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Abstract. Knowledge compilation converts Boolean formulae for which
some inference tasks are computationally expensive into a representation
where the same tasks are tractable. ProbLog is a state-of-the-art Prob-
abilistic Logic Programming system that uses knowledge compilation
to reduce the expensive probabilistic inference to an efficient weighted
model counting. Motivated to improve ProbLog’s performance we present
an approach that optimizes Boolean formulae in order to speed-up knowl-
edge compilation. We identify 7 Boolean subformulae patterns that can
be used to re-write Boolean formulae. We implemented an algorithm with
polynomial complexity which detects and compacts 6 of these patterns.
We employ our method in the inference pipeline of ProbLog and conduct
extensive experiments. We show that our compaction method improves
knowledge compilation and consecutively the overall inference perfor-
mance. Furthermore, using compaction reduces the number of time-outs,
allowing us to solve previously unsolvable problems.

1 Introduction

Knowledge compilation [6] encompasses a set of methods to compile a Boolean
formula for which some inference tasks are computationally expensive into a
Negation Normal Form (NNF) with special properties that allow to solve the
same tasks efficiently. Knowledge compilation finds application in planning [21],
computer-aided design [20], probabilistic reasoning [6,8]. Even if solving those
problems on the compiled Boolean formulae is efficient, knowledge compilation
itself is an #P-complete problem [27].

State-of-the-art Probabilistic Logic Programming systems like ProbLog [7,11]
use knowledge compilation approaches to reduce the expensive inference task to a
weighted model counting (WMC) problem. Motivated to solve larger problems in
ProbLog, in this paper we present an optimization method that compacts Boolean
formulae in order to speed-up knowledge compilation. While we implemented our
approach in the scope of ProbLog and used common ProbLog problems to evaluate
its effectiveness our approach is more general and any application using Boolean
formulae to represent knowledge could benefit from it.
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Our first contribution is the identification of seven Boolean subformulae pat-
terns that can be detected and used to re-write Boolean formulae in order to
improve knowledge compilation. Our detected patterns fall into two types: one
type that retains equivalence with the input Boolean formulae and a second
type that reduces the number of Boolean variables contained in the formulae.
The latter type patterns correspond to AND/OR clusters [16]. While they do
not preserve the equivalence directly, an application specific equivalence can be
defined and computed. In the context of ProbLog we preserve the weighted model
count of the Boolean formulae.

Our second contribution is the implementation of an efficient algorithm that
detects and compacts the presented patterns. Our implementation is independent
from any ProbLog system. We incorporated it in two different implementations of
ProbLog: MetaProbLog [17] and ProbLog2 [8] and evaluated it extensively with
7 different benchmarks. Further than the empirical evaluation of our approach we
also provide a complexity analysis that shows that our algorithm is polynomial.

This paper builds on and extends the work presented in [25]. We introduced
two new patterns, namely the minimal proof and OR-Cluster II; we improved
the performance of the implementation; allowed it to work with multiple queries
and evidence; and performed extensive experiments within the scope of ProbLog.

The paper is structured as follows: in Sect. 2 we present background and
discuss related work; Sect. 3 describes the patterns while Sect. 4 gives an overview
of the algorithm we implemented to detect and compact them; in Sect. 5 we
analyze the effects of our compaction on inference with ProbLog; finally, we
present our conclusions in Sect. 7.

2 Background

2.1 The Probabilistic Logic Programming Language ProbLog

ProbLog [7,11] is a general purpose Probabilistic Logic Programming (PLP) lan-
guage. It extends Prolog with probabilistic facts which encode uncertain knowl-
edge. Probabilistic facts have the form pi :: fi, where pi is the probability label of
the fact fi. Prolog rules define the logic consequences of the probabilistic facts.
No probabilistic fact can unify with a head of a rule in a ProbLog program. A
simple ProbLog program is shown in Example 1.

