
Authoring Game-Based Programming
Challenges to Improve Students’

Motivation

José Carlos Paiva1(B), José Paulo Leal2, and Ricardo Queirós2

1 CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto,
Porto, Portugal

up201200272@fc.up.pt
2 CRACS & INESC-Porto LA & ESMAD/IPP, Porto, Portugal

zp@dcc.fc.up.pt, ricardoqueiros@esmad.ipp.pt

Abstract. One of the great challenges in programming education is to
keep students motivated while working on their programming assign-
ments. Of the techniques proposed in the literature to engage students,
gamification is arguably the most widely spread and effective method.
Nevertheless, gamification is not a panacea and can be harmful to
students. Challenges comprising intrinsic motivators of games, such as
graphical feedback and game-thinking, are more prone to have longterm
positive effects on students, but those are typically complex to create or
adapt to slightly distinct contexts. This paper presents Asura, a game-
based programming assessment environment providing means to mini-
mize the hurdle of building game challenges. These challenges invite the
student to code a Software Agent to solve a certain problem, in a way
that can defeat every opponent. Moreover, the experiment conducted to
assess the difficulty of authoring Asura challenges is described.

Keywords: Games · Gamification · Authoring · Learning ·
Programming · Competitive · Graphical feedback

1 Introduction

Motivation is what makes you try to do something [19]. One who feels unable
to do an activity, or fails to value it and its outcome, is highly likable to lack
motivation to engage in the activity, in which case he/she is said to be amoti-
vated. In education, loss of motivation is one of the most outstanding problems.
When students are amotivated, they tend to care less about educational activi-
ties and to stop striving to complete them. In programming courses, this results
in an unsustainable lack of practice which is accompanied by recurring failures
in assessments and later ends up in student dropout [1,6].

Several approaches have been proposed to mitigate this problem, such
as problem-based learning [15,17], storytelling [8], pair programming [6],

c© Springer Nature Switzerland AG 2020
M. E. Auer and T. Tsiatsos (Eds.): ICL 2018, AISC 916, pp. 602–613, 2020.
https://doi.org/10.1007/978-3-030-11932-4_57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11932-4_57&domain=pdf
https://doi.org/10.1007/978-3-030-11932-4_57


Authoring Game-Based Programming Challenges 603

competition-based learning [2,13], and gamification [7,21]. Undeniably, the most
widespread approach is gamification, which consists of using game elements and
mechanics to engage students. The most common gamification methods typically
add extrinsic motivators, such as leaderboards, badges, or levels, to an existing
learning environment. Even if these elements can increase students’ engagement
temporarily, they neither foster correct changes in attitudes and behaviors or
longtime commitment. On the contrary, they undermine the intrinsic interest
that one might have to perform a task. Completing the activity becomes a means
to obtain the reward rather than to develop skills. Moreover, the best way to
solve the task is the first to come to mind, taking risks or exploring are not
options [10].

Gamification techniques with enduring effects typically rely on different game
aspects, such as graphical feedback, game-thinking, collaboration, and in-game
challenges. Another well-explored aspect of games in programming learning is
competition. Despite the fact that it may have considerably harmful effects [9],
it is also true that new graduates are increasingly facing programming contests
after leaving universities, as a part of the recruitment process for top technol-
ogy companies. Hence, a promising approach might be to combine these fea-
tures. In fact, there are already some attempts to bring competitive games
into learning, which challenge the student to code the Software Agent (SA)
that controls the player and competes against other SAs. For instance, IBM
CodeRally – a Java game-based car rally competition presented at the 2003
ACM International Collegiate Programming Contest (ICPC) World Finals –
and Robocode – a Java-based virtual robot game – have been found to have a
great potential to catch students and non-students attention [14,16]. Neverthe-
less, building these challenges involves a complex and time-consuming process
which most times educators are not willing to perform.

