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Abstract 

Many efforts are being devoted towards achieving optimal planning and operation of 
Distributed Energy Resources (DER). However, during the planning process, not all 
relevant thermal constraints of the distribution network are considered; some works 
claim that they must be taken into account, while others follow the single-node 
approach. 

This paper assesses the effects of the distribution network thermal constraints in DER 
planning, using a deterministic linear programming problem to find the optimal DER 
planning and operation. Three case studies with different network topologies under 
several DER implementation scenarios are analyzed. A DC load flow is used to estimate 
the required network reinforcements to accommodate optimal DER investments, if any. 
Reinforcement costs are then calculated to assess the net benefit compared to limiting 
DER investments and operation, according to the network thermal limits. Results 
suggest that there is no significant economic advantage in limiting DER investments and 
line flows, compared to reinforcing the low voltage network to allow the larger flows 
that result from an unconstrained network problem. 

Keywords: Distributed Energy Resources; Renewable Sources; Energy Storage; 
Distribution Network; Energy System Planning Models. 

1. Introduction 

Energy is one of the most demanding issues in current and future urban centers, 
especially considering the increasing complexity of its systems and sustainability 
requirements [1]. In this setting, Distributed Energy Resources (DER) stand as a 
promising alternative to contribute to sustainability, security of supply, and energy 
efficiency [2]. DER commonly refers to distributed generation (essentially based on 
renewable energy sources), but also in addition to distributed energy storage, and 
demand response strategies as well. 
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The benefits and requirements of these decentralized schemes have been widely 
studied.  DER systems are presented in [3] as promising energy solutions, describing how 
their expected massive deployment would result in important changes in current power 
systems. In [4] it is pointed out how DER eases the integration of renewable energy and 
how, by using storage systems, the stability problems related with their intermittency 
and lack of dispatchability can be lessened.   

Two main approaches have been adopted for DER planning: one from the perspective 
of the distribution system operators, and another from the perspective of retailers 
acting as aggregators. On the one hand, distribution system operators (DSOs) can better 
control the total aggregated resources, in theory providing more stability, quality of 
service [6] and energy efficiency to the grid (minimizing losses and network investments) 
[5]. This approach normally deals with high-to-medium voltage levels.  On the other 
hand, aggregators can manage many DER owners, also known as prosumers (producer-
consumers, [23]), optimizing the operation and planning of their systems in a 
coordinated way while partaking in the electricity and ancillary services markets [7].  
Individual prosumers are not usually big enough to directly participate in the markets 
due to its entry barriers [8], hence the advantage of aggregating them to profit from 
wholesale market benefits [9]. In this sense aggregators concentrate more on 
consumers than on the network, maximizing individual and aggregated benefits, thus 
deal mainly with medium-to-low voltage levels. 

When the DSO approach is applied, many studies focus on the impact of DER planning 
on the network operation and its expansion. A model planning the expansion of the 
distribution network considering sizing, placement and timing of DER investments 
and/or network reinforcements is proposed in reference [8]; in [10], a quantification of 
the impact of different penetration levels of distributed generation on distribution 
network costs is presented, analyzing three actual geographical distribution areas. 
Another relevant example is the Reference Network Model presented in [11] which is a 
large-scale distribution planning tool used to plan distribution networks from scratch or 
incrementally from an existing grid. This Reference Network Model is also used in [12] 
in combination with an algorithm that optimizes the location, size, and supply area of 
the medium-to-low voltage transformer substations with the objective of minimizing 
costs. 

Unlike the above-mentioned models where the network is of prime importance, DER 
planning models from the aggregator perspective follow a very different approach. For 
instance, in [13] it is described as a commercial tool for optimal sizing and operation of 
DER in microgrids, with many applications in different research projects, such as those 
described in [9]. There are numerous examples of Electric Vehicle (EV) aggregation, 
considered an interesting type of DER, given their energy storage capabilities. For 
instance, a mixed-integer linear programming model is proposed in [4], where an 
aggregator schedules the charge and discharge of EVs, maximizing the profit of the 
concerned agents while also taking into account energy markets, customer preferences 
and battery degradation. Similarly, two business models for aggregating EVs are 
comprehensively described in [7], including all the relationships between the different 
stakeholders that take part on the energy system. In this work, the capabilities of the EV 
as a DER system, and the potential benefits of aggregation are remarked upon. 
Nevertheless, these works commonly focus on the optimization and management of 
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energy consumption, considering individual benefits only, and due to the small size of 
the applications, paying little attention to their impact on the grid. 

For large DER penetration, the aggregator perspective could cause problems to the 
distribution power system producing bidirectional power flows (most grid protections 
are not design for such flows), reaching lines’ thermal limits and producing instability on 
the grid [15]. Although this concern has been studied more for the medium voltage level, 
the effects on the final customers at the low voltage distribution network are starting to 
attract attention [20]. 

It is important to note that the joint optimization problem that results from DER 
planning, combined with its impact on the distribution network and its potential 
expansion, is complex and has no easy solution. Moreover, despite the amount of 
related research available, there is no work addressing the mentioned optimization 
problem as a whole. This paper intends to fill this gap by proposing a joint solution of an 
aggregator-type optimization problem, while also including distribution network 
thermal constraints. Although no optimal distribution network expansion is computed, 
the followed approach detects whether thermal limits are reached and then computes 
the corresponding network reinforcement cost, assessing the benefits of this 
reinforcement against limiting the power flows.  