Example 1. The following ProbLog program encodes a probabilistic graph. The
predicate e/2 encodes a probabilistic edge between two nodes; the predicate p/2
defines a path between nodes.

0.6::e(a, b). 0.3::e(a, d). 0.8::e(b, c). 0.2::e(e, f). p(X, Y):- e(X, Y).

0.7::e(c, d). 0.4::e(d, f). 0.4::e(d, e). p(X, Y):- e(X, X1), p(X1, Y).

For a ProbLog program L each ground probabilistic fact1 fi can be true
with probability pi or false with probability (1− pi). A particular decision d on
1 Probabilistic facts can be ground or non-ground. [11] proves that finitely many

groundings of non-ground probabilistic facts are sufficient to compute probabilities.
That is why we restrict our discussion to programs with ground probabilistic facts.
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the truth values of all probabilistic facts determines a unique logic program Ld.
For N probabilistic facts there exist 2N such logic programs. Each probabilistic
fact can be seen as an independent random variable. ProbLog then defines a
distribution over the logic programs Ld as:

P (Ld) =
∏

fi∈Ld

pi
∏

fi∈L\Ld

(1 − pi) (1)

ProbLog systems2 provide a wide choice of inference and learning algorithms,
which are used in applications like system prognostics and diagnostics [28], link
and node prediction in biological data [10], robotics [19]. ProbLog focuses on two
main inference tasks: (a) computing the probability that a query is true for a given
ProbLog program, namely the marginal (MARG) probability of a query; and (b)
computing the conditional probability (COND) of a query for a ProbLog program
given some evidence, i.e. a set of facts for which the truth values have been decided.

Computing the MARG task boils down to determining all logic programs Ld

which entail the query and summing their probabilities as computed by Eq. 1. Sim-
ilar, for the COND task ProbLog needs to determine the logic programs Ld which
entail the query but also the evidence. An exhaustive enumeration of these pro-
grams is infeasible but for the tiniest problems. That is why ProbLog’s inference
mechanism employs a step-wise procedure called an inference pipeline [26] that
reduces the inference task into a WMC problem. First, given a ProbLog program
L, a set of queries and evidence, ProbLog uses SLD [12] or SLG [4] resolution on the
logical part of L, that is, ignoring the label of probabilistic facts, in order to deter-
mine the ground logic program relevant to the queries and the evidence (Ground
LP) [8]. Then, the Ground LP is converted to an equivalent with respect to the
WMCBoolean formula.During this process any cycles that occur in theGroundLP
are handled. We use theProof-Based approach [15] for this. Next, using knowledge
compilation the Boolean formula is compiled into a negation normal form (NNF)
with special properties which allows efficient WMC. Two target compilation lan-
guages have been considered so far: ROBDDs [3] and sd-DNNFs [6]. The NNF is
then associated with the probabilities of L and used for WMC.

2.2 AND-OR Graphs

We represent Boolean formulae as AND-OR graphs. An AND-OR graph is a
directed graph composed by AND and OR nodes. An AND node indicates that
all child nodes must be true, while an OR node indicates that at least one
of the child nodes must be true. An AND-OR graph is a suitable represen-
tation for a ground logic program relative to a query q. The different clauses
(qi∈1..m:- ri,1, ..., ri,n.) of the predicate q are processed as follows: for each clause
qi all literals ri,j in the body are grouped as children of an AND node. The differ-
ent AND nodes then are grouped as children of an OR node labeled with q. Next,

2 When it is clear from the context we use the term ProbLog to refer to either the
language or the system. Otherwise we state it explicitly.
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each literal ri,j is treated as a new query. An AND-OR graph of a query has the
following characteristics: cycles that appear in the logic program also appear in
the AND-OR graph; for each subgoal g there is only one OR node; an OR-node
has multiple parents if the subgoal is repeated and goals proven as facts are
represented by special OR nodes without children, called terminal nodes. The
edge from a child node to a parent node states that the parent depends on the
child node.