This paper presents the authoring component of Asura, a game-based pro-
gramming assessment environment that challenges students to code competitive
SAs for a game. Asura is developed on top of Enki [18] – an existing pedagogical
environment of Mooshak 2 [12] – and Mooshak 2 itself. The final goal of Asura
challenges is to win a tournament among all submitted SAs, at the end of the
submission time. The authoring component of Asura, named Asura Builder, is
one of its key features. This component aims to provide a simple way of authoring
new challenges. As a benchmark, the reference is the well-known ICPC problems
whose automated assessment requires coding both a solution program and a test
case generator. The goal is to keep the effort of authoring an Asura challenge
similar to that of authoring an ICPC problem.

The development of new game-based challenges requires the teacher to extend
an existing referee (i.e., manager) to implement the game rules and inquire SAs
for their actions, implement the state interface that helps updating the game
state, add a problem statement, and upload some image assets for the game.
However, more complex challenges may demand the specification of wrappers
for SAs submitted by students. Also, teachers can add their own SAs, so that



604 J. C. Paiva et al.

students can do matches against them since the beginning. There is no limit on
the number of SAs submitted by teachers.

The remainder of this paper is organized as follows. Section 2 reviews the
state of the art on authoring tools for game-based challenges. Section 3 presents
Asura, its concept and architecture. Section 4 details the component for author-
ing challenges. Section 5 describes the validation of Asura Builder, which aims
to assess the increase in difficulty of building an Asura challenge when compared
to that of creating an ICPC-like problem. Finally, Sect. 6 summarizes the main
contributions of this paper and discloses the next steps on the presented work.

2 State-of-the-Art

Asura is a game-based assessment environment that aims to offer the teacher
a way to motivate students to program and overcome their difficulties through
practice, requiring a similar amount of effort to that of creating an ICPC-like
problem. It engages students by challenging them to code an SA to play a game,
supporting them with graphical game-like feedback to visualize how the SA
performs against other SAs. The final goal of an Asura challenge is to win a
tournament, like those found on traditional games and sports, among submitted
SAs.

To the best of authors’ knowledge, there is no tool to author challenges
with these features. Therefore, the next subsections review the state-of-the-art
on authoring tools for game-based challenges and present some environments
similar to Asura, highlighting their extensibility for new challenges.

2.1 Authoring Tools for Game-Based Challenges

Even though tools to author game-based challenges are scarce, there is much
research interest in such tools. Most of the attempts to create platforms for
authoring game-based challenges focus on simple, yet attractive, characteristics
of games, particularly the storyline, which are easy to adapt to heterogeneous
contexts. StoryTec [5] is a digital storytelling platform for creating and expe-
riencing interactive (i.e. non-linear) stories. It encompasses a story editor, an
action set editor, a property editor and an asset manager. The story editor
manages the structure of the story using an hierarchically organized graph con-
sisting of scenes. The stage editor is a tool similar to a level editor, present in
some video games, that enables scene creation using a drag-and-drop interface to
insert objects from the assets manager. The action set editor is a visual environ-
ment, based on the UML activity diagram, for defining the possible actions and
constraints of every scene. The asset manager is where the author can import
various types of assets, such as cameras, lights, and models.



Authoring Game-Based Programming Challenges 605

<e-Adventure> [20] is an authoring tool for story-driven educational games,
that aims to introduce games in the learning process. It supports the creation
of third-person and first-person adventure games by instructors with little or no
programming background. Furthermore, it complies with standards and speci-
fications of the e-learning field, allowing to export, modify, and reuse games as
learning objects. The tool is an all-in-one game creator with game objects orga-
nized by types (e.g., scenes, items, conversations, etc.) which the author can add
into the game.

Although these systems were designed for a pedagogical purpose, neither Sto-
ryTec or <e-Adventure> are specific for learning to code. Greenfoot system [11]
is an interactive object world that provides a framework and an environment
to create interactive 2D simulations. On the side of the solver, it features a
full-fledged Integrated Development Environment (IDE), including code editing,
compilation, object inspection, and debugging. Moreover, Greenfoot also offers
graphical feedback to visualize the appearance, location, and rotation of the
simulation objects as well as methods to directly interact with them.