This paper proposes a linear programming model for the optimal planning of DER in an 
urban network or energy district composed of several buildings managed by an 
aggregator. The effects of the network thermal constraints (power lines’ thermal limits) 
are analyzed, and their significance in the planning stage is discussed. The model accepts 
different small district network topologies and climatic characteristics (Madrid, in the 
case examples). Solar photovoltaics (PV) and air-source heat pumps (HP) are used as 
representative DG technologies for electric and thermal energy production, and 
conventional battery systems are considered for energy storage. The assessment of the 
impact of network thermal constraints in the planning and operation of DERs is the main 
contribution of this paper. It is achieved by comparing the benefit of implementing an 
optimal DER planning and operation with the corresponding network reinforcements, 
with the benefit that results from limiting DER investments and operation so that the 
network thermal limits are not violated.  

The rest of the paper is organized as follows. In Section 2, a brief description of the 
optimization model can be found, while in Section 3 its nomenclature and full 
mathematical formulation is presented. In Section 4 the three case studies considered 
in this research and the DER implementation scenarios are described. Results of the case 
studies and a discussion of their implications are provided in Section 5. Concluding 
remarks can be found in Section 6. 

2. Model description 

The block diagram of the proposed optimization model can be found in Fig.  1. Inputs 
include the costs and performance characteristics (e.g., electric efficiency, thermal 
efficiency, power rating, and losses) of the DER systems considered, energy demands 
and prices (considered as exogenous variables). Outputs comprise optimal investments 
planning and operation of DER systems, with the corresponding grid energy buying and 
selling schedules. The model can include network constraints to limit DER investments 
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and operation. When these network constraints are not included, a simplified DC load 
flow analysis can be computed to detect the lines that should be reinforced not to 
exceed their thermal limit. An economic analysis can then be performed to compare the 
benefits of both alternative solutions. 

3. Linear programming problem 

This section describes the optimization model to find the optimal scaling and operation 
of DER (PV systems, HP systems, batteries, and demand response schemes) to be 
installed in a set of buildings connected by a distribution network. It is considered that 
the buildings do not have any preexisting DER installation. This linear programming 
problem considers a typical year’s operation characterized by 12 days, each one 
representing a month of the year. This year is then replicated for the total length of the 
study. It is important to remark that the constraints of the linear programming model 
are the same for all case studies, except when the network thermal constraints are taken 
into account. 

3.1. Nomenclature 

The general nomenclature of the generation and the storage models and the operation 
of the energy systems are presented next.  

Sets: 

h  hour = 1 – 24 

m  month = 1 – 12 

y  years = 1 – lifespan 

c  houses = 1 – numHouses 

l  power lines on the network = 1 – numLines 

Parameters: 

lifespan    Expected lifespan for PV and HP systems in the study (years) 

numHouses   Number of houses (nodes) in the district 

numLines   Number of power lines in the district 

demandElecc,m,h    Base electric demand curve for 12 representative days (kWh) in each house 

demandThermc,m  Total thermal demand for 12 representative days (kWh) 

hourlyPricem,h    Normalized electric hourly prices referred to the base price costEy (%) 

costEy    Electric energy base buying price at year y (USD/kWh) 

sellEy    Electric energy base selling price at year y (USD/kWh) 

costTy    Thermal energy base buying price at year y (USD/kWh) 

fixEpow   access tariff for electric power (USD/kW) 

fixTpow   access tariff for thermal power (USD/client) 

DNIm,h    Direct normal irradiance at month m, hour h (W) 

lossesPV   Total electric losses in the PV system (%) 

lossesHP   Total thermal losses in the HP system (%) 

costPV    Total cost per installed Watt of PV (USD/W)  
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costHP    Total cost per installed Watt of HP (electric power input) (USD/W)  

costBat    Total upfront cost of batteries, considering a replacement every 8 years 
(USD/Wh)  

OMfixPV   Fixed annual Operation and Maintenance costs per installed Watt of PV 
(USD/W) 

OMfixHP   Fixed annual Operation and Maintenance costs per installed Watt of HP 
(USD/W)  

COP    Coefficient of Performance for the HP 

demandShift  maximum allowed load to be shifted per day of the base electric demand (%) 

DRequipCost  costs of equipment required in each house to do load shifting (USD/house) 

daysInMonthm   Number of days in month m 

effBat     Battery charge/discharge efficiency ratio (%) 

lineCap    Maximum power line capacity  

Variables: 

powerPVc   Installed capacity of PV in house c (kW) 

powerHPc   Installed capacity of HP in house c (kW) 

elecEnergyInputc,m,h   Electricity for thermal production with HP in house c at month m, hour h (kWh) 

gridEnergyBoughtc,m,h   Electricity bought in house c from the grid to meet the demand at month m, 
hour h (kWh) 

boughtEnergyT c,m  Thermal energy bought (natural gas) in house c from the grid to meet the daily 
demand in month m (kWh) 

ProdPVc,m,h   Electric PV production in house c at month m, hour h (kWh) 

batCapacityc   Installed capacity of the battery system in house c (kWh) 

