enables the
identification and removal of duplicate data across files or
blocks stored by distinct users and at different times [35].
Briefly, data being written by users is partitioned into

chunks (e.g., whole files, blocks) at either the client or stor-
age server premises. Then, these chunks are matched at
the storage server in order to find duplicates. This is usu-
ally achieved by hashing2 the content of chunks and using
a metadata index for efficiently finding previously stored
chunks with the same content. If the content of a chunk
being written was already stored, then additional metadata
structures are used to create logical pointers to this data,
thus avoiding the storage of duplicates.
The traditional approach to enable cross-user deduplica-

tion over encrypted data is to apply, at the client premises,
a deterministic Convergent Encryption (CE) scheme that de-
rives the key used to encrypt the data from the data con-
tent itself, thus ensuring that identical plaintexts will re-
sult in matching ciphertexts. TheMessage-Locked Encryption
(MLE) [16] scheme follows this premise and provides the
foundation for numerous other approaches [15, 17, 21]. As
MLE is susceptible to brute-force attacks, DupLESS (Du-
plicateless Encryption for Simple Storage) [27] proposed a
scheme that converts a predictable message into an unpre-
dictable one with the aid of an external key server (KS).
The previous schemes enable attackers at the untrusted

server to identify if a given block is a duplicate or not, thus be-
ing susceptible to information leakage (e.g., revealing poten-
tial associations between users and the data these share) [31].
This leakage can be reduced by performing deduplica-

tion in epochs, which ensures that an adversary can only
infer duplicates within the same epoch [20]. Deduplication
with epochs requires shared state that must be synchronized
across all clients. CE is not stateful, and thus must be adapted
to depend on an external key server, a secure proxy or em-
ploy trusted hardware on the storage server to control the
change of an epoch. H. Dang and E. C. Chien [20] achieved
secure deduplication between epochs by relying on the use
of trusted hardware and reliable network proxies. However,
the proxies add extra computation and network operations
in the critical I/O path, thus decreasing storage performance.
While also requiring a remote trusted proxy, TED [32]

avoids leaking the frequency of duplicates by limiting the

2When a strong cryptographic hash function is being used (e.g., SHA-256),
duplicate content can be identified by comparing the hash sums of two
chunks, as the probability of hash collisions has been shown to be negligible
even for Petabyte-scale storage systems [35, 45].

https://github.com/mmm97/S2Dedup

S2Dedup: SGX-enabled Secure Deduplication SYSTOR ’21, June 14–16, 2021, Haifa, Israel

number of copies per unique chunk. This solution masks
the real count for chunks with a large amount of duplicates,
but reveals the number of copies for unique chunks below a
certain threshold of duplicates. Also, the proposed estimated
frequency counter can lead to the speculation that a block
has a higher number of duplicates than in reality, which can
lead to lower deduplication gains.

To the best of our knowledge, S2Dedup is the first modular
solution supporting multiple secure deduplication schemes,
each enabling different trade-offs in terms of security, perfor-
mance and space savings. By leveraging trusted hardware,
S2Dedup schemes do not require a remote trusted proxy, thus
avoiding costly network calls at the critical storage path. Also,
our novel Epoch and Exact Frequency scheme combines the
idea of limiting the number of duplicates per unique chunk
with deduplication epochs, thus providing more robust secu-
rity guarantees while maintaining comparable performance
and deduplication effectiveness to state-of-the-art solutions.

3 S2DEDUP OVERVIEW
S2Dedup leverages trusted hardware technologies to enable
cross-user privacy-preserving deduplication at third-party
storage providers. To be adaptable to the performance, space
savings and security requirements real-world use cases entail,
S2Dedup supports multiple secure deduplication schemes.

3.1 Threat Model
Our design considers two main trusted environments:
the client applications; and the trusted hardware running
security-sensitive operations. S2Dedup protects clients’ data
against two main adversaries: a network adversary that
eavesdrops the communication between client and server;
and a strictly stronger adversary that gains access to the
server. The first can observe the messages exchanged be-
tween clients and the trusted server. The latter can observe
access patterns of the storage service and the management
of deduplication data and metadata. This is particularly rele-
vant, as these accesses allow for duplicate identification.

Furthermore, our adversary is parametrised by the dura-
tion of server-side corruption. This is a common approach in
cryptography to consider realistic threats, in which a specific
resource becomes maliciously controlled for a finite amount
of time [50]. In turn, our secure deduplication system pro-
vides varying levels of guarantees, depending on the period
during which the server is assumed to be vulnerable.

3.2 Components and Flow of Requests
S2Dedup architecture (Figure 1) assumes a server that per-
sists data from several clients, and is equipped with trusted
hardware technology. The trusted hardware module plays
the role of a trust anchor within an untrusted environment. It

Untrusted

index

freeblocks

metadata

laddr paddr

(free paddr pool)

Trusted

Untrusted

Client

storage device

data encryption/
decryptionapplication remote storage

protocol

network

remote storage
protocol

storage system
deduplication

engine

Untrusted
Server

1 2

33

4

7

8

10

6
Trusted

 hash
 computation

SGX

data
re-encryption

SGX

SGX

SGX 5 9
hash paddr nRef

Figure 1: S2Dedup deduplication architecture.

manages the cryptographic material, ensuring that user data
can be processed efficiently while providing confidentiality
and integrity guarantees. S2Dedup assumes a brief bootstrap
stage, where a secure channel is initialized between the client
and the remote enclave. This will entail a message exchange
protocol that, upon completion, establishes a symmetric key
between the client and the remote S2Dedup enclave. Instru-
menting enclave code in this way is a common requirement
for these systems and has been shown to be achievable with
minimal performance overhead [14, 40].

S2Dedup adopts general design principles similar to other
academic and production systems [35, 45]. Namely, it follows
an inline approach to ensure that duplicates are eliminated
before being stored persistently. Also, duplicates are found
at the fixed-size block granularity (e.g., 4KiB chunks), to
achieve a good trade-off between space efficiency and com-
putational complexity. Finally, hash calculation and dedupli-
cation are performed exclusively at the server-side. Although
this approach does not allow reaping the network bandwidth
space savings of client-side deduplication, it makes it eas-
ier to support standard implementations and protocols at
client premises while enabling stronger secure deduplication
schemes (e.g., cross-user deduplication with epochs). Indeed,
any alteration in client-side behaviour towards deduplication
reveals information regarding duplicate identification [13].
In more detail, the proposed solution works as follows.
a) Client: When a client wishes to write data to a remote

storage server, it begins the process by encrypting it with its
own key using a standard probabilistic encryption scheme
(Figure 1- 1) to protect against attackers eavesdropping the
network channels and targeting the untrusted server. Then,

SYSTOR ’21, June 14–16, 2021, Haifa, Israel M. Miranda et al.

the encrypted data is sent over the network through a stan-
dard remote storage protocol (e.g., iSCSI) (Figure 1- 2 3).
Note that each client request may contain several fixed-size
blocks, which are only partitioned at the server side. Once
the request reaches the remote server, the client’s encrypted
data is forwarded to the storage system (Figure 1- 4).
b) Deduplication Engine: The storage system integrates

a deduplication engine that partitions and analyzes the re-
quest’s data, block by block, in order to detect duplicates.
Thus, the deduplication engine must calculate a crypto-
graphic hash digest for each block (Figure 1- 5) so that it
can compare it with the hashes of previously stored blocks.
However, at this point of the execution, the content of each
block is protected via a standard encryption scheme, which
does not allow finding any duplicates. Indeed, the hash cal-
culation must be done over the block contents, which should
not be observed by the server. Instead, we rely on the trusted
enclave to perform the hash computation step.
c) Index: Once a block’s hash is calculated, the dedupli-

cation index is accessed (Figure 1- 6) to verify if the block
being written is or not duplicated. Note that only the hash is
disclosed to the index at the untrusted server. The contents
of the block are never revealed outside of the trusted enclave.