2.2 Competitive Game-Based Programming Environments

SoGaCo [4] is a scalable web environment that evaluates competitive SAs, devel-
oped in several programming languages, that play simple mathematical board
games. Its interactive GUI allows learners to see step-by-step how their programs
play the game. Furthermore, it not only promotes competition among students
but also collaboration, allowing them to share their SAs through a single bot
address (URL).

The modular architecture of SoGaCo supports different games but there is
no known framework or standard form to develop games for SoGaCo. Neverthe-
less, it already contains several board games, such as PrimeGame, Mancala and
Othello.

CodinGame1 is a web-based platform with several puzzles that learners can
solve to practice their coding skills. Most of these puzzles require the user to
develop an SA to control the behavior of a character in a game environment,
and provide a 2D game-like graphical feedback. The SA programmed by the
player must pass all test cases (public and hidden) to solve the puzzle. Players
can choose one of the more than twenty programming languages available to
write their SA, or even solve it in more than one language. Once the exercise is
solved, players can access, rate, and vote on the best solutions.

The platform enables any user to contribute with programming challenges
through a dedicated form. Nevertheless, it only allows them to create challenges
based on input/output test cases without any game-like graphical feedback.

1 www.codingame.com.

www.codingame.com


606 J. C. Paiva et al.

3 Asura

Asura is an environment for assessment of game-based programming challenges.
The main goal of this environment is to minimize the hindrance of creating new
game challenges, while allowing students to enjoy unique features of games, such
as graphical feedback, game-thinking, and competitiveness. In Asura, students
are challenged to develop an SA to play a game. This SA has the final objective
of beating every other SAs in a tournament following a similar structure to those
organized on traditional games and sports.

During the development of the SA, students can validate its effectiveness by
executing matches against any previously submitted SAs that can be selected
from a board in Enki. A match runs on the Asura Evaluator, which evaluates the
code of the SA, starts a process with it, and leverages the rest of the evaluation
on the game manager. The outcome of the match is a JSON object adhering
to the JSON Schema2 defined for a game movie. This object is given to the
Asura Viewer by Enki, which transforms it into an adequate format to display
to the learner. Figure 1a) presents the result of a validation of an SA against
an opponent in a Bullseye Shooting game being displayed in the Asura Viewer
integrated into Enki.

Tournaments can be organized by educators, once the time to code SAs
ends. For that, they can use the wizard added to the administrator interface of
Mooshak 2, shown in Fig. 1b). This wizard enables the educator to choose among
the set of all accepted submissions, determine how much points are awarded per
match, and define the structure of the tournament stages. After configuring the
format of the tournament, the Asura Tournament Manager organizes and runs
the matches of the tournament on the Asura Evaluator. A tournament produces
JSON data adhering to the JSON Schema3 defined for a tournament, which
contains a reference to each match’s movie, organized by stages and rounds,
as well as partial and complete rankings of each phase. This data is presented
in an interactive Graphic User Interface (GUI) to the students, allowing them
to request the matches they want to see and check details of each phase. For
instance, Fig. 1c) displays the interactive GUI of a tournament of Slalom Skying
in a knockout phase, whereas Fig. 1d) presents the player’s path after clicking
in the player’s name on the interactive GUI.

The architecture of Asura, depicted in Fig. 2, is composed of four distinct
components, namely the Viewer, the Builder, the Evaluator, and the Tourna-
ment Manager. These components interact with tools already described in the
literature, particularly Mooshak 2 and Enki. The Evaluator is a small package
developed inside Mooshak 2, whose main class is the AsuraAnalyzer. This class
is a specialization of the ProgramAnalyzer, the main analyzer of Mooshak 2
which is responsible for grading submissions to ICPC-like problems, for con-
ducting the dynamic analysis using the provided JAR package. Both analyzers
implement a common interface – Analyzer –, that allows evaluator consumers

2 https://mooshak2.dcc.fc.up.pt/asura/static/match.schema.json.
3 https://mooshak2.dcc.fc.up.pt/asura/static/tournament.schema.json.