SOCc,m,h    Battery State-of-Charge in house c at month m, hour h (kWh) 

disBatc,m,h    Energy discharged from battery in house c at month m, hour h (kWh) 

chBatc,m,h   Energy charged to the battery in house c at month m, hour h (kWh) 

gridEnergySoldc,m,h   Electricity sold in house c to the grid at month m, hour h (kWh) 

transferredEnergyc,m,h   Electricity transmitted (surplus) from house c at month m, hour h (kWh) 

receivedEnergyc,m,h   Electricity received (shortage) in house c at month m, hour h (kWh) 

decDemandc,m,h   Decrease in base demand from demandElec of house c at month m, hour h 
(kWh) 

incDemandc,m,h   Increase in base demand from demandElec of house c at month m, hour h 
(kWh) 

demandNewc,m,h   New consumption curve after changing the base profile of demandElec. 

powElectc   contracted annual electric power in house c (kW). 

loadc,m,h   Total load (electric demand + transferredEnergy – electric production – 
receivedEnergy) at each house c at month m, hour h (kW). 

lineFlowl,m,h  Total energy flow at each power line l at month m, hour h (kWh). 
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3.2. Mathematical formulation 

Objective function 

The proposed objective function maximizes the benefits of all the prosumers (producer-
consumers) in the network in an aggregated manner; this is done by reducing the 
equivalent energy costs and by selling energy back to the grid. Indeed, the objective 
function is composed by the energy incomes and costs, and the costs of the DER, 
including both equipment investments and maintenance costs. It is calculated as:  

_ cos _ cos _ _ cos _ cos _ cos _
max

cos _ _ cos _

sell EE t EE t PV OM PV t Bat t ET t PowT

t HP OM HP t DR

      
    

(1) 

 Where:  

 , , ,
y

_ * * Pr *y m m h c m h
c m h

sell EE sellE daysMonth hourly ice gridEnergySold
  

   
  

   (2)

 , , ,
y

cos _ cos * * Pr *y m m h c m h
c m h

t EE tE daysMonth hourly ice gridEnergyBought
  

   
  

  
(3) 

 
c

cos _ * *ct PowE lifespan powElect fixEpow        (4) 

 
c

cos _ cos * Ct PV tPV powerPV        (5) 

 
c

_ * *COM PV OMfixPV powerPV lifespan      (6) 

 
c

cos _ cos * Ct Bat tBat batCapacity       (7) 

,
y

cos _ cos * *y m c m
c m

t ET tT daysMonth boughtEnergyT      (8) 

cos _ * *12*t PowT lifespan numHouses fixTpow       (9) 

c

cos _ cos * Ct HP tHP powerHP        (10) 

 
c

_ * *COM HP OyMfixHP powerHP lifespan      (11) 

cos _ * Ret DR numHouses D quipCost       (12) 

From the previous equations, it can be seen that (2) (respectively (3)) sum up the 
electricity sold (respectively bought) to the grid. Equation (4) is used to compute the 
cost of the contracted electricity power amount and (8), (9) relate to the thermal energy 
costs and access tariffs, respectively. Equations (5), (7), (10) and (12) describe the 
demand response equipment costs, whereas equations (6) and (11) compute the total 
operation and maintenance costs. 

This objective function is formulated considering the total lifespan of the project set to 
20 years with battery replacements every 8 years [21], and investments, if any, take 
place at the beginning of the study period. 
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Constraints  

Positive constraints: 

, , 0c m hgridEnergyBought          (13) 

, , 0c m hgridEnergySold           (14) 

, 0c mboughtEnergyT           (15) 

, , 0c m hreceivedEnergy           (16) 

, , 0c m htransferredEnergy          (17) 

, , 0c m helecEnergyInput           (18) 

, , 0c m hdisBat            (19) 

, , 0c m hchBat            (20) 

0cbatCapacity           (21)  

 , , 0 0,24c m hSOC h           (22) 

0cpowerPV            (23) 

0cpowerHP            (24) 

0cpowerElect           (25) 

, , 0c m hincDemand           (26) 

, , 0c m hdecDemand           (27) 

, , 0c m hdemandNew           (28) 

State-of-Charge constraints: 

The following constraints describe the behavior of the battery storage systems, affecting 
mainly the state-of-charge (SOC) which is the rate of stored energy with respect to the 
battery maximum capacity, typically expressed as a percentage (similar to a fuel gauge). 
These constraints limit the charge to the maximum capacity and the discharge to the 
current energy level. Current SOC is computed from the previous SOC by adding and 
subtracting the energy charged and discharged. 

, 1, 0 0c m hSOC             (29) 

 , , 0 , 1, 24 2,12c m h c m hSOC SOC m           (30) 

 , , 1 , , 24 2,11c m h c m hSOC SOC m          (31) 

, ,c m h cSOC batCapacity         (32) 

, , , , 1 , , , ,c m h c m h c m h c m hSOC SOC disBat chBat         (33) 

, , , , 1c m h c m hdisBat SOC           (34) 

, , , , 1c m h c c m hchBat batCapacity SOC          (35) 
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Demand Response constraints: 

The following equations model load shifting under a demand response scheme. The 
maximum amount of load that can be shifted per day is limited by the parameter 
demandshift, as shown in (38). For the scenarios that do not implement demand 
response, demandshift = 0. 