In our design it is important to understand the difference
between logical (laddrs) and physical (paddrs) addresses. As
clients use the remote storage service as a standard block-
device (e.g., iSCSI device), their requests must specify the
block-device offset (laddr) where new content (blocks) is
going to be read or written. Then, the deduplication engine
transparently eliminates duplicate blocks, storing only a sin-
gle copy at a given paddr of the storage device. Redundancy
is eliminated by pointing multiple laddrs to the same paddr.

A duplicate block was previously stored at the device if an
identical content hash is found at the index. Otherwise, if a
match was not found, a physical address (paddr) is requested
from the freeblocks component (Figure 1- 7) and the index
is updated with the corresponding hash sum and paddr. The
freeblocks component is therefore responsible for tracking
the paddrs of unused blocks at the server’s storage medium.

d) Metadata: After collecting the paddr returned from the
index (a duplicate was found) or from the freeblocks com-
ponent (unique content is being written), the deduplication
engine contacts the metadata component (Figure 1- 8). This
component is responsible formapping laddrs to paddrs. There
are two possible flows when the metadata component is used:
i) If the laddr is not pointing to any content at the storage
device (i.e., the application is writing a new block), the paddr
returned by the index is inserted at the corresponding map-
ping; ii) if the laddr is pointing to content at the storage
device (i.e., the application is rewriting a previously stored
block), the old paddr is updated with the new one return by

the index. Note that for the case of delete operations, the
corresponding laddr is updated to not point to any paddr.
e) Unused Blocks: When the metadata component com-

pletes its operation, and for the case when existing data was
rewritten or deleted, the deduplication engine sends the old
paddr to the index module to verify if that paddr is no longer
being used (Figure 1- 6). Thus, the latter module also keeps
track of the number of references (nRef) pointing to each
index entry (i.e., number of laddr sharing a given paddr).
When a new duplicate is matched at the index, the number
of references for the corresponding entry is increased by one.
Contrarily, every time a paddr is deleted or rewritten, the
number of references is decreased by one. When the number
of references reaches zero, the paddr is no longer being used
and it is collected by the freeblocks component (Figure 1- 7).
f) Unique Blocks Storage: Once completed the dedupli-

cation process, if a block is unique then its content is re-
encrypted using an universal encryption key, that is only
accessible by the enclave (Figure 1- 9), and afterwards for-
warded to the correct paddr at storage device (Figure 1- 10).

Re-encryption is needed to enable cross-client deduplica-
tion without requiring clients to share their encryption keys
or derive them from the content being written, as in deter-
ministic MLE [16]. Therefore, duplicate blocks shared among
clients are protected using a single universal encryption key
for data storage. Since we are dealing with private data, we
must again resort to the trusted enclave for re-encryption.
Our trusted component will decrypt client data, using the
key exchanged during the bootstrap phase, and subsequently
encrypt it with the universal encryption key.

The hash calculation and re-encryption steps are done in
two separate enclave invocations. Alternatively, one could
do both in a single enclave call, while always outputting to
the untrusted environment the corresponding hash signature
and encrypted block. Since deduplication is targeted towards
storage workloads with a high percentage of duplicates, most
write requests will not be persisted into the server’s storage
medium. Therefore, doing the re-encryption step for dupli-
cate blocks, which will not be persisted, is unnecessarily
increasing the computation done at the enclave as well as
the data (encrypted blocks) being transferred from it to the
untrusted environment. Similarly, due to performance rea-
sons, our design ensures that enclaves are processing individ-
ual blocks instead of batches of blocks. This is important for
trusted hardware solutions, such as Intel SGX, as several stud-
ies show that transferring large amounts of data to enclaves
(i.e., in the order of few MiB) exhibits worst performance
than doing so with multiple smaller requests [24, 42, 43].

g) Read Operations: When a client retrieves data from the
remote server, themetadatamodule (Figure 1- 8) is consulted
to check where a given block (identified by a laddr) is stored

S2Dedup: SGX-enabled Secure Deduplication SYSTOR ’21, June 14–16, 2021, Haifa, Israel

at the storage device. The corresponding block (paddr) is
read from the storage device (Figure 1- 10), decrypted with
the universal encryption key and encrypted with the corre-
sponding client’s key (Figure 1- 9). Re-encryption is done
at a secure enclave. Afterwards, the encrypted data is sent
to the client (Figure 1- 4 3), where it is then decrypted and
read by the application (Figure 1- 2 1).

4 SECURE DEDUPLICATION
Our threat model intentionally considers an adversary more
powerful than what might be necessary, which allows the
provided S2Dedup secure schemes to respond to more pow-
erful threats while still enabling the choice of deduplication
scheme to be derived from real-world requirements.

4.1 Plain Security
Themodel presented in Section 3 constitutes the first security
scheme offered by S2Dedup. Clients encrypt their data at
trusted premises, with a standard encryption scheme and a
private key, before sending it through the network. Once the
encrypted data reaches the storage server, it is partitioned
into blocks and processed with the aid of a trusted enclave.

The enclave obtains the client’s key via the bootstrapping
phase, which allows it to securely decrypt protected data and
process it in plaintext. The block’s hash digest can then be
calculated, inside the enclave, using a specific cryptographic
hash key, which is only accessible from within the enclave.
The hash is then used by the deduplication engine, which
operates outside of the enclave, to verify at the index if this is
a duplicate block. In case that it is unique, data is encrypted
again within the enclave, with the enclave’s universal encryp-
tion key using a probabilistic encryption scheme.

Observe that deterministic encryption based systems (e.g.,
CE) have two fundamental flaws when an adversary is given
(even snapshot) access to the encrypted storage. The adver-
sary is able to trivially see how many duplicate blocks are
at the index, by simply checking for equality of ciphertexts;
and it is able to test if any given block is in the storage, by
encrypting it and checking for equality with the retrieved
data. Due to the role played by the trusted enclave, none of
these vulnerabilities exist in our system3.

The security of this scheme collapses to the level of CE if
we consider the adversary to be the server itself, since it can
play the role of a client to test for duplicates, querying the
system with values and checking if deduplication occurred.
However, our scheme does not require establishing secure
network channels (e.g., TLS channels) to send encrypted
blocks, as these are encrypted with a probabilistic scheme.