Definition 1. An AND-OR graph for a query q is a directed graph G =
(Vand, Vor, Vterm, E) with Vand a set of AND nodes, Vor a set of labeled OR
nodes, Vterm ⊂ Vor a set of terminal nodes, Vnonterm = Vor \Vterm and E ⊆ R a
set of directed edges, where R = (Vand×Vor)∪(Vnonterm×Vand)∪(Vnonterm×Vor).
The root of the graph is an OR node labeled with q.

Example 2. For the ProbLog program in Example 1 and the query p(a, f).
the corresponding AND-OR graph is:

{e(d, f); 0.4}

{e(c, d); 0.7}

{e(b, c); 0.8}

{e(a, b); 0.6}

{e(e, f); 0.2}

{e(d, e); 0.4}

{e(a, d); 0.3}

p(a, f)

AND

AND

p(d, f)

AND

p(e, f)

ANDp(c, f)

ANDp(b, f)

Ellipses depict OR nodes, diamonds depict AND nodes and rectangles ter-
minal nodes. OR nodes are labeled with the goal they prove. Note that in the
context of ProbLog terminal nodes have attached probabilities.

3 Compactable Patterns

We identify 7 patterns that appear in AND-OR graphs and present how we use
them in order to compact the graph. The patterns we identify and their com-
pacted form are illustrated in Table 1. Patterns 1 to 4 maintain the Boolean for-
mulae equivalence. The compaction of patterns 5 to 7 removes Boolean variables
and introduces a new Boolean variable to represent them. These compactions
do not directly maintain the equivalence of the Boolean formulae. Application
specific problems require a special calculation for the introduced representative
Boolean variable. For correct ProbLog inference we need to maintain the WMC.
That requires to calculate the probability of the representative Boolean variable.
Proof of correctness for these compactions appears in [16].

1. Single Variable: There are an OR node A and a terminal node B, such that
A depends only on B. Compaction: Node A and the edge from B to A are
deleted. The edges starting from A now start from B.

2. Single Branch I: There are a node A, an OR node B and an AND node C,
such that B depends only on C and A depends on B. Compaction: If A is
an OR node then node B and the edge from C to B are deleted. A new edge
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from C to A is created. If A is an AND node then nodes B and C are deleted
together with the edge from C to B. All children of C are connected to A.

3. Single Branch II: There are two OR nodes A and B, such that A depends
on B and no other node depends on B. Compaction: Node B and the edge
from B to A are deleted. All children of B are connected to A.

4. Minimal Proof: There are an OR node A, two AND nodes B1 with a set of
children ChB1 and B2 with a set of children ChB2 such that ChB1 ⊆ ChB2 .
Compaction: Node B2 and all edges from the child nodes in ChB2 to B2

are deleted. The edge from B2 to A is deleted as well.
5. AND-Cluster: There are an AND node A, a set of nodes Ch′

A ⊆ ChA,
where ChA are all terminal nodes A depends on, such that Ch′

A = ChA \
{C|∃B,B �= A,B depends on C}. Compaction: All terminal nodes Ci ∈
Ch′

A are deleted, together with the edges from Ci to A. A new terminal
node Ct is created together with an edge from Ct to A. A joint probability
pt =

∏
Ci∈Ch′

A

pi, where Ci is a terminal node with probabilistic label pi is

calculated. The probabilistic label pt is attached to node Ct.
6. OR-Cluster I: There are an OR node A, a set of nodes Ch′

A ⊆ ChA, where
ChA are all terminal nodes A depends on, such that Ch′

A = ChA\{C|∃B,B �=
A,B depends on C}. Compaction: All terminal nodes Ci ∈ Ch′

A are
deleted, together with the edges from Ci to A. A new terminal node Ct is
created together with an edge from Ct to A. A joint probability pt is calcu-
lated as pt = (..((p1 ∗ (1 − p2) + p2) ∗ (1 − p3) + p3).. + pn), where pi is the
probability labeled in Ci ∈ Ch′

