
Reducing WSN simulation runtime by using multiple simultaneous instances
Pedro Pinto, António Pinto, and Manuel Ricardo

Citation: AIP Conference Proceedings 1648, 710012 (2015);
View online: https://doi.org/10.1063/1.4912936
View Table of Contents: http://aip.scitation.org/toc/apc/1648/1
Published by the American Institute of Physics

http://aip.scitation.org/author/Pinto%2C+Pedro
http://aip.scitation.org/author/Pinto%2C+Ant%C3%B3nio
http://aip.scitation.org/author/Ricardo%2C+Manuel
/loi/apc
https://doi.org/10.1063/1.4912936
http://aip.scitation.org/toc/apc/1648/1
http://aip.scitation.org/publisher/

Reducing WSN Simulation Runtime
by using Multiple Simultaneous Instances

Pedro Pintoa,c, António Pintob and Manuel Ricardoc

aESTG, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal
bCIICESI, ESTGF, Politécnico do Porto and INESC TEC, Porto, Portugal

cINESC TEC, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal

Abstract. WSN can be deployed using widely available hardware and software solutions. The Contiki is an open source
operative system compatible with a wide range of WSN hardware. A Contiki development environment named
InstantContiki is also available and includes the Cooja simulation tool, useful for the simulation of WSN scenarios, prior
to their deployment. This simulation tool can provide realistic results since it uses the full Contiki’s source code and
some motes can be emulated at the hardware level. However, the Cooja simulator uses one process per simulation, not
taking advantage of multiple core processors. In this paper we propose a framework to automate the execution of
simulations of multiple scenarios and configurations in Cooja. When a multiple cores processor is available, this
framework can run multiple simultaneous Cooja instances, taking advantage of processing resources and contributing to
reduce the total simulation runtime.

Keywords: WSN, Contiki, Cooja, Simulation.
PACS: 06, 89

WSN DEVELOPMENT CHALLENGES

WSN can be deployed in real scenarios using hardware products such as the Z1[1], the SeedEye[2], the
MICAz[3], or the Tmote Sky[4]. For these hardware products, multiple operative systems are available, such as the
TinyOS[5], the RIOT-OS[6], and the Contiki [7].

The InstantContiki is a Contiki development environment available as a ready-to-use Ubuntu Linux VMware
virtual machine which includes the Contiki and the Cooja simulator [8], among other tools. Version 2.7 is the
current version of InstantContiki and its Cooja simulator uses a single process, i.e., it runs in a single core. If Cooja
simulator runs within a virtual machine with multiple virtual cores available, they are underused when simulations
are performed. Also, while there may not be a direct correspondence between the number of virtual cores assigned
to the virtual machine, and the number of cores on the real host machine, the underutilization of virtual processing
resources leads to the underuse of real processing resources.

Simulators such as NS-3, assume that motes run simplified versions of the real software and hardware. The
Cooja simulator differs because it allows the simulation of full Contiki’s source code in a set of emulated hardware
nodes. The simulation of full Contiki’s source code running in a specific emulated hardware platform has the
advantages of obtain close-to-real results and enable the fast deployment of the simulated experiments directly onto
the real motes; however, it increases simulation complexity and simulation runtime.

In order to obtain statistically sound simulation results, multiple simulations are usually run, either to test
different random topologies or test the same scenario with random seeds, for instance. Such rounds of repeated
simulations can sum up to several hours or even days of simulation runtime. The proposed simulation framework
automates Cooja simulations and also takes advantage of multiple virtual cores by running multiple simultaneous
Cooja instances.

SIMULATION FRAMEWORK

The proposed simulation framework is presented in Fig. 1. It comprises the main functional block, the Main
Launcher. Here, the user provides the parameters to be used on all simulations either in the form of an argument list
or through a configuration file. After that, the Simulator Scheduler will schedule and initiate the execution of all
simulations, launching parallel instances for each simulation, each one with its own set of parameters. Each instance

Proceedings of the International Conference on Numerical Analysis and Applied Mathematics 2014 (ICNAAM-2014)
AIP Conf. Proc. 1648, 710012-1–710012-4; doi: 10.1063/1.4912936

© 2015 AIP Publishing LLC 978-0-7354-1287-3/$30.00

710012-1

is composed of a Simulation Setup, a Simulation Execution and a Simulation Analysis. According to the Simulation
Scheduler information, the Simulation Setup generates all simulation parameters in one main configuration file and
then starts the Simulation Execution. The Simulation Analysis starts after the end of the simulation and analyses the
simulation log to generate graphics of the obtained results.