3Our system also reveals duplicates if deduplication metadata is given to the
attacker, but due to its relative size one can devise effective countermeasures
that deter these types of threats.

Contrarily, CE requires secure channels to avoid disclosing
duplicate blocks for adversaries eavesdropping the network.

4.2 Epoch Based
Our first alternative, supported by previous work [20], is an
epoch based scheme. Its main idea is to establish a concrete
temporal boundary (epoch) for deduplication, meaning that
duplicate blocks stored in different epochs are considered to
be different blocks for the deduplication engine.
The epochs are controlled by the enclave managing the

client data and are defined by their specific hash key. The
enclave is designed to automatically generate a new random
hash key, depending on the criteria for epoch duration (e.g., a
pre-defined number of operations or time period). The main
insight of this approach is that keyed hash functions over
the same data with different keys (i.e., in different epochs)
will produce different digests, disabling deduplication.

As shown in Section 6.4, if storage workloads exhibit
strong temporal locality, most duplicates will be written
at the same epoch, thus not affecting significantly the achiev-
able deduplication gain [35]. Nevertheless, the duration of
an epoch can influence the achievable deduplication space
savings and level of security. A smaller epoch offers higher
security but leads to fewer duplicates being detected, while
a larger epoch allows finding more duplicates at the cost of
leaking more information about the number of duplicates of
a given workload. Thus, our design leaves the duration of
epochs as a configurable parameter that users can adjust.
We stress that the hash key is not used in the data re-

encryption process. Indeed, adding epochs to the deduplica-
tion stage is seamless to the re-encryption process, as the
enclave is simply encrypting with the universal encryption
key, regardless of the epoch in which the blocks are stored.

This scheme achieves better security guarantees than the
previous one. An adversary that gains access to the server
is no longer capable of indefinitely testing for duplicates, as
there is a limit of storage operations until the epoch changes.

4.3 Estimated Frequency Based
TED’s solution [32] defines an upper bound for the number
of duplicate copies that each stored chunk may have. This
is achieved with the Count-Min Sketch algorithm, which
uses a probabilistic data structure (matrix) to deduce the
approximate number of copies (counters) per stored block.
This structure is kept at a remote trusted server, which is
consulted when a new block is being written. At the trusted
server, it must first compute an hash sum over the block’s
plaintext in order to find howmany copies of that block were
previously stored (𝑛). Then, it performs an integer division
by threshold 𝑡 and concatenates the result with the block’s
plaintext content, to calculate the hash signature used for

SYSTOR ’21, June 14–16, 2021, Haifa, Israel M. Miranda et al.

the deduplication engine. This ensures that every set of 𝑡
instances of writing a duplicate block produce different hash
outputs, thus limiting the deduplication accordingly.
By keeping approximate counters, TED is able to reduce

the memory footprint of the metadata structures holding
these. However, this approach may overestimate the number
of duplicates actually found for a given block. Thus, new hash
sums may be generated before reaching exactly the expected
threshold and miss some deduplication opportunities.

S2Dedup’s Estimated Frequency Based scheme follows the
same design as TED but uses trusted enclaves, instead of
a remote trusted server, to do sensitive computations. This
decision avoids extra network latency in the critical I/O path
of write requests by leveraging the locally deployed enclave.
Also, it enables a more fair comparison of this scheme with
the remaining S2Dedup’s secure deduplication approaches.
This scheme prevents access pattern attacks, which are

prevalent on solutions that reveal duplicates [28]. These at-
tacks succeed by establishing a relation between storage
frequency (in our case) and statistical data from external
sources, which is broken by the upper bound set by the fre-
quency count metric. Thus, this scheme provides stronger
security guarantees over the Plain Security one. However,
observe that it does not prevent a malicious adversary from
knowing exactly the number of references for chunks with
low duplication counts, even if the corresponding duplicates
were written across a large time period, which is addressed
with the Epoch Based scheme. As such, the guarantees pro-
vided by these two schemes can be characterized as orthogo-
nal – some threats are prevented by one, but not the other.

4.4 Epoch and Exact Frequency Based
We introduce a new solution that combines the security
advantages of the two previous schemes: the epoch-based
approach establishes a temporal boundary for duplicate de-
tection, while the frequency-based approach allows masking
the number of duplicates found within an epoch.

An upper bound for the amount of duplicates per block is
ensured in the sameway as for the Estimated Frequency Based
scheme. The only difference is that this new scheme keeps
an in-memory hash table at the secure enclave that maps
blocks’ hash sums to their exact number of copies (counters).
By keeping the exact number of copies per block, we avoid
the deduplication loss effects discussed in Section 4.3, which
are a consequence of using estimated counters.

The secure enclave has limitedmemory space, which is not
a problem for the estimated algorithm because it occupies a
fixed memory space. However, the exact hash table used for
this scheme increases in size with the number of new entries
being added. Interestingly, the enclave’s memory limitation
can be useful for our solution as it can be used as an indicator

to change deduplication epochs. Concretely, a new epoch
can be introduced when the hash table structure reaches
the maximum available memory at the enclave. When this
occurs, we proceed to the next epoch, clearing the hash table
information and generating a new hash key.

To sum up, by combining both techniques, this scheme is
able to reach more robust security guarantees than the pre-
vious ones, while providing identical performance and space
savings as the Estimated Frequency Based scheme (Section 6).

4.5 Security Analysis
Since deduplication is performed on the server-side, client
data is sent encrypted using standard cryptographic tech-
niques. This means that all our schemes provide semantic
security guarantees against a network adversary.

When considering a server-side adversary, our Epoch and
Exact Frequency Based scheme combines the strengths of
the Epoch Based and Estimated Frequency Based schemes to
provide two types of security guarantees: inter-epoch se-
curity and intra-epoch security. The first refers to blocks
stored (by genuine clients or by the adversary) between dif-
ferent epochs. In this case, we have exactly semantic security:
storage is done using probabilistic encryption of the origi-
nal data, and metadata computation is done using different
cryptographic hash keys. The second refers to blocks stored
within the same epoch. In this case, we provide a security
level superior than classical CE solutions. This is achieved by
relying on a threshold 𝑡 , which parametrizes the security of
our system as follows. Hash computation considers a counter
parameter that, combined with the block contents, fixes the
input of the first 𝑡 duplicate blocks, thus behaving exactly
like a convergent encryption scheme. When the threshold is
reached, the counter changes the hash input to a new value
for the next 𝑡 copies of the same block, thus behaving as dedu-
plication of a different block, and the process repeats. This
means that inference attacks, prevalent threats in systems
that reveal equality via deduplication, must be performed
within the period defined by epochs, and must necessarily
require less duplicates than the fixed frequency value.

S2Dedup can be extended with alternative secure schemes
resorting to techniques such as Oblivious RAM (ORAM) [41]
to further prevent attackers from disclosing duplicate blocks.
In this paper, we prioritise feasibility and avoid techniques,
such as ORAM, that would take a considerable toll in the
performance of our storage solution [39, 48].