A, i = 1..|Ch′
A|. The probability pt is attached

to node Ct.
7. OR-Cluster II: There are an OR node A, that depends on n AND nodes

B1...Bn that each has exactly one different terminal child node Ch1...Chn

and all the rest child nodes (denoted as node C) are common. Compaction:
All AND nodes B1...Bn and all terminal nodes Ch1...Chn are deleted.
A new terminal node Ch is created. A joint probability pt is calculated as
pt = (..((p1 ∗ (1 − p2) + p2) ∗ (1 − p3) + p3).. + pn), where pi is probabilistic
part of the label of Chi, i = 1..n. The probabilistic label pt is attached to
node Ch. A new AND node B that contains Ch,C is created, finally, an edge
from B to A is created.

4 Algorithm

Our algorithm iterates over patterns 1 to 6 in the order presented in Table 1.
As soon as a pattern is detected the corresponding compaction is applied.
According to the order we choose the detection and compaction of one pattern
allows the detection and compaction of the next one in the same iteration. This
ensures the minimum number of iterations required to compact a graph. Our
algorithm terminates once no patterns can be detected. Algorithm 1 presents
the pseudo-code for detecting patterns 1 to 6.
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Table 1. AND-OR graph patterns and the compacting transformations. We denote
with “...” multiple possible nodes to/from which exists an edge. With octagons we
represent nodes that can be of any type (terminal, AND or OR).

Pattern Compaction

1.

... A

...

–B; p˝

...

–B; p˝

...

2.

... A1

... ...

... A2 ...

...

...

Ch1

Ch2

Ch3

B C

... A1

...

...

...

... A2

... ...

Ch1

Ch2

Ch3C

3.

... A

...

...

Ch1

...
Ch2

...

...

B ... A ...

... Ch1

... Ch2

...

...

4.

... A

...

...

...

...

Ch1

Ch2

Ch3

B1

B2 ... A

...

...

...

Ch1

Ch2

B1

... A

... ...

–Ch1; p1˝

–Ch2; p2˝

pt = p1 · p2

5.
... A

... ...

–and(Ch1, Ch2); pt˝

... A

... ...

–Ch1; p1˝

–Ch2; p2˝

pt = p1 · (1 − p2) + p2

6.
... A

... ...

–or(Ch1, Ch2); pt˝

... A ...C

–Ch1; p2˝

–Ch2; p3˝

B1

B2

pt = p1 · (1 − p2) + p2

7.

... A

...C

–or(Ch1, Ch2); pt˝

B

Completeness: Our algorithm does neither detect nor compact pattern 7. We
are also confident that there exist more patterns which we do not consider. Thus,
AND-OR graphs which include at least one of these patterns will not be fully
compacted. Therefore, our algorithm is not complete.
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Data: An AND-OR graph
Result: Detected Node, Nodes to be compacted
detect single variable(NodeA, Terminal) ← detect and cluster(RefChilds) ←

or edge(NodeA, Terminal), and edge(NodeA, ),
is terminal(Terminal), all(Terminal, (
� ∃ and edge(NodeA, ), and edge(NodeA, Terminal),
� ∃ (or edge(NodeA, Any), Terminal �= Any). is terminal(Terminal),

detect single branch1(NodeB, NodeC) ← � ∃ or edge( , Terminal)
or edge(NodeB, NodeC), ), Childs),
and edge(NodeC, ), get all and edge sets(ChildSets),
� ∃ and edge(NodeB, ), refine cluster(ChildSets, Childs, RefChilds),
� ∃ (or edge(NodeB, Any), NodeC �= Any). RefChilds �= ∅.