Caption

Instance n

Instance 2

Instance 1Main Launcher

Simulation AnalysisSimulation ExecutionSimulation Setup

Config
Generator

Cooja
SimulationMain Config Sim Log

Log Analyser
&

Image Generator

Simulation
Guidelines Simulation

Scheduler

Simulation AnalysisSimulation ExecutionSimulation Setup

Files or
Arguments

Programming
block

Simulation AnalysisSimulation ExecutionSimulation Setup

...

Simulation Round Analysis
Log Analyser

&
Image Generator Functional

Block Instance

FIGURE 1. Simulation Framework

The simulation framework has a Simultaneous Instances (SI) mode that, when disabled, will result in a

sequential execution of all simulations, where each instance will start after the termination of the previous one. On
the other hand, when the SI mode is enabled, the Simulation Scheduler will start each simulation instance
independently of the others and up to a maximum number of SI. At the end of each round of simulations, the
Simulation Scheduler may perform a general analysis of logs and generate graphics for groups of finished
simulations. When the SI mode is enabled, the configuration of a maximum SI number is mandatory and it can be
adjusted in order to obtain the maximum reduction of the simulation runtime. Different values for the maximum SI
number were tested, and since the expected key impact of enabling SI mode is both the CPU load and RAM usage,
the impact on these items was also evaluated.

RESULTS

In order to test the simulation framework presented, a WSN simulation was defined using Contiki 2.5 with 10
generator/forwarder nodes and a sink node, with a simulated time of 60s. The simulation framework was executed in
an Ubuntu Linux operative system (12.04 LTS) 32 bits with 2GB of RAM in a VMware Virtual Machine. The
virtual machine processor emulated a real Intel(R) Core(TM) i7-2620M CPU @ 2.70GHz processor, with 2 cores
and 4 threads.

Two scenarios were created. In the first scenario the Simulation Scheduler was configured with the default mode,
i.e., with SI disabled. In the second scenario the Simulation Scheduler was configured with SI enabled and tested
with maximum SI values ranging from 2 to 6 (value 1 is the same as one instance with SI disabled). Both scenarios
were repeated 10 times and the values of the average CPU usage, the RAM usage, and the simulation runtime per
instance were collected. The scenarios were tested using different number of virtual cores configured in the virtual
machine: initially were used 2 virtual cores and then, 4 virtual cores (the number of virtual cores in a VMware
virtual machine can be configured up to the number of cores/threads presented in the real CPU; in this case, this
limit was 4). The values collected in the default mode assume that there is only one simulation instance and thus, the
global runtime was calculated by multiplying the runtime of one instance by the maximum SI number. When SI is
enabled, the global simulation runtime presented is the total time for a round of simulations equal to maximum SI
number.

710012-2

The results of global simulation runtime obtained for the maximum SI values tested for each scenario are shown
in Fig. 2a). These results show that the global simulation runtime is lower when the SI mode is enabled and the best
absolute results are obtained when it is used 4 virtual cores. When using a maximum SI value of 6 and 4 virtual
cores, the total runtime reduced from 575s, in default mode, to 325s obtained with SI enabled. Fig. 2b) shows the
virtual simulation runtime per instance, obtained by:

Instances ous SimultaneMax.

Runtime Globalinstance per Runtime Virtual (1)

The virtual runtime per instance variable was used to evaluate if one should use a value for maximum SI that was
lesser, greater or equal to the number of the used virtual cores. The results show that a higher reduction is achieved
when using a value for the maximum SI that equals the number of virtual cores. Moreover, the lowest value, 45
seconds approximately, is obtained when the maximum SI is set to 4, which is the number of the virtual cores. This
was the expected result since each instance will run in its virtual core and thus, increasing the maximum SI number
to a value higher than the number of virtual cores, will result in loss of efficiency due to concurrency within each
virtual core.

FIGURE 2. a) Global runtime and b) Virtual Runtime per instance

Fig. 3 presents the results for the simulation time ratio obtained using:

instance per Runtime Virtual

time Simulatedratio time Simulation (2)

where the simulated time is constant and equal to 60s in all scenarios. The presented results show that the use of
multiple virtual cores increases the simulation time ratio up to around 60%, when using 4 virtual cores and 4
maximum SIs. In this case, the simulation runtime is slower than the simulated time in default mode, but is faster
than the simulated time when SI is enabled. The results also reinforce that the highest reduction in simulation
runtime is obtained when the maximum SI number is equal to the number of used virtual cores.