5 IMPLEMENTATION
S2Dedup prototype is implemented in C and leverages both
Intel SGX and the user space Storage Performance Develop-
ment Kit (SPDK) [8, 9]. The latter enables the implementation

S2Dedup: SGX-enabled Secure Deduplication SYSTOR ’21, June 14–16, 2021, Haifa, Israel

of stackable virtual block devices, with user-defined logic,
that follow a standard block-device interface.

5.1 Deduplication engine
Our secure deduplication engine is implemented as an SPDK
virtual block device. It intercepts incoming block I/O requests,
performs secure deduplication, with a fixed block-size spec-
ified by users, and only then forwards the requests to the
NVMe block device or another virtual processing layer, de-
pending on the targeted SPDK deployment. These requests
will eventually reach the NVMe driver and storage device
unless intermediate processing eliminates this need (e.g.,
duplicate writes). Moreover, SPDK also provides a set of
storage protocols that can be stacked over the block device
abstraction layer. Of these, our work uses an iSCSI (Internet
Small Computer System Interface) target implementation that
enables clients to access the storage server remotely.
Data (re-)encryption operations at the engine are done

with the NIST standardised AES-XTS block cipher mode,
since it is a length-preserving scheme (i.e. the length of the
ciphertext is the same as of the plaintext), and does not apply
chaining, thus supporting random access to encrypted data
[22]. Besides using a key to encrypt the data, this cipher
mode also relies on a tweak parameter to ensure ciphertexts’
randomness for identical plaintext content.

Two alternatives were considered for the deduplication en-
gine implementation, one that stores the index and metadata
components in memory, by using GLib [6], and another that
does it persistently, by resorting to the LevelDB key-value
store [7]. The latter uses a partition of the server’s storage de-
vice to persist LevelDB information. This decision was taken
to observe experimentally (Section 6) the I/O performance
impact of S2Dedup schemes in implementations that are not
limited by the technology that makes them crash-tolerant.

In both implementations, the freeblocks component is im-
plemented persistently by reserving a region of the server’s
storage device to store unused physical addresses. As each
address only occupies 8 bytes, several entries can be stored
in a relatively small amount of disk space. Also, we have
implemented an in-memory cache of unused addresses to
speedup operations at the freeblocks component.
The previous implementations consider the necessary

mechanisms to provide support for concurrent requests.

5.2 Secure Schemes
The Plain Security scheme uses HMAC-SHA256 as the keyed
cryptographic hash function. The hash key is generated dur-
ing the system initialization. In the case of a system reset
or failure, S2Dedup is still able to decrypt the data once the
system is restarted as the universal encryption key is securely
stored on disk via the SGX sealing mechanism.

We recall that our current prototype assumes a bootstrap-
ping phase for establishing a secure channel between the
server-side SGX enclave and the client in order to exchange
the client’s encryption key. This functionality is not imple-
mented, as we are interested in analysing the server-side
overhead of our secure deduplication schemes, and it would
just be a matter of instantiating with one of many key ex-
change protocols for SGX [14, 33] with minimal performance
overhead. This process only needs to be done once, namely
when the client connects to the storage server, then multiple
data storage and retrieval requests can be done efficiently
without requiring the exchange of keys.

The Epoch Based scheme’s implementation differs from
the Plain Security one by introducing the concept of epochs,
which entails an hash key that must be updated at every
epoch. An epoch is changed when a certain time has passed,
or when a limit of operations (e.g.,writes) is reached, which is
configurable by users. When this criteria is met, the enclave
simply generates a fresh key, and deletes the previous one.

The Estimated Frequency Based scheme follows the Count-
Min Sketch implementation proposed by TED [32], and uses
a matrix with 4 rows and 220 counters per row.

The Epoch and Exact Frequency Based schememaintains an
in-memory hash table within the SGX enclave to keep track
of the exact numbers of duplicates for each unique block.
Since SGX memory is limited, the maximum number of hash
table entries is restricted (to 𝑎𝑝𝑝𝑟𝑜𝑥 2 million) and, when this
limit is reached, the hash table is cleared and a new epoch
starts (new hash key is generated). Since all relevantmetadata
is recorded at the persistent index component, keeping this
hash table in memory does not compromise S2Dedup’s fault-
tolerance. If the hash table is lost (e.g., server reboots), a new
epoch with an empty hash table will begin while just missing
some potential deduplication opportunities.

5.3 Client Implementation
SPDK features an iSCSI client virtual block device that inte-
grates libiscsi [4] and allows clients to connect and transfer
data to a remote storage system (S2Dedup server) through
the iSCSI protocol. This block device was extended to provide
transparent data encryption with the AES-XTS block cipher
mode. Also, to provide a standard block-device interface for
client applications (e.g., filesystem), an SPDK Linux NBD
driver was stacked on top of the iSCSI client block device.

6 EVALUATION
Our experiments validate two main questions: i) How do
the different secure deduplication schemes affect I/O per-
formance? and ii) What is their impact in terms of resource
consumption (i.e., RAM, CPU, network) and space savings?

SYSTOR ’21, June 14–16, 2021, Haifa, Israel M. Miranda et al.

6.1 Methodology
All conducted experiments included a benchmarking tool
running at the client premises and writing or reading 4KiB
blocks of data. Collected metrics include I/O throughput
and latency, and deduplication space savings. Furthermore,
the dstat [44] tool was used to collect the CPU, RAM, and
network usage at the client and server nodes.
Experiments were repeated 3 times while the mean and

standard deviation were used to summarize observed values.
For each experiment, the page cache was cleaned and the pro-
totype was re-deployed. The storage system was populated
with an identical dataset before running read workloads.

Client and storage servers had the following specifications:
a hexa-core 3.00 GHz CPU (Intel Core i5-9500), 16 GB DDR4
RAM, a 250GB Samsung NVMe SSD 970 EVO Plus, and a
10Gb/s network link. Servers ran Ubuntu Server 18.04.4 LTS
with Linux kernel version 4.15.0-99-generic. We used the
release of SPDK v20.04, and the 2.10.100.2 version of SGX
SDK and Intel SGX Platform Software (PSW).

6.2 Workloads and Setups
Synthetic workloads were provided by DEDISbench (com-
mit #0956b9d [3, 37]), a disk I/O block-based benchmark-
ing tool for deduplication systems that generates synthetic
data mimicking realistic content distributions [36, 46, 47, 51].
DEDISbench allows evaluating systems with basic opera-
tions (reads or writes) and controls what access pattern is
followed (sequential, uniform, or zipfian). The latter access
pattern simulates a scenario where a small group of blocks is
more accessed than the remaining ones. The benchmark al-
lows specifying the number of concurrent processes and the
content distribution to be generated. We chose two distribu-
tions with distinct percentages of redundancy: dist_highperf
with 25% and dist_kernels with 72% of duplicate blocks.