detect single branch2(NodeA, NodeB) ← detect or cluster1(RefChilds) ←
or edge(NodeA, NodeB), or edge(NodeA, ),
or edge(NodeB, ), all(Terminal, (
� ∃ and edge( , NodeB), or edge(NodeA, Terminal),
� ∃ (or edge(Any, NodeB), NodeA �= Any). is terminal(Terminal),

detect minimal proof(NodeB1, NodeB2) ← � ∃ and edge( , Terminal)
or edge(NodeA, NodeB1), ), Childs),
and edge(NodeB1, ), get all or edge sets(ChildSets),
or edge(NodeA, NodeB2), refine cluster(ChildSets, Childs, RefChilds),
and edge(NodeB2, ), RefChilds �= ∅.
NodeB1 �= NodeB2, refine cluster([], RefChilds, RefChilds)
all(Child, and edge(NodeB1, Child), refine cluster([Set|ChildSets], Childs,

ChildsB1), RefChilds) ←
all(Child, and edge(NodeB2, Child), NewChilds = Set ∧ Childs ,

ChildsB2), refine cluster(ChildSets, NewChilds,
ChildsB1 ⊆ ChildsB2. RefChilds).

Algorithm 1: The 6 pattern detection algorithms.

Complexity:3 The compaction operations are very efficient (O(N) with N the
number of edges affected). Detecting and verifying a pattern is computationally
expensive and deserves a thorough analysis.

For an arbitrary AND-OR graph G we denote with Nor the number of OR
edges, with Nand the number of AND edges and with Nterm the number of
terminal nodes. We assume that a node always contains Nterm children; this is
a high upper bound assumption but does not affect the complexity class.

The complexity for detecting and verifying all patterns 1 to 3 in an AND-OR
graph is O(Nor · (log(Nor) + log(Nand))); for all patterns 4 the complexity is
O(Nor · (log(Nor) + log(Nand) + Nterm)); for all patterns 5 the complexity is
O(N2

and · Nterm); finally, for all patterns 6 the complexity is O(N2
or · Nterm).

We illustrate the steps taken when applying our compaction algorithm to an
AND-OR graph derived from the ProbLog program in Example 3.

Example 3. We apply our compaction algorithm on the graph in Example 2.
In the 1st iteration it detects 1 Single Variable of p(e, f) and 2 Single Branch
I of p(b, f) and p(c, f) resulting in Graph 1 in the following table; and 2 AND-
Clusters resulting in Graph 2. In the 2nd iteration 1 OR-Cluster I and 1
Single Variable of p(d, f) are detected resulting in Graph 3 and Graph 4
accordingly.

3 More details for the algorithm and the full complexity analysis can be found at:
https://lirias.kuleuven.be/bitstream/123456789/500398/5/appendix.pdf.

https://lirias.kuleuven.be/bitstream/123456789/500398/5/appendix.pdf
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2hparG1hparG

{e(d, f); 0.4}

{e(b, c); 0.8}

{e(c, d); 0.7}

{e(a, b); 0.6}

{e(d, e); 0.4}

{e(e, f); 0.2}{e(a, d); 0.3}

p(a, f)

AND

AND p(d, f)

AND

{e(d, f); 0.4}

{e(a, d); 0.3} {and(e(d, e), e(e, f)); 0.08}

{and(e(a, b), e(b, c), e(c, d));
 0.336}

p(a, f)

AND

AND

p(d, f)

.hparglanfi–4hparG3hparG

{e(a, d); 0.3}

{or(e(d, f), and(e(d, e), e(e, f)));
 0.448}

{and(e(a, b), e(b, c), e(c, d));
 0.336}

p(a, f)

AND

AND

p(d, f)

{e(a, d); 0.3}

{or(e(d, f), and(e(d, e), e(e, f))); 0.448}

{and(e(a, b), e(b, c), e(c, d)); 0.336}

p(a, f)

AND

AND

The final AND-OR graph forms 1 OR-Cluster II pattern. If we detected and
compacted OR-Cluster II patterns, it would enable a final AND-Cluster com-
paction to fully compact the AND-OR graph into a single terminal node con-
taining the probability of the query.