, , , ,c m h c m h
h h

demandNew demandElec        (36) 

, , , , , , , ,c m h c m h c m h c m hdemandNew decDemand demandElec incDemand      (37) 

, , , ,*c m h c m h
h h

incDemand demandShift demandElec       (38) 

 

Energy Production constraints: 

In (39), prodPV refers to the electric energy produced by the PV system, where DNI 
stands for Direct Normal Irradiance (W/m2), which is the energy provided by the sun at 
a specified location. The powerPV refers to the selected size of the system. Lastly, G is 
the global irradiation received on a horizontal plane (G = 1000 W/m2). Similarly, (40) 
presents the thermal generation equation for an air-source heat pump. It is important 
to remark that thermal generation is considered to have a greater output than its actual 
production as it is compared with the cost of producing the same amount of energy with 
a conventional gas boiler at 80% efficiency. 

 ,
, ,

*
* 1m h c

c m h

DNI powerPV
prodPV lossesPV

G
       (39) 

  
,

, , , * * 1 / 0.8

c m

c m c m h
h

boughtEnergyT

demandTherm elecEnergyInput COP lossesHP     (40) 

Constraint (41) limits the electric production of the heat pump below the nominal 
installed power. Continuing with HP operation, (42) applies to the scenarios without 
demand response schemes, where a flat thermal production (if any) is expected. 
Conversely, in scenarios with DR, the HP operation can be managed and (43) is intended 
to avoid thermal generation only in off-peak time, making it produce at least 30% of 
total demand in peak hours. 

, ,c m h celecEnergyInput powerHP        (41) 

 , , , , 1 2,24c m h c m helecEnergyInput elecEnergyInput h       (42) 

  
 

, ,

,

* * 1 / 0.8

0.3* 13,20

c m h
h

c m

elecEnergyInput COP lossesHP

demandTherm h



  


     (43) 

The following equation is used to calculate the required contracted electric power given 
the DG production. 

, ,c c m hpowElect gridEnergyBought        (44) 

Balance Equation: 
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Equation (45) is required to balance the total energy consumption and production at 
every period, where all the energy that enters each house is positive and the energy that 
leaves the house is negative. 

 
, , , ,

, , , , , , , ,

, , , , , ,

/

c m h c m h

c m h c m h c m h c m h

c m h c m h c m h

gridEnergyBought gridEnergySold

demandNew prodPV disBat chBat effBat

transferredEnergy receivedEnergy elecEnergyInput



   

  

   (45) 

Energy Interchange:  

Besides electricity buying and selling, the district will have the capability to transfer 
energy from and to other

 
houses in the same district. (46) describes the behavior of such 

transfers, considering power line losses. 

, , , ,c m h c m h
c c

receivedEnergy lineLosses transferredEnergy      (46) 

Network constraints:  

, , , , , ,

, , , ,

c m h c m h c m h

c m h c m h

load gridEnergyBought receivedEnergy

gridEnergySold transferredEnergy

 

 
     (47) 

, , , , , ,l m h x m h x m hlineFlow load lineFlow         (48) 

, ,l m hlineFlow lineCap          (49) 

The lineFlow constraints refer to the power lines’ thermal constraints (maximum power 
flow allowed in the line (49)). The lineflow calculations for each line vary depending on 
the network topology, and they are designed as a linear combination of loads and other 
lineFlows as in a DC load flow analysis. Note that constraints (47) – (49) apply only to 
those scenarios where network constraints are included within the model. 

4. Scenarios and Case Studies 

Three case studies are developed in this paper. They correspond to three different 
topologies of urban district networks with different numbers of nodes. Average solar 
characteristics of Madrid, Spain are considered in all cases, and solar production is 
calculated with the hourly direct normal irradiance (DNI) data from [16]. The proposed 
districts consist of standard Spanish households, with average energy use. Table 1 shows 
the average domestic energy consumption per year in Spain, with the corresponding 
electrical and thermal shares [17]. 

Electricity usage curves (taken from [18]) are used to calculate the optimal generation 
and storage capacity to be installed. Fig.  2a presents the normalized electricity demand 
curves for a typical day in summer and winter, whereas Fig.  2b shows the monthly 
evolution of this demand throughout an average year. Note that these demand curves 
do not include thermal generation, which is considered separately.  

A time-of-use electricity tariff with peak and off-peak prices and a flat tariff for thermal 
energy have been used (Table 2). Note that these tariffs (taken from [19]) include taxes 
and thus correspond to final Spanish consumers tariffs. The price for selling electricity 
back to the grid has been set to a flat rate, and a 3% annual increment has been used 
for all energy prices. 
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Lastly, Table 3 shows the selected generation and storage technologies data used (taken 
from [1]). The coefficient of performance (COP) of the heat pump is set to 2.5 units. 

The demand response schemes presented in this study consider two strategies: the 
management of the heat pump production, and the shifting of electric load. The 
DemandShift parameter is estimated considering the appliances that can be more easily 
shifted in time, such as washing machines, dryers and dishwashers which, according to 
[17], represent 13.3% of the total electric consumption of a typical Spanish household. 
Hence, demandShift parameter has been set to 13% of total daily load. A cost 
DRequipCost of 300 USD/house represents the cost of the control devices needed for 
demand response [22]. 