Realistic workloads were provided by three real traces [10,
30, 36]. These traces were collected for three weeks from
three production systems at the Florida International Uni-
versity (FIU) Computer Science department and contem-
plate different I/O workloads that consist of an email server
(mail workload), a file server (homes workload), and a vir-
tual machine running two web-servers (web-vm workload).
Traces were replayed at different speedups to showcase how
S2Dedup behaves under different I/O stressing conditions.
To assess the different secure schemes supported by

S2Dedup, both in-memory and persistent metadata imple-
mentations (using 4 KiB as the deduplication block size) of
the following setups were considered:
a) Baseline. This setup uses the S2Dedup prototype with

both client encryption and server-side security mechanisms
disabled, thus offering deduplication over plaintext data and
without any in-place security measures.

b) Plain. This setup uses the Plain Security scheme.
c) Epoch. This setup uses the Epoch Based scheme. Dedupli-

cation epochs are changed at every 4 million writes (𝑎𝑝𝑝𝑟𝑜𝑥
15 GiB of written data).

d) Estimated. This setup uses the Estimated Frequency
Based secure scheme proposed by TED [32]. The number of
duplicates per unique block is limited to 15.
e) Exact. This setup uses the novel Epoch and Exact Fre-

quency Based secure scheme. The number of duplicates per
unique block is also limited to 15. The number of hashtable
entries at the enclave is limited to 𝑎𝑝𝑝𝑟𝑜𝑥 2 million.

6.3 Synthetic Experiments
Synthetic experiments ran for 20 minutes, or until the ag-
gregated I/O totalled 64 GiB. Each test followed a sequential
(seq), uniform (uni) or zipfian (zip) access pattern and used
4 concurrent processes. The obtained results are shown in
Table 1. Cells are colored according to their relative perfor-
mance overhead to the Baseline setup (darker is worse). Un-
less stated otherwise, the standard deviation for these results
is always under 1.21% of the sample mean. Also, the dedu-
plication space savings achieved by each setup are depicted
in Figure 2a. We only include the deduplication ratio for the
zipfian write experiments with persistent implementations
since the results are similar across all experiments.

Results Analysis. Overall, when security is introduced
(Plain setup), there is a decrease in performance due to the
additional overhead of data encryption/decryption, doing
additional computation at the enclave and transferring in-
formation to and from it. This is more noticeable for the
in-memory implementation write workloads. Namely, for
dist_highperf sequential write experiments, the Plain setup
experienced a reduction of throughput to almost a quarter
(103.89 MiB/s) when compared to the non-secure baseline
setup (421.60 MiB/s). Notably, the overhead is more visible
when the baseline setup offers higher performance. Indeed,
for persistent implementations the differences are not as dras-
tic, in which this secure setup can maintain the throughput
at around 60%, compared to the baseline deployment.

For read experiments, the performance differences are less
severe since these requests only require doing re-encryption
operations at the SGX enclave, while write requests must do
both re-encryption and hash computation at the enclave.
For all experiments, the performance overhead is similar

across the dist_highperf and dist_kernels distributions and,
as expected, the Plain setup achieves identical space savings
to a baseline non-secure deduplication approach (Figure 2a).
For the Epoch setup, I/O throughput, latency, and space

savings results are similar to the Plain configuration for the
distribution dist_highperf, which presents a relatively small
number of duplicates (𝑎𝑝𝑝𝑟𝑜𝑥 17%). The same does not hold

S2Dedup: SGX-enabled Secure Deduplication SYSTOR ’21, June 14–16, 2021, Haifa, Israel

Table 1: Synthetic workloads results.

Overhead Throughput (MiB/s) Latency (ms)
<50%
50-100%
100-200%
>200%

Ba
se
lin

e

Pl
ai
n

Ep
oc
h

Es
tim

at
ed

Ex
ac
t

Ba
se
lin

e

Pl
ai
n

Ep
oc
h

Es
tim

at
ed

Ex
ac
t

seq-read 240.95 162.28 182.17 182.96 182.44 0.259 0.384 0.343 0.341 0.343
uni-read 100.24 78.63 78.69 79.17 78.25 0.622 0.792 0.793 0.788 0.797
zip-read 236.98 179.7 179.19 180.94 178.99 0.264 0.348 0.348 0.344 0.348

seq-write 421.60 103.89 105.91 85.35 80.45 0.141 0.596 0.584 0.725 0.77
uni-write 267.51 100.9 101.56 82.5 78.24 0.228 0.613 0.609 0.751 0.792

in
-m

em
or
y

zip-write 433.11 118.05 118.32 96.44 91.26 0.137 0.524 0.521 0.641 0.679

seq-read 141.05 151.3 152.02 151.5 151.83 0.443 0.412 0.412 0.412 0.412
uni-read 65.24 73.79 74.14 73.95 73.61 0.957 0.845 0.841 0.844 0.848
zip-read 106.33 166.74 167.62 167.29 166.21 0.586 0.373 0.372 0.372 0.376

seq-write 87.92 50.74 50.5 44.79 44.43 0.704 1.225 1.231 1.389 1.401
uni-write 84.03 49.46 49.18 43.7 43.1 0.736 1.258 1.265 1.423 1.444

di
st
_h

ig
hp

er
f

pe
rs
ist
en
t

zip-write 131.26 59.71 59.92 52.65 51.89 0.469 1.039 1.037 1.18 1.197

seq-read 486.59 183.94 183.47 184.21 182.31 0.128 0.34 0.34 0.34 0.344
uni-read 102.67 78.88 78.93 79.27 78.2 0.608 0.792 0.791 0.787 0.797
zip-read 247.69 182.1 181.89 182.65 180.36 0.252 0.342 0.343 0.34 0.344

seq-write 430.22 148.09 134.46 95.13 89.76 0.14 0.416 0.457 0.649 0.689
uni-write 270.21 143.7 127.5 91.47 87.36 0.224 0.428 0.483 0.677 0.708

in
-m

em
or
y

zip-write 445.70 166.16 147.11 108.5 102.87 0.133 0.368 0.419 0.568 0.601

seq-read 245.82 156.02 151.77 151.78 150.62 0.254 0.4 0.412 0.412 0.415
uni-read 76.06 74.44 73.89 74.1 73.56 0.82 0.839 0.844 0.843 0.848
zip-read 137.97 170.6 168.56 168.55 167.98 0.452 0.364 0.368 0.369 0.372

seq-write 111.51 69.91 62.74 49.35 49.47 0.555 0.888 0.99 1.261 1.257
uni-write 105.11 66.27 59.91 48.6 47.89 0.587 0.936 1.037 1.279 1.299

di
st
_k
er
ne
ls

p e
rs
ist
en
t

zip-write 151.07 77.5 70.75 58.38 57.08 0.407 0.8 0.877 1.063 1.088

for distribution dist_kernels, whichwith the change of epochs
suffered a reduction in the deduplication gain, approximately
15%when compared to Plain or Baseline setups. This decrease
is most noticeable when the deduplication ratio is higher, and
the workload does not exhibit temporal locality properties.
Indeed, DEDISbench presents a worst-case scenario since du-
plicate content is written uniformly across time. The drop in
the deduplication ratio meant more write operations to disk,
which led to a slightly lower throughput across write work-
loads. Namely, the highest overhead was observed for zipfian
writes that dropped from 166.16 MiB/s to 147.11 MiB/s.