The implementation neither detects nor compacts pattern 7; pattern 7 may
correspond to complex subgraphs with unreasonably high detection cost. By
using indexing we decreased the complexity of our previous implementation [25]
from O(N2) to O(N · log(N)) for several tasks. We also added support for mul-
tiple queries and evidence. The implementation of the detection/compaction
algorithm is a stand-alone Prolog program.

5 Compacting ProbLog Programs

Section 2.1 presents the general scheme of a ProbLog inference pipeline. We focus
on 4 particular ProbLog pipelines, based on two mainstream ProbLog implemen-
tations – MetaProbLog [17] and ProbLog2 [8]. These inference pipelines differ
with respect to (a) representation of the Ground LP and the Boolean formu-
lae: ProbLog2 uses AND-OR graphs and CNF DIMACS, while MetaProbLog
uses Nested Tries [15] and BDD scripts [14]; (b) ways of preprocessing the
Boolean formulae: ProbLog2 uses Boolean subformulae repetition detection and
MetaProbLog uses the recursive node merging method presented in [18]; and (c)
in the knowledge compilation method: ProbLog2 uses the sd-DNNF compiler
c2d [5] and MetaProbLog uses the SimpleCUDD [14] compiler for ROBDDs. The
4 pipelines we use for our experiments are listed in Table 2. The pipeline imple-
mentations of ProbLog allow us to employ our detection/compaction algorithm
(a) before and (b) after the cycle handling processing of the Boolean formula
in any ProbLog pipeline. In (a), called the prior compaction, the Ground LP
is represented as an AND-OR graph and then processed by our algorithm. In
ProbLog2 the loop-breaking mechanism applies directly on the AND-OR graph
and generates a loop-free AND-OR graph. In MetaProbLog the loop-breaking
operates on the nested trie structure and produces a BDD Script which is easily



Compacting Boolean Formulae for Inference 433

rewritten as an AND-OR graph. This allows (b), that is, to invoke the com-
paction algorithm again and attempt a further optimization of the AND-OR
graph before the knowledge compilation step. We call this the post compaction.
Furthermore, we can invoke the prior and post compactions in the same pipeline;
we refer to this compaction setting as both.

Table 2. ProbLog pipelines.

Pipeline Ground LP

representation

Cycle handling Boolean formulae

representation

Compilation

language

ProbLog2/sd-DNNFa AND-OR Proof-Based AND-OR→CNF DIMACS sd-DNNF

ProbLog2/ROBDD AND-OR Proof-Based AND-OR→BDD script ROBDD

MetaProbLog/sd-DNNF Nested Tries Proof-Based+ [18] BDD script→CNF DIMACS sd-DNNF

MetaProbLog/ROBDDb Nested Tries Proof-Based+ [18] BDD script ROBDD

aProbLog2 and bMetaProbLog default pipelines.

5.1 Experimental Set-Up

We experiment with 7 benchmark sets with a total of 738 programs. These
benchmark sets have been previously used for testing the performance of differ-
ent ProbLog implementations. The variety of these benchmarks and the different
inference tasks ensure a realistic estimate of the gain or the loss in the perfor-
mance of ProbLog pipelines due to our compaction algorithm.

In order to present our data in a more comprehensive way, we divide our
benchmarks in three groups: 387 easy programs which consume less than 10 s;
99 medium programs which consume between 10 and 60 s and 150 hard pro-
grams which consume more than 60 s. To classify a program we use the total run
time for the MetaProbLog/ROBDD pipeline without compaction – the default
MetaProbLog pipeline.

Each program is executed with the 4 ProbLog pipelines and the 4 compaction
settings – none, prior, post and both. Their combination results in 16 different
ProbLog pipelines to run each benchmark program with. We chose a time-out of
540 s for each test run. We managed to solve 636 out of the 738 programs within
the 540 s time-out with at least one of the 16 pipelines.