Lastly, an economic analysis of the proposed case studies is also provided, considering 
the value of the objective function as equivalent to the Net Present Value (NPV) of the 
investment with a discount rate of 3% per year. This NPV value is formulated from the 
energy and DER systems costs, and serves to validate the economic feasibility of such 
systems. The lifespan is set to 20 years for all technologies, except batteries which are 
expected to be replaced every 8 years [21]. 

4.1. Case study A 

This case study includes a small district of 9 households (labeled with numbers), as 
described in Fig.  3. Table 4 contains the line lengths (labeled with letters) of the network 
to calculate the cost of the potential network reinforcements. It is important to remark 
that, in order to solely study the effects of the network thermal constraints given their 
topologies, all houses in the proposed case studies behave equally, according to the 
consumption patterns of Fig.  2 and Table 1. This approach results in a high simultaneity 
factor, summing up all peaks on the network, which can be considered an unfavorable 
yet interesting scenario to analyze. Finally, the base load in all the nodes in this study is 
dimensioned to meet the maximum power peak for the network thermal limits. 

According to [10], the typical thermal capacity for the low voltage distribution electric 
lines in Spain ranges from 100A – 415A at 400V. Moreover, the approximate cost of 
building such power lines is 16000 USD/km [10]. For this study, the maximum power 
flow is limited to 30 kWh (≈ 136A at 220V) for all power lines, and the costs of 
reinforcements of a power line have been considered to be half of the original cost of a 
completely new power line. 

4.2. Case study B 

Case study B comprises a bigger district with 16 houses, so the effect of a more complex 
network containing more nodes can be analyzed. It differs from the previous network in 
the organization of houses. In Case study A, 33.3% of the houses are on one of the main 
branches (line C) and 66.7% on the other (line I), whereas the proportion for case B is 
56.2% (line I) - 44.8% (line P). 

The organization of the district is described in Fig.  4, while Table 5 presents the lengths 
of network lines. 
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4.3. Case study C 

Unlike previous cases that contain 2 main branches with different number of houses, 
this case study has a network with 4 main-branches and equally distributed nodes (4 
houses each branch). The objective is to understand the effects of the structure of the 
network in the optimization problem results. Fig.  5 illustrates the network topology for 
this case, and Table 6 lists the line lengths. 

4.4. Scenario description 

The combination of different DER systems with the inclusion or not of network thermal 
constraints has been used to design 5 scenarios, summarized in Table 7. The first 
scenario serves as a reference to evaluate the impact of DER systems and network 
constraints. This scenario follows the approach “business as usual” where no DER is 
implemented. Scenarios 2 and 3 include distributed generation and storage systems (PV, 
HP and Battery systems), but they do not implement demand response neither in the 
form of load shifting nor in the management of the heat pump production. Hence, the 
thermal demand under these scenarios is assumed flat along the day. Finally, scenarios 
4 and 5 also include demand response schemes, providing more flexibility in the studied 
networks. For the sake of clarity, the scenarios are labeled with D, R, and N referring to 
distributed generation, demand response and network constraints, respectively. The 
uppercase letter indicates the presence of such system on the model, whereas the lower 
case letter means that the characteristic is not implemented. 

5. Results and discussion  

5.1. Case study A 

The common practice while designing low voltage distribution networks is to oversize 
the power lines for the sake of security. However, it can be assumed that the population 
increase is accompanied with a demand increase in the end-user nodes. Hence, 
networks with saturated power lines are likely to appear. In order to have a network 
operation reaching its thermal limits, the energy consumption per node is considered to 
be equal to 5 houses with the characteristics mentioned in Table 1 and Fig.  2.  

For the first scenario, labeled Sd,r,n, neither DER systems nor network thermal constraints 
are included in the optimization model. A post-optimization load flow shows, see Fig.  6, 
that line I reaches the maximum capacity for a short period of time on December. 
Despite this short and small violation on power limits, it can be considered that these 
loads “fit” in the network. It is important to remark that line losses are not considered 
in the load flow analysis and, as all houses have equal energy usage, several lines present 
similar behavior, overlapping in the figure.  

The installed PV generation power for all scenarios is listed in Table 8, while the air-
source heat pump maximum input power can be found in Table 9. From these tables, it 
can be seen that in those scenarios without network constraints, the optimal amount of 
generation power is equal for all houses, as it solely depends on the demand 
characteristics of the client. On the contrary, line capacity constraints modify the 
installed power when the flexibility of demand response schemes are not available, as 
in Scenario SD,r,N. Note that the difference is greater regarding heat pump power. The 
houses located in the more saturated branch produce less thermal energy with the heat 
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pump in order to reduce the electricity requirements. Conversely, network thermal 
constraints are not relevant when all DER are available, as the installed capacity for 
Scenarios SD,R,n and SD,R,N is the same. This can be attributed to the very small violation 
(around 3%) of line capacity occurred in SD,R,n (see Fig.  7c) that does not affect 
significantly the operation of DER and, consequently, the capacity planning. 

Regarding storage systems, current batteries prices make them unattractive in most 
scenarios, as shown in Table 10. It is important to remark that Scenarios SD,r,n and SD,r,N 
are the only ones implementing storage capacity, due to the network thermal 
constraints and the lack of flexibility of DG. When the demand response capability is 
added, as in SD,R,n and SD,R,N, the battery systems are no longer implemented, given its 
relatively high cost. 