When compared to the Epoch setup, the deduplication
gain for the Estimated deployment dropped approximately
2% and 15% for the dist_highperf and dist_kernels workloads,
respectively. This decrease is justified by the limits imposed
on the number of duplicates per unique block. Again, this
loss is translated into higher performance overhead for write
requests. Sequential workloads present the highest drop in
performance (20% for dist_highperf and 30% for dist_kernels).

(a) (b)

Figure 2: Deduplication ratio results.

Lastly, the Exact setup exhibits very similar performance
values to the Estimated deployment. The most signifi-
cant difference is visible at sequential write workloads
(dist_highperf) and is less than 6%. On the other hand, for
the dist_kernels workloads, this scheme increases space sav-
ings by almost 2%. As mentioned in Section 2, the Estimated
approach can only ensure an approximate number of du-
plicates per unique block, hence losing some deduplication
opportunities for blocks that have not yet reached the de-
fined threshold (15 duplicates per block). Therefore, our Exact
scheme can achieve similar performance and space savings
even when adding deduplication epochs.

6.4 Realistic Experiments
S2Dedup prototype was evaluated with the -mail, homes and
web-vm - traces described at Section 6.2. Each experiment
lasted for 40 minutes. We devised a simple tracing tool, writ-
ten in C, that replayed the I/O events described at the trace
files with different speedups (S). Although the workloads
perform a mix of read and write operations, at Table 2 we
differentiate the results for each to enable a more insightful
discussion. It follows the same colour scheme as the previous
table. Also, we only show the results for S2Dedup persistent
implementations, as the conclusions are identical for the
in-memory ones. Figure 2b portrays deduplication space sav-
ings for the experiments with a speedup of x400. Results for
other speedup values showed similar conclusions.

Results Analysis. When security is introduced at the
Plain setup, the mail trace’s read and write operations show
a reduction on throughput for speedups of x200 (14% for
reads and 8% for writes) and x400 (33% for reads and 29%
for writes). This is justifiable because the peak workload
saturation is reached at a speedup of 200x for this trace and
secure setup. However, at other speedups (S1) and traces, the
disk bandwidth peak saturation is not reached, thus the Plain
setup does not present any throughput impact. Hence, we
should redirect our attention to the latency results, in which
is visible an overall increase for both read and write opera-
tions. This is expected given the extra work performed by

SYSTOR ’21, June 14–16, 2021, Haifa, Israel M. Miranda et al.

Table 2: Realistic workloads results.

Overhead Throughput (MiB/s) Latency (ms)
<50%
50-100%
100-200%
>200%

Ba
se
lin

e

Pl
ai
n

Ep
oc
h

Es
tim

at
ed

Ex
ac
t

Ba
se
lin

e

Pl
ai
n

Ep
oc
h

Es
tim

at
ed

Ex
ac
t

S1 2.24 2.24 2.24 2.25 2.24 55.71* 62.67* 83.53* 55.73* 41.79*
S200 23.60 20.14 21.72 18.13 18.21 97.91 139.40 126.27 148.22 143.15re

ad

S400 31.77 21.41 22.5 18.5 18.34 95.61 136.32 124.81 146.79 147.39

S1 1.20 1.2 1.2 1.2 1.2 0.001 0.001 0.001 0.001 0.001
S200 180.56 166.44 168.61 148.05 149.05 1.94 5.44 5.63 7.48 7.92

m
ai
l

w
rit
e

S400 234.93 168.17 169.77 151.51 150.34 3.56 5.74 6.30 7.69 7.86

S1 0.00 0.001 0.001 0.001 0.001 0.54 843.6* 0.573 422.1* 0.5
S350 0.65 0.645 0.645 0.645 0.645 172.87 280.81 233.59 293.47 260.58re

ad

S700 0.89 0.885 0.885 0.885 0.885 177.32 295.11 255.85 333.78 306.77

S1 0.08 0.08 0.08 0.08 0.08 0.001 0.001 0.001 0.001 0.001
S350 22.77 22.77 22.77 22.77 22.77 1.12 0.882 1.144 1.048 0.763

ho
m
es

w
rit
e

S700 27.70 27.7 27.7 27.7 27.7 1.018 1.097 0.803 1.018 0.94

S1 0.05 0.05 0.05 0.05 0.05 0.299 0.30 0.31 0.32 0.297
S350 1.87 1.87 1.87 1.87 1.87 31.73 39.00 33.76 36.38 30.27re

ad

S700 4.47 4.47 4.47 4.47 4.47 16.30 17.15 17.03 19.10 16.91

S1 0.02 0.02 0.02 0.02 0.02 0.002 0.002 0.002 0.002 0.002
S350 6.94 6.94 6.94 6.94 6.94 0.86 1.095 0.939 0.743 1.329

w
eb
-v
m

w
rit
e

S700 16.78 16.78 16.78 16.78 16.78 0.841 0.873 1.325 0.808 1.422

the hash’s computation and data re-encryption mechanisms
within the SGX enclaves. Note that few latency results, espe-
cially for small speedups, show higher variability (marked
with ∗), therefore we avoid drawing conclusions and com-
paring them. We suspect this variability to be caused by
the conjunction of these workloads with the caching and
scheduling mechanisms intrinsic to the operating system
and hardware supporting the experiments.
With the introduction of epochs (Epoch setup), the space

savings remained similar. Indeed, the highest difference is
visible for the mail trace and is less than 5%. This behav-
ior did not happen for the dist_kernels distribution at the
synthetic tests, which experienced a 15% reduction of dedu-
plication savings. This corroborates that temporal locality,
typically present in real workloads, can attenuate the loss of
deduplication space savings inherent to secure epochs.When
it comes to performance, throughput and latency results are
similar to the ones observed for the Plain setup.

The Estimated setup shows the biggest differences in terms
of space savings, mainly for the trace mail where space sav-
ings decrease by 18%. Again, this decrease is a result of lim-
iting the number of duplicates per unique blocks. In terms
of throughput and latency there is a higher performance

penalty (𝑎𝑝𝑝𝑟𝑜𝑥 13%) for the mail trace at the 200x and 400x
speedups for both read and write operations.

The Estimated and Exact setups have very similar perfor-
mance results, but it is perceptible a slight overall improve-
ment in the latter’s deduplication ratio. Namely, it reaches
improvements of 4% for the mail trace.

6.5 Discussion
Resource usage across the different setups and experiments
was similar. CPU usage was around 50% for the server and
18% for the client machines. Server’s RAMusage for S2Dedup
persistent implementations remained around 3.5 GB, while
the in-memory implementations increased memory con-
sumption to 8 GB, as a consequence of keeping additional
metadata at RAM. Client’s RAM was always below 4 GB.

Results show that a simpler secure deduplication scheme
(Plain), aided by Intel SGX, does not affect deduplication
gain but may lead to performance loss, especially under
stress I/O loads. By introducing epochs (Epoch), S2Dedup
ensures stronger security guarantees at a small cost in terms
of performance and space savings. As expected, the Estimated
setup provides different security guarantees at the cost of
reduced performance and space savings. Interestingly, when
compared to the latter, our novel Epoch and Exact Frequency
Based scheme offers more robust security guarantees while
maintaining similar performance and deduplication gain.