https://mooshak2.dcc.fc.up.pt/asura/static/match.schema.json
https://mooshak2.dcc.fc.up.pt/asura/static/tournament.schema.json


Authoring Game-Based Programming Challenges 607

Fig. 1. Screenshots of the various components of Asura

to integrate seamlessly with any of them. In this case, the consumer is Enki.
The Tournament Manager handles the set up and execution of the tournament,
integrating with the Evaluator and Mooshak 2 administration GUI. The Viewer
is an external Google Web Toolkit (GWT) widget that can integrate in any
GWT environment, supplying it with an interface TournamentMatchViewer to
enable them to display either tournaments or matches. Finally, the Builder is an
independent component that produces the JAR package used by the Evaluator.

Mooshak

EnkiAsura
Viewer

Asura
Evaluator

game.jarAsura
Builder

produces

Asura
Tournament

Manager

TournamentMatchViewer Analyzer AsuraAnalyzer

Fig. 2. Diagram of components of the architecture of Asura, highlighting Asura Builder



608 J. C. Paiva et al.

4 Asura Builder

The Asura Builder is an independent component composed of multiple tools
dedicated to the authoring of game-based coding challenges, including a Java
framework and a Command-Line Interface (CLI) tool. The Java framework pro-
vides a game movie builder, a general game manager, several utilities to exchange
complex state objects between the manager and the SAs as JSON or XML, and
general wrappers for players in several programming languages. The framework
is accompanied by a Command-Line Interface (CLI) tool to easily generate Asura
challenges and install specific features, such as support for a particular program-
ming language, a default turn-based game manager, among others. Even though
the authors are required to program the challenges in Java, players can use their
preferred programming language to code their SAs.

Each of the next subsections describes a sub-component of Asura Builder.
Subsection 4.1 describes the builder of graphical feedback. Subsection 4.2 details
the referee and state management of the game. Subsection 4.3 presents the
communication between the game manager and the players. Subsection 4.4
introduces the two kinds of wrappers that Asura supports to facilitate SA devel-
opment. Subsection 4.5 provides an overview of the CLI tool.

4.1 Game Movie Builder

Most of the necessary effort for building video games is spent on graphics. They
determine the players’ first impression on the game and they provide the best
feedback of the actions executed during the game. Asura games are not excep-
tions. In Asura, graphics are abstracted as a game movie, which consists of a
set of frames, each of them containing a set of sprites annotated with informa-
tion about their location and transformations. In this way, the representation of
the game movie is very compact since each frame is just a collection of objects,
completely described by four numbers. Besides that, a movie also includes meta-
data information, such as title, background, width, height, fps – number of
frames to display per second –, anchor point – sprite point relative to which
coordinates are given –, the set of players, and the set of sprites.

This abstraction facilitates the construction of graphical feedback by defining
a standard way to describe it, independently of the game. Furthermore, Asura
Builder offers an interface (and an implementation) to easily build these game
movies. The interface provides methods to manage metadata information, add
frames, insert and transform items, include messages to players (e.g., logs of their
SAs), set the observations and classification of a player, push and pop frame
states from a stack, terminate the game movie indicating an error in the Builder
component or an error in one of the players, among many others. Updates to
the game movie are performed during the game state management.

There is no distinction between game movies built for validations or game
movies created during the tournament, so the author does not need to change
anything to execute tournaments.



Authoring Game-Based Programming Challenges 609

4.2 Game Manager

Every game needs a controller (or referee) to ensure that the game rules are
followed. The controller keeps the global state of the game, decides which player
takes the next turn, declares a winner, among many other tasks. In the Builder
component, these tasks are the responsibility of the GameManager who acts as
the referee of the game.

The abstract manager provided by the framework connects to the input and
output stream of the players’ processes to receive their actions and update them
with changes on the game state. Specialized managers determine the playing
order and manage the game state accordingly. Some of these specialized man-
agers, such as a turn-based game manager, are provided by the framework and
can be easily integrated in a new challenge, using the CLI tool.