The c2d compiler is non-deterministic [5], meaning that for the same CNF
the compiled sd-DNNFs may differ. That is why we run each test invoking c2d
5 times (8 pipelines use c2d). Then we report the average time consumed by
the test. From previous experiments we have determined this number to give a
reliable estimate of the performance of c2d.

We run our experiments on 17 computers with Intel� quad-core 64-bit CPU
at 2.83GHz, 8GBs of RAM running Ubuntu 12.04 LTS (under normal load). The
chosen time-out ensured our experiments to terminate within at most 14 days.

5.2 Experimental Results

In our experiments we collect the total run time for executing a benchmark
program (including the compaction time). We use the time results to determine
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Fig. 1. Relative time gain due to a specific compaction.

the compaction setting which leads to (a) the lowest run times; and (b) to the
lowest number of time-outs for each of the pipelines and each benchmark set.

For each ProbLog pipeline and each compaction c ∈ {prior, post, both} we
sum (a) the gain in the total run time for each benchmark compared with the
run time of no compaction (c = none) when the compaction performs better:
T g
C (this is the total gain for compaction); (b) the gain in the total run time

when no compaction performs better: T g
N (this is the total loss for compaction).

We normalize each gain by dividing by the total number of programs within a
benchmark set to compensate for the fact that some of them contain more pro-
grams. For example, consider a particular benchmark with programs {b1, b2, b3}
each with run times: with compaction 20, 30 and 40 s and with no compaction
10, 25, 70 s. Then T g

C = 70−40 = 30 and T g
N = (20−10)+(30−25) = 15 showing

that in total the gain with compaction exceeds the loss due to compaction. We
exclude programs for which both inference with compaction and with no com-
paction times out. We chose this measurement because it shows the overall gain
in run time due to compaction. We present the gain due to compaction relative
to the total gain T g

C

T g
C+T g

N
in Fig. 1 as percentage. Detailed results are given in our

online appendix. We base our conclusions on all the results.

5.3 Experimental Conclusions

First, our algorithm improves the knowledge compilation time for the majority of
the benchmarks, between 75% to 85% for ROBDDs and between 55% to 65%
for sd-DNNFs. Our intuition is that ROBDDs benefit more than sd-DNNFs
because ROBDDs use a general Boolean formula for input while sd-DNNFs
require a conversion to a CNF Boolean formula. Compaction is beneficial for
most of the medium and hard problems but not that much for the easy problems.
It was expected that the time spend to perform our algorithm would not be
compensated from the gain in knowledge compilation for small problems.

Second, regarding the used pipelines from Fig. 1 we conclude that the highest
gain from our algorithm was for the ProbLog2/ROBDD pipeline having an almost
100% gain for all compaction settings (on medium problems). Using compaction
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is preferable to no compaction for the MetaProbLog/ROBDD, MetaProbLog/
sd-DNNF and ProbLog2/ROBDD pipelines and complex problems. We also
note that the ProbLog2/sd-DNNF pipeline in overall does not benefit from our
approach.

Third, none of the compaction settings (i.e. the prior, post or both) out-
performs the other compaction settings. For MetaProbLog/ROBDD the both
compaction is preferable; for MetaProbLog/sd-DNNF and ProbLog2/ROBDD
pipelines preferable is the post compaction; for ProbLog2/sd-DNNF the prior
compaction. The post and both compactions often yield the same Boolean formu-
lae. In such cases both spends unnecessary extra time for prior compaction. We
also note that the actual cost to perform detection and compaction is generally
small. In particular, compacting AND-OR graphs generated from a Ground LP
consumed at most 18.25 s for a program with total run time of 264.27 s; com-
pacting AND-OR graphs generated from Nested Tries consumed at most 64.95 s
for a program with total run time of 297.79 s.