7 CONCLUSION
This paper proposes S2Dedup, a secure deduplication system
based on trusted hardware. By supporting multiple schemes,
S2Dedup can offer tailored deployments for applications with
distinct requirements in terms of security, performance, and
space savings. Furthermore, we introduce a novel Epoch and
Exact Frequency scheme that, when compared to state-of-the-
art solutions, enables improved security without sacrificing
storage performance and deduplication space-savings.
A prototype of S2Dedup, leveraging both Intel SGX and

the SPDK framework, is evaluated under synthetic and real
workloads. The experiments highlight the importance of
knowing the trade-offs of different secure schemes when
applied in practice. We believe that this knowledge, cou-
pled with solutions that enable different security choices, is
fundamental to push forward a wider usage of secure dedu-
plication in third-party storage services, while promoting
the privacy and security for individuals using such services.
As future work, it would be interesting to compare

S2Dedup’s schemes with other state-of-the-art solutions,
that rely on CE or remote key servers [20, 32], to better
pinpoint the performance trade-offs of using secure enclaves
and network I/O calls.

S2Dedup: SGX-enabled Secure Deduplication SYSTOR ’21, June 14–16, 2021, Haifa, Israel

REFERENCES
[1] 2017. A More Protected Cloud Environment: IBM Announces Cloud

Data Guard Featuring Intel SGX. https://itpeernetwork.intel.com/ibm-
cloud-data-guard-intel-sgx/#gs.oejhq1.

[2] 2018. Azure confidential computing. https://azure.microsoft.com/en-
us/blog/azure-confidential-computing.

[3] 2020. DEDISbench. https://github.com/jtpaulo/dedisbench.
[4] 2020. Libiscsi. https://github.com/sahlberg/libiscsi.git.
[5] Accessed: 2019-09-19. Intel Software Guard Extensions (Intel

SGX). https://www.intel.com/content/www/us/en/architecture-and-
technology/software-guard-extensions.html.

[6] Accessed: 2019-11-26. Glib. https://github.com/GNOME/glib.git.
[7] Accessed: 2020-03-16. LevelDB. https://github.com/google/leveldb.git.
[8] Accessed: 2020-05-15. Spdk github. https://github.com/spdk/spdk.
[9] Accessed: 2020-05-15. Storage performance development kit. https:

//spdk.io/.
[10] Accessed: 2020-08-27. FIU IODedup. http://iotta.snia.org/traces/391.
[11] K Akhila, Amal Ganesh, and C Sunitha. 2016. A study on deduplication

techniques over encrypted data. Procedia Computer Science 87 (2016),
38–43.

[12] Tiago Alves. 2004. Trustzone: Integrated hardware and software secu-
rity. White paper (2004).

[13] Frederik Armknecht, Colin Boyd, Gareth T Davies, Kristian Gjøsteen,
and Mohsen Toorani. 2017. Side channels in deduplication: trade-offs
between leakage and efficiency. In Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security. ACM, 266–274.

[14] Raad Bahmani, Manuel Barbosa, Ferdinand Brasser, Bernardo Portela,
Ahmad-Reza Sadeghi, Guillaume Scerri, and Bogdan Warinschi. 2017.
Secure multiparty computation from SGX. In International Conference
on Financial Cryptography and Data Security. Springer, 477–497.

[15] Mihir Bellare and Sriram Keelveedhi. 2015. Interactive message-locked
encryption and secure deduplication. In IACR International Workshop
on Public Key Cryptography. Springer, 516–538.

[16] Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart. 2013.
Message-locked encryption and secure deduplication. In Annual in-
ternational conference on the theory and applications of cryptographic
techniques. Springer, 296–312.

[17] Rongmao Chen, Yi Mu, Guomin Yang, and Fuchun Guo. 2015. BL-
MLE: Block-Level Message-Locked Encryption for Secure Large File
Deduplication. Information Forensics and Security, IEEE Transactions
on 10 (12 2015), 2643–2652. https://doi.org/10.1109/TIFS.2015.2470221

[18] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR
Cryptology ePrint Archive 2016, 086 (2016), 1–118.

[19] Helei Cui, Huayi Duan, Zhan Qin, Cong Wang, and Yajin Zhou. 2019.
Speed: Accelerating enclave applications via secure deduplication.
In 2019 IEEE 39th International Conference on Distributed Computing
Systems (ICDCS). IEEE, 1072–1082.

[20] Hung Dang and Ee-Chien Chang. 2017. Privacy-preserving data dedu-
plication on trusted processors. In 2017 IEEE 10th International Confer-
ence on Cloud Computing (CLOUD). IEEE, 66–73.

[21] John (JD) Douceur, Atul Adya, Bill Bolosky, Daniel R. Simon, and Mar-
vin Theimer. 2002. Reclaiming Space from Duplicate Files in a Serverless
Distributed File System. Technical Report MSR-TR-2002-30. 14 pages.
https://www.microsoft.com/en-us/research/publication/reclaiming-
space-from-duplicate-files-in-a-serverless-distri\buted-file-system/

[22] Morris J Dworkin. 2010. Recommendation for block cipher modes of
operation: The XTS-AES mode for confidentiality on storage devices.
Technical Report.

[23] Benny Fuhry, Lina Hirschoff, Samuel Koesnadi, and Florian Ker-
schbaum. 2020. SeGShare: Secure Group File Sharing in the Cloud
using Enclaves. In 2020 50th Annual IEEE/IFIP International Conference

on Dependable Systems and Networks (DSN). IEEE, 476–488.
[24] Danny Harnik, Eliad Tsfadia, Doron Chen, and Ronen Kat. 2018. Se-

curing the storage data path with SGX enclaves. arXiv preprint
arXiv:1806.10883 (2018).

[25] Wenjin Hu, Tao Yang, and Jeanna N Matthews. 2010. The good, the
bad and the ugly of consumer cloud storage. ACM SIGOPS Operating
Systems Review 44, 3 (2010), 110–115.

[26] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett
Witchel. 2018. Ryoan: A distributed sandbox for untrusted computation
on secret data. ACM Transactions on Computer Systems (TOCS) 35, 4
(2018), 13.

[27] Sriram Keelveedhi, Mihir Bellare, and Thomas Ristenpart. 2013. Dup-
LESS: server-aided encryption for deduplicated storage. In Presented
as part of the 22nd {USENIX} Security Symposium ({USENIX} Security
13). 179–194.

[28] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’neill.
2016. Generic attacks on secure outsourced databases. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. 1329–1340.

[29] Seongmin Kim, Youjung Shin, Jaehyung Ha, Taesoo Kim, and Dongsu
Han. 2015. A first step towards leveraging commodity trusted execu-
tion environments for network applications. In Proceedings of the 14th
ACM Workshop on Hot Topics in Networks. ACM, 7.

[30] Ricardo Koller and Raju Rangaswami. 2010. I/O deduplication: Utilizing
content similarity to improve I/O performance. ACM Transactions on
Storage (TOS) 6, 3 (2010), 1–26.