 

Table 11 summarizes the contracted power. In comparison to the base case, the 
scenarios including DG increased their contracted electric power while reducing the 
thermal power. This is caused by the new electric demand of the heat pump. On the 
other hand, the electric power did not change significantly in the scenarios with demand 
response schemes; but the contracted thermal power is reduced considerably. 

Regarding to the operation of the network, Fig.  7 illustrates the load flow study under 
the different DER system scenarios for the winter’s peak day. Scenario SD,r,n includes 
distributed generation and storage but no network constraints (Fig.  7a). Consequently 
thermal violations take place and line I should be reinforced around 33% of its original 
capacity (i.e. to 40 kWh) to avoid them.  

Scenario SD,r,N also includes distributed generation but, unlike the previous scenario, 
network thermal constraints are included on the linear programming model. Hence, the 
operation and planning of the distributed resources is optimized but without violating 
the maximum capacity of the power lines, as shown in Fig.  7b.  

The next Scenario, SD,R,n, is similar to Scenario SD,r,n, with the added capabilities of 
demand response. From Fig.  7c, it can be noted that violation of line I capacity is much 
smaller and constant (to avoid the extra cost of higher contracted power) than in 
Scenario SD,r,n. Indeed, demand response (thermal production and a percentage of the 
daily electricity load) reduces the total amount of energy bought at peak hours and the 
total contracted power. 

Lastly, Scenario SD,R,N includes into the optimization model all DER systems and network 
thermal constraints. In comparison to Scenario SD,r,N, the behavior of power flows in the 
network is slightly more complex due to the demand response mechanisms, yet it also 
lays within the thermal limits of the power lines.  

To evaluate the importance of considering network constraints in the optimization 
model the reinforcement costs for each scenario needs to be computed. The following 
equation is used. 

inf Reinf_ * *l l
l

re orcementCost line Cost lineLength      (50) 

As mentioned in section 4.1, the cost considered for the reinforcement of the power 
lines is 8 USD/m [10]. Line lengths are in Table 4, and λl is the integer coefficient of how 
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many times the power line should be reinforced, computed from the violation of its 
thermal limit under the analyzed scenarios. For instance, for both Scenarios SD,r,n and 
SD,R,n, λ = {0,0,0,0,0,0,0,0,1}.  

The global benefits of the different solutions analyzed are summarized in the objective 
function values presented in Table 12. Comparing to the base Scenario Sd,r,n, the 
inclusion of distributed generation provides savings  of 9.44% when the network 
constraints are not taken into account with around 0.2% of increased cost for 
reinforcements. In contrast savings of 9.16% are achieved when the network is 
considered in the optimization model. These small differences suggest that it may be 
better to just reinforce the lines than the added complexity and additional costs of 
installing communications systems to measure and control the real-time network status 
and equipment to manage the DG accordingly.  

Regarding the scenarios that also includes demand response, the benefit increases to 
17.13% with a similar reinforcement cost of around 0.2%. The scenario considering 
network thermal constraints gives almost the same benefits than in SD,R,n without the 
reinforcement costs. It is important to note that the obtained results for SD,r,N and SD,R,N 
are very likely to be overvalued, as the real implementation of such coordinated control 
of network and RES systems could represent considerable costs, reducing the expected 
benefits. 

5.2. Case study B 

In the second case study more power lines are included, for a total of 16. Similar to Case 
study A, the load for each node is established to be equal to 5 houses.  

The total installed distributed generation of PV, HP and storage systems is listed in Table 
13. Similar to Case study A, the installed capacity in scenarios without network 
constraints depends solely on the energy requirements of the house; while in SD,r,N, the 
location of the house within the network affects that decision, being the houses in more 
saturated lines the ones with a slightly higher capacity installed. It is important to remark 
that for this case study, battery storage investments were only profitable in Scenarios 
SD,r,n and SD,r,N. 

For the comparison between scenarios, the resulting objective function values are 
summarized in Table 14. The load flow analysis for Scenario SD,r,n, (which considers 
distributed generation) shows that the network requires the reinforcement of lines H, I 
and P. In Scenario SD,R,n which includes DER systems but no network constraints, the 
behavior is similar to the one in the previous case study. With the added capability of 
demand response, the network topology and the behavior of loads result in smaller 
violations in the maximum thermal capacity of power lines. Hence, only lines I and P 
need to be reinforced to cope with this operation. Similar to the previous case study, 
the network reinforcement cost is computed for Scenarios SD,r,n and SD,R,n, with λ = 
{0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1} and λ = {0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1}, respectively. 

The results in these scenarios are very similar to those of Case study A. For the scenario 
including distributed generation, a 9.44% savings is achieved with a decrease of 
approximately 0.1% in the benefits if the reinforcement costs are considered. For the 
same system but including network thermal constraints, the total savings are 9.13%. On 
the other hand, Scenario SD,R,n with all DER available gives 17.13% savings, and an added 
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cost of 0.07% for network reinforcements; meanwhile, SD,R,N provides a total benefit of 
17.12%, which is quite similar to the benefits of Scenario SD,R,n. Once more, it can be 
noted that the difference between considering or not considering the network thermal 
constraints is not significant. In addition, the benefits of Scenario SD,R,N would decrease 
if coordinated control costs were taken into account.   