FIGURE 3. Simulation time ratio

0
50

100
150
200
250
300
350
400
450
500
550
600
650

1 2 3 4 5 6

G
lo

ba
l

R
un

tim
e

(s
)

Max. Simultaneous Instances

a) Global Runtime
2 virtual cores - default
2 virtual cores - SI enabled
4 virtual cores - default
4 virtual cores - SI enabled

40
45
50
55
60
65
70
75
80
85
90
95

100
105
110

1 2 3 4 5 6

V
ir

tu
al

 R
un

tim
e

pe
r

in
st

an
ce

 (s
)

Max. Simultaneous Instances

b) Virtual Runtime per Instance

2 virtual cores - default
2 virtual cores - SI enabled
4 virtual cores - default
4 virtual cores - SI enabled

50,0
60,0
70,0
80,0
90,0

100,0
110,0
120,0
130,0
140,0
150,0
160,0
170,0
180,0

1 2 3 4 5 6

Si
m

ul
ta

io
n

tim
e

ra
tio

 (
%

)

Max. Simultaneous Instances

Simulation time ratio
2 virtual cores - default
2 virtual cores - SI enabled
4 virtual cores - default
4 virtual cores - SI enabled

710012-3

The use of SI mode impacts on CPU load and RAM usage. Fig. 4a) shows the average load of the CPU for the
tested maximum SI values. The indicated values are expressed as a percentage of total processor resources,
assuming values from 0% to 100%, where all cores of the CPU are in complete use. For instance, if one core is using
100% of its capabilities and the remaining three are using 0%, the represented load will be 25%. The results show
that, for scenarios with 2 virtual cores, the CPU load reaches 100% for a maximum SI value of 2 or higher. For
scenarios using 4 virtual cores, CPU will reach 100% for a maximum SI value of 4 or higher. As a side effect, these
results implied an impact on the temperature of real CPU which increased up to values around 100ºC, during
simulation runtime.

FIGURE 4. a) Average CPU load and b) Average Memory usage

The average RAM usage for each tested scenario is shown in Fig. 4b). The obtained results show the expected

behavior: in default mode the simulation instances will have a sequential execution and thus, the memory usage is
somewhat stable. On the other hand, with SI enabled the memory usage is expected to increase with the number of
SI. The results show that the memory usage increases approximately 200MB per instance.

CONCLUSION

In order to design and test WSNs scenarios Contiki developers may use compatible hardware and a set of
available developments tools that include the Cooja simulator. Although Cooja simulator allows close-to-real
simulations since it uses the full Contiki’s source code and emulates the hardware of some motes, it has a downside:
simulations runtimes take longer. Also, the current version of the Cooja simulator uses a single process and does not
take full advantage of current multiple core processor architectures.

The proposed simulation framework automates Cooja simulations and can run multiple simultaneous Cooja
instances, each one using a different core of the CPU, if available. The proposed framework enables the reduction of
simulations runtime by increasing the average CPU load and RAM usage. Moreover, the proposed framework
achieves the best results when the maximum SI number is equal to the number of processor virtual cores.

REFERENCES

1. “Z1 mote.” [Online]. Available: http://zolertia.com/products/z1.
2. “SeedEye.” [Online]. Available: http://www.evidence.eu.com/products/seed-eye.html.
3. “MICAz.” [Online]. Available: http://www.openautomation.net/uploadsproductos/micaz_datasheet.pdf.
4. “Tmote Sky Project.” [Online]. Available: http://www.snm.ethz.ch/Projects/TmoteSky.
5. “TinyOS.” [Online]. Available: http://www.tinyos.net/.
6. “RIOT Operative System.” [Online]. Available: http://www.riot-os.org/.
7. “Contiki OS.” [Online]. Available: http://www.contiki-os.org.
8. F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-Level Sensor Network Simulation with COOJA,” in

Proceedings 2006 31st IEEE Conference on Local Computer Networks, 2006, pp. 641–648.

30,0
35,0
40,0
45,0
50,0
55,0
60,0
65,0
70,0
75,0
80,0
85,0
90,0
95,0

100,0

1 2 3 4 5 6

A
ve

ra
ge

 C
PU

 l
oa

d
(%

)

Max. Simultaneous Instances

a) CPU load

2 virtual cores - default
2 virtual cores - SI enabled
4 virtual cores - default
4 virtual cores - SI enabled

600
800

1000
1200
1400
1600
1800
2000
2200
2400

1 2 3 4 5 6
A

ve
ra

ge
 M

em
or

y
us

ag
e

(M
B

)
Max. Simultaneous Instances

b) Memory usage

2 virtual cores - default
2 virtual cores - SI enabled
4 virtual cores - default
4 virtual cores - SI enabled

710012-4