Fourth, compaction allowed us to solve significantly more problems that
would otherwise timeout. Particularly, in the best case, MetaProbLog/ROBDD
with both compaction, we can solve 38% more programs; ProbLog2/ROBDD
with post compaction can solve 37% more programs. The two pipelines which use
compilation to sd-DNNF benefit less from compaction, MetaProbLog/sd-DNNF
with post compaction can solve 6% more programs while for ProbLog2/sd-
DNNF compaction introduces up to 12% more timeouts. The extra time-outs
occur for benchmarks that contain multiple queries and evidence. Often the
query and evidence atoms appear also as subgoals. Queries and evidence are
required for the final step of WMC thus they should not be removed from the
Boolean formula. Therefore there are less patterns that can be compacted in
the case of COND with respect to MARG tasks. For the other benchmarks
compaction reduces the overall amount of time-outs.

Finally, following from all our results, we must indicate that there is not
one best performing pipeline over all benchmarks. On average, the pipeline with
the least timeouts was ProbLog2/ROBDD with post compaction. The gain due
to compaction (prior, post or both) on the hard problems and the decrease of
timeouts indicate that our approach improves the performance of the system at
problems that it was poor before.

6 Related Work

Rewriting a Boolean formula to improve the performance of knowledge compila-
tion in the scope of ProbLog had first been investigated in [18]. [18] shows that
feeding a rewritten Boolean formulae instead of a non optimized one reduces
the operations needed by the knowledge compilation step and consequently the
knowledge compilation run time. The work we present in this paper, focuses on
optimizing even further the Boolean formula and works in parallel with these
Boolean formulae rewrites. Boolean formulae rewriting, in the scope of assessing
the Probability of a Sum-of-Products, has been investigated also in [24].
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Detecting regularities such as AND/OR-Clusters on a Boolean formula in
normal form (e.g., DNF), has been investigated in [16]. Our approach performs
similar transformations on an AND-OR graph instead of a Boolean formula in
normal form. [16] proves completeness of detecting AND/OR-Clusters in Boolean
formulae but faces some practical limitations. The most important of which
is that ProbLog using tabling and cycle handling as presented in [15] would
generate a Boolean formula that is not in normal form.

Hintsanen [9] argues that structural properties are important for finding the
most reliable subgraph. He calculates the probability of subgraphs connecting
two nodes and searching for the subgraph with the maximum probability. The
paper identifies as a special case the series-parallel subgraphs for which they
can compute the probability polynomially. These series-parallel subgraphs have
similarities with the AND/OR-Clusters.

Our work is also similar to [13] which presents a preprocessing of propositional
formulae to optimize model counting. Their approach optimizes CNF Boolean
formulae by using seven preprocessing methods. Similar to our work, some of
their preprocessing methods maintain equivalence and others not. In contrast to
our approach some of their methods increase the size of the Boolean formulae
which is an interesting point for us to look upon. There exist several other related
works from other fields such as variable ordering approaches for BDDs [22,23]
or preprocessing methods used in SAT solving [1,2].

7 Conclusion and Future Work

This paper presented a pattern-based approach for compacting Boolean formu-
lae. It detects and compacts 6 (out of 7 identified) patterns – 4 that preserve
logic equivalence and 2 that preserve equivalence with respect to the weighted
model count. Our approach aims to improve probabilistic inference that uses
knowledge compilation and weighted model counting. It targets but is not lim-
ited to the probabilistic logic programming system ProbLog and its underlying
implementations.

We performed experiments with 4 different ProbLog pipelines and 3 com-
paction settings on 7 benchmark sets with 738 benchmarks in total. Our results
show that compaction improves knowledge compilation to ROBDDs as well as to
sd-DNNFs. The gain in the total run time due to compaction is most salient for
harder problems. The decreased amount of time-outs proves that our approach
enables inference on problems unsolved before (i.e. without compaction).

In the future we want to investigate also non-compacting transformations
that could aid (thus improve) the knowledge compilation. In addition, we plan
to extend our algorithm to handle problems outside the domain of ProbLog. We
aim to test it on benchmarks from [13] in order to determine its general effects.
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