[31] Jingwei Li, Chuan Qin, Patrick PC Lee, and Xiaosong Zhang. 2017.
Information leakage in encrypted deduplication via frequency analysis.
In 2017 47th Annual IEEE/IFIP international conference on dependable
systems and networks (DSN). IEEE, 1–12.

[32] Jingwei Li, Zuoru Yang, Yanjing Ren, Patrick PC Lee, and Xiaosong
Zhang. 2020. Balancing storage efficiency and data confidentiality
with tunable encrypted deduplication. In Proceedings of the Fifteenth
European Conference on Computer Systems. 1–15.

[33] Takanori Machida, Dai Yamamoto, Ikuya Morikawa, Hirotaka Kokubo,
and Hisashi Kojima. [n.d.]. Poster: A Novel Framework for User-Key
Provisioning to Secure Enclaves on Intel SGX. ([n. d.]).

[34] Dutch T Meyer and William J Bolosky. 2012. A study of practical
deduplication. ACM Transactions on Storage (ToS) 7, 4 (2012), 1–20.

[35] João Paulo and José Pereira. 2014. A survey and classification of storage
deduplication systems. ACM Computing Surveys (CSUR) 47, 1 (2014),
11.

[36] João Paulo and José Pereira. 2016. Efficient deduplication in a dis-
tributed primary storage infrastructure. ACM Transactions on Storage
(TOS) 12, 4 (2016), 1–35.

[37] Joao Paulo, Pedro Reis, Jose Pereira, and Antonio Sousa. 2012. DEDIS-
bench: A benchmark for deduplicated storage systems. In OTM Con-
federated International Conferences" On the Move to Meaningful Internet
Systems". Springer, 584–601.

[38] Zahra Pooranian, Kang-Cheng Chen, Chia-Mu Yu, and Mauro Conti.
2018. RARE: Defeating side channels based on data-deduplication in
cloud storage. In IEEE INFOCOM 2018-IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS). IEEE, 444–449.

[39] Joydeep Rakshit and Kartik Mohanram. 2018. LEO: Low overhead
encryption ORAM for non-volatile memories. IEEE Computer Archi-
tecture Letters 17, 2 (2018), 100–104.

[40] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis,
Marcus Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015.
VC3: Trustworthy data analytics in the cloud using SGX. In 2015 IEEE
Symposium on Security and Privacy. IEEE, 38–54.

[41] Emil Stefanov, Marten Van Dijk, Elaine Shi, T-H Hubert Chan, Christo-
pher Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas. 2018.

https://itpeernetwork.intel.com/ibm-cloud-data-guard-intel-sgx/##gs.oejhq1
https://itpeernetwork.intel.com/ibm-cloud-data-guard-intel-sgx/##gs.oejhq1
https://azure.microsoft.com/en-us/blog/azure-confidential-computing
https://azure.microsoft.com/en-us/blog/azure-confidential-computing
https://github.com/jtpaulo/dedisbench
https://github.com/sahlberg/libiscsi.git
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://github.com/GNOME/glib.git
https://github.com/google/leveldb.git
https://github.com/spdk/spdk
https://spdk.io/
https://spdk.io/
http://iotta.snia.org/traces/391
https://doi.org/10.1109/TIFS.2015.2470221
https://www.microsoft.com/en-us/research/publication/reclaiming-space-from-duplicate-files-in-a-serverless-distri\buted-file-system/
https://www.microsoft.com/en-us/research/publication/reclaiming-space-from-duplicate-files-in-a-serverless-distri\buted-file-system/

SYSTOR ’21, June 14–16, 2021, Haifa, Israel M. Miranda et al.

Path oram: An extremely simple oblivious ram protocol. Journal of
the ACM (JACM) 65, 4 (2018), 1–26.

[42] Bruno Vavala, Nuno Neves, and Peter Steenkiste. 2017. Secure tera-
scale data crunching with a small TCB. In 2017 47th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN).
IEEE, 169–180.

[43] Ofir Weisse, Valeria Bertacco, and Todd Austin. 2017. Regaining lost
cycles with HotCalls: A fast interface for SGX secure enclaves. ACM
SIGARCH Computer Architecture News 45, 2 (2017), 81–93.

[44] Dag Wieers. [n.d.]. Dstat: Versatile resource statistics tool.
http://dag.wiee.rs/home-made/dstat ([n. d.]).

[45] Wen Xia, Hong Jiang, Dan Feng, Fred Douglis, Philip Shilane, Yu Hua,
Min Fu, Yucheng Zhang, and Yukun Zhou. 2016. A comprehensive
study of the past, present, and future of data deduplication. Proc. IEEE
104, 9 (2016), 1681–1710.

[46] Qirui Yang, Runyu Jin, and Ming Zhao. 2019. SmartDedup: Optimiz-
ing Deduplication for Resource-constrained Devices. In 2019 USENIX
Annual Technical Conference (USENIX ATC 19). USENIX Association,
Renton, WA, 633–646. https://www.usenix.org/conference/atc19/
presentation/yang-qirui

[47] H. Yu, X. Zhang, W. Huang, and W. Zheng. 2017. PDFS: Partially
Dedupped File System for Primary Workloads. IEEE Transactions on
Parallel and Distributed Systems 28, 3 (2017), 863–876.

[48] Xian Zhang, Guangyu Sun, Chao Zhang, Weiqi Zhang, Yun Liang, Tao
Wang, Yiran Chen, and Jia Di. 2015. Fork path: improving efficiency
of oram by removing redundant memory accesses. In 2015 48th An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 102–114.

[49] Wenting Zheng, Ankur Dave, Jethro G Beekman, Raluca Ada Popa,
Joseph E Gonzalez, and Ion Stoica. 2017. Opaque: An oblivious and
encrypted distributed analytics platform. In 14th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 17). 283–
298.

[50] Lidong Zhou, Fred B Schneider, and Robbert Van Renesse. 2005. APSS:
Proactive secret sharing in asynchronous systems. ACM transactions
on information and system security (TISSEC) 8, 3 (2005), 259–286.

[51] Y. Zhou, Y. Deng, L. T. Yang, R. Yang, and L. Si. 2018. LDFS: A Low
Latency In-Line Data Deduplication File System. IEEE Access 6 (2018),
15743–15753.

https://www.usenix.org/conference/atc19/presentation/yang-qirui
https://www.usenix.org/conference/atc19/presentation/yang-qirui

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Intel Software Guard Extensions (SGX)
	2.2 Secure Deduplication

	3 S2Dedup Overview
	3.1 Threat Model
	3.2 Components and Flow of Requests

	4 Secure Deduplication
	4.1 Plain Security
	4.2 Epoch Based
	4.3 Estimated Frequency Based
	4.4 Epoch and Exact Frequency Based
	4.5 Security Analysis

	5 Implementation
	5.1 Deduplication engine
	5.2 Secure Schemes
	5.3 Client Implementation

	6 Evaluation
	6.1 Methodology
	6.2 Workloads and Setups
	6.3 Synthetic Experiments
	6.4 Realistic Experiments
	6.5 Discussion

	7 Conclusion
	References