5.3. Case study C 

Lastly, Case study C presents a different organization to see the effects of DER in a 
network with more main branches and is more balanced. In this case, each node of the 
district includes the energy consumption patterns of 7.5 houses. The load flow analysis 
for the scenarios of Case study C shows that many power lines in this network have 
similar energy flows. For Scenarios SD,r,n and SD,R,n, power lines D, H, L and P need to be 
reinforced. In comparison to Case study B, with an equal number of nodes, more power 
line flows overlap because of the more uniform distribution of houses in the network. 

For this case study, planning of DER systems continues with the same trend of previous 
cases, where slight differences appear in contracted power and in PV and Battery 
installed capacity only in Scenario SD,r,N (see Table 15). However, the results in HP power 
show a noticeable change from previous cases, as all nodes of the network implement 
the same installed capacity. This result can be attributed to the more balanced network 
proposed in this case study. 

The final values of the objective function are another change from previous case studies. 
Table 16 shows that the percentage of benefits has increased in comparison to previous 
cases. This can be attributed to the higher number of stressed power lines and the more 
balanced network. 

5.4. Final summary 

Lastly, for the sake of comparison, the total benefits for all case studies are listed in Table 
17. The reviewed networks included 9 and 16 nodes for Case studies A and B, 
respectively, whereas Case study C also presents a 16-node network, but organized in 4 
more balanced branches. From the table below, it is demonstrated that the size of the 
network is not relevant when the topology is similar, as in Cases A and B. In contrast, 
Case study C presents a different topology, achieving around 3% more benefits with 
respect to the base scenario without DER. This extra profit suggests that, with more 
saturated lines, more benefits can be obtained from DER systems.  

6. Conclusions 

Three case studies were analyzed, each one proposing a different low-voltage district 
network. From the results obtained, it can be seen that the size of the network does not 
significantly affect the percentage of expected benefits of DER systems when the 
structure of the network is similar. Indeed, from this study, it can be concluded that the 
household benefits of Distributed Energy Resources (DER) systems can be around 10% 
when no demand response is implemented, and near 20% when it is. In addition, the 
analysis also suggests that the network structure has an impact on the share of profits. 
For instance, the network with a higher number of saturated power lines showed around 
3% more benefits from DER systems than the others. 
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In the case studies analyzed, it is evident that, by including network thermal constraints 
in the optimization model, the violation of the limits of the power lines can be avoided 
while still taking advantage of DER systems with a slight decrease of the expected 
benefits. However, the comparison of this reduction on the total benefits to the extra 
costs of introducing network reinforcements where needed (considering only the low 
voltage network), shows that the difference between them is not significant, suggesting 
that line reinforcements are a better solution than including network constraints. 
Certainly, the real implementation of a district capable of operating the energy 
resources reviewed in this paper with each given network status would require complex 
communication and control systems as well as additional costs. Therefore, the approach 
of not considering network constraints can simplify the planning and operation of the 
systems, boosting the integration of distributed energy resources. 
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Figures 

 

 
Fig.  1. Block diagram of the proposed optimization model. 

 

 
Fig.  2. Demand curves and annual evolution for residential sector in Spain. 
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Fig.  3. District electric network: Case study A. 

 

 
Fig.  4. District electric network: Case study B. 

 

 
Fig.  5. District electric network: Case study C. 
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Fig.  6. Power flow analysis for Network A in Scenario Sd,r,n. 

 

 
Fig.  7. Load flow analysis detail for a representative day in December (Case study A). 
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Tables 

 

Table 1 

Average annual energy consumption per household in Spain (2011). 

Consumption 
per Household 

Electric   Thermal: 
DHW/Heating 

Thermal: 
Others 

Total 

Energy (kWh) 3698.13 6384.85 438 10.521 

Percentage (%) 35.15% 60.68% 4.16% 100% 

 

Table 2 

Tariffs time schedule and pricing. 

Two-price tariff 
(electricity): 

Peak Off-Peak 

Winter 12-22h 23-11h 
Summer 13-23h 24-12h 
Price (USD/kWh)  0.216 0.0734 

Access (Annual)  51.94 (USD/kW) 
Natural gas tariff: Static 
Price (USD/kWh) 0.0743 
Access (Monthly) 12.12 (USD/Client) 
Electricity selling tariff: Static 
Price (USD/kWh) 0.0412 

 

Table 3 

Technology costs and expected energy losses. 

Technology 
Inst. Cost  
(USD/ W) 

O&Mfix 
(USD/ kW) 

Losses (%) 

PV 3 43 24 (electric) 
HP 3.1 140 15 (thermal) 
Battery 0.5 (USD/Wh) - 10 (electric) 

 

Table 4 

Line lengths in Case study A. 

Line A B C D E F G H I 

Length (m) 289.4 258.48 241.14 95.63 22.67 158.4 64.03 28.23 216.65 
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Table 5 

Line lengths in Case study B. 

Line A B C D E F G H 

Length (m) 68.6 35 79.15 35.51 86.83 50 29 79.61 

 I J K L M N O P 

Length (m) 46.61 61.03 61.03 76.69 71.81 56.04 139.12 89.19 

 

Table 6 

Line lengths in Case study C. 

Line A B C D E F G H 

Length (m) 40.47 42.42 55.74 98.14 109.57 35.37 45.27 57.25 

 I J K L M N O P 

Length (m) 68.68 46.52 52.82 47.86 67.35 51.42 46.2 66.32 

 

Table 7 

Scenarios for the optimization model. 

Scenario DG and 
Storage 

Demand 
Response 

Network 
constraints 

1, Sd,r,n x x x 

2, SD,r,n ✓ x x 

3, SD,r,N ✓ x ✓ 

4, SD,R,n ✓ ✓ x 

5, SD,R,N ✓ ✓ ✓ 

 

  



22 

 

Table 8 

Installed PV power in Case study A (kW). 

House Sd,r,n 

(base) 
SD,r,n SD,r,N SD,R,n SD,R,N 

1,2,7,9 0 4.059 4.059 5.346 5.346 

3 0 4.059 4.011 5.346 5.346 

4 0 4.059 4.087 5.346 5.346 

5,8 0 4.059 4.062 5.346 5.346 

6 0 4.059 4.072 5.346 5.346 

Total:  0 36.531 36.530 48.114 48.114 

 

Table 9 

Installed heat pump power in Case study A (kW). 

House  Sd,r,n 
(base) 

SD,r,n SD,r,N SD,R,n SD,R,N 

1-3 0 1.502 1.502 1.803 1.803 

4-9 0 1.502 1.002 1.803 1.803 

Total:  0 13.518 10.518 16.227 16.227 

 

Table 10 

Installed battery system capacity in Case study A (kWh). 

House Sd,r,n 
(base) 

SD,r,n SD,r,N SD,R,n SD,R,N 

1,2,7,9 0 0.355 0.355 0 0 

3 0 0.355 0.25 0 0 

4 0 0.355 0.416 0 0 

5,8 0 0.355 0.361 0 0 

6 0 0.355 0.384 0 0 

Total:  0 3.195 3.192 0 0 
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Table 11 

Contracted electric/thermal power per node in Case study A (kW). 

House Sd,r,n 
(base) 

SD,r,n SD,r,N SD,R,n SD,R,N 

1,2 5.03/5.32 6.32/1.33 6.32/1.33 5.12/0.53 5.12/0.53 

3 5.03/5.32 6.32/1.33 6.37/1.33 5.12/0.53 5.12/0.53 

4 5.03/5.32 6.32/1.33 4.97/4.82 5.12/0.53 5.01/0.53 

5-9 5.03/5.32 6.32/1.33 4.99/4.82 5.12/0.53 5.01/0.53 

Total:  45.2/47.8 56.8/11.9 48.9/32.9 46.8/4.7 45.4/3.1 

* electric/thermal 

 

Table 12 

Objective function values in Case study A.  

Sd,r,n 
(base) 

SD,r,n SD,r,n + 
reinf. 

SD,r,N  SD,R,n SD,R,n + 
reinf. 

SD,R,N 

Value 
(k€) 

-895.806 -811.208 -812.916 -813.737 -742.384 -744.092 -742.53 

Benefit 0 9.44% 9.25% 9.16% 17.13% 16.94% 17.11% 

 

Table 13 

Total installed capacity and contracted power in Case study B (kW).  

Sd,r,n 
(base) 

SD,r,n SD,r,N SD,R,n SD,R,N 

PV 0 64.944 64.932 85.536 85.536 

HP 0 24.032 18.032 28.848 28.848 

Battery 0 5.68 5.655 0 0 

Contracted 
power* 

80.4/85.1 101.1/21.2 85.4/67.1 81.9/8.4 80.4/8.4 

         * electric/thermal 
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Table 14 

Objective function values in Case study B.  

Sd,r,n 
(base) 

SD,r,n SD,r,n + 
reinf. 

SD,r,N  SD,R,n SD,R,n + 
reinf. 

SD,R,N 

Value 
(k€) 

-1592.55 -1442.15 -1443.847 -1447.21 -1319.79 -1320.863 -1319.95 

Benefit 0 9.44% 9.34% 9.13% 17.13% 17.06% 17.12% 

 

Table 15 

Total installed capacity and contracted power in Case study C (kW).  

Sd,r,n (base) SD,r,n SD,r,N SD,R,n SD,R,N 

PV 0 97.408 97.6 128.304 128.304 

HP 0 36.048 24.032 43.264 43.264 

Battery 0 8.512 8.928 0 0 

Contracted 
power* 

120.8/136.1 151.6/31.8 120/116.2 122.8/12.6 119.8/12.6 

         * electric/thermal 

 

Table 16 

Objective Function values in Case study C.  

Sd,r,n 
(base) 

SD,r,n SD,r,n + 
reinf. 

SD,r,N  SD,R,n SD,R,n + 
reinf. 

SD,R,N 

Value 
(k€) 

-2441.22 -2139.95 -2142.07 -2150.07 -1954.02 -1956.14 -1954.33 

Benefit 0 12.34% 12.25% 11.93% 19.96% 19.87% 19.94% 

 

Table 17 

Summary of Objective Function values for all case studies. 

Case 
study 

Sd,r,n 
(base) 

SD,r,n SD,r,n + 
reinf. 

SD,r,N  SD,R,n SD,R,n + 
reinf. 

SD,R,N 

A 0 9.44% 9.25% 9.16% 17.13% 16.94% 17.11% 

B 0 9.44% 9.34% 9.13% 17.13% 17.06% 17.12% 

C 0 12.34% 12.25% 11.93% 19.96% 19.87% 19.94% 
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