In order to manage the game state, which is unique to each game, the con-
troller leverages on the GameState interface. This interface specifies methods
to initialize the state before the game starts, update the game state according
to the action of a concrete player, obtain the object that needs to be sent to
a certain player to update it about changes to the game state, end the round
when all players’ commands were executed in that round, finish the game and
declare a winner, and much more. Most of these methods receive a game movie
builder as parameter, allowing the state object to manage the movie, reflecting
any changes made to it.

As a referee, when a player breaks the rules of the game (e.g., takes too much
time to play, does an invalid action, does not meet the communication protocol,
etc), it must act. If the violation of the player prevents the game from continuing,
the game ends marking the infraction of the SA in the game movie. Otherwise,
the game proceeds but the faulty SA gets a “Wrong Answer” at the end.

4.3 Communication Manager-Players

The communication between the GameManager and the players can be done either
through JSON or XML. The GameManager sends state updates to the players,
containing a type, which identifies the state, and a comprehensive description of
the current game state. The messages sent from the players to the GameManager
contain the action (a command) that the player wants to execute as well as a
list of messages for debugging purposes. This communication is handled without
any action of the author or players, meaning that they are not aware of the type
of messages being exchanged. Yet, the author knows that there is a channel that
sends and receives objects. Figure 3 presents the structure of the data models
that are exchanged during the game.

4.4 Wrappers

Wrappers are sets of functions, provided by both the framework and the author,
that aim to give players an higher level of abstraction, so that they can focus



610 J. C. Paiva et al.

Game ManagerGame Players PlayerAction

Command command
List<String> messages

Command

String name
Object[] args

StateUpdate

String type
Object object

Fig. 3. Diagram of the communication between the manager and the players

on solving the real challenge instead of processing I/O. There are two types of
wrappers: global and game-specific.

Global wrappers are defined by the Asura Builder framework. They imple-
ment functionality that is common to players of any game in a certain language.
This includes methods to read and write JSON, log messages, and call the func-
tions on the abstract and concrete players that implement the game/player-
specific functionality.

Game-specific wrappers are provided by game authors and “extend” global
wrappers with functionality related to a specific game. For instance, they can
implement functions that process state updates, get and set values, or send
actions. Besides that, they implement the player lifecycle, i.e., the player loop
that reads updates or executes actions.

4.5 CLI Tool

The Command-Line Interface (CLI) tool is a command-line utility, based on
cookiecutter,4 one of the many existing CLI generators. A project with the code-
base for an Asura game can be generated with a single command line asura-cli
--generate. This command makes a series of queries to the user in order to
obtain the required information to generate the project. The project generated
by this utility is a Maven project containing a skeleton of a Game Manager and
a Game State as well as the structure for SAs, wrappers, and skeletons.

Furthermore, the utility also imports pre-built game managers (e.g.,
asura-cli --import-manager turn-based) from a collection, including a
turn-based game manager in which players act by turns, an all-at-once game
manager in which players act all at the same time, among others. Sup-
port for new programming languages can also be managed through the CLI
using the commands asura-cli --add-language <language> and asura-cli
--remove-language <language>.

The deployment phase is also supported by the CLI tool. To package the
game, the author can use the command asura-cli --package. A sample prob-
lem statement can also be generated using asura-cli --add-statement.
4 https://github.com/audreyr/cookiecutter.

https://github.com/audreyr/cookiecutter


Authoring Game-Based Programming Challenges 611

5 Validation

An experiment to validate the Asura Builder was conducted in an open environ-
ment with undergraduate students of the Department of Computer Science of the
Faculty of Sciences of the University of Porto, enrolled either in the First Degree
in Computer Science or the Integrated Master of Science in Network Engineering
and Information Systems programs. This experiment aimed to assess the useful-
ness and ease of use of the Builder component on the authors’ perspective only.
However, students themselves played the role of authors. All students had an
average background in Java acquired during the current semester in a Software
Architecture course, and had no previous knowledge of Asura.

The experiment consisted on authoring both an ICPC problem and an Asura
challenge, following one or more of the provided statements A,5 B,6 or C,7 in
increasing order of difficulty. These statements completely describe the challenges
to be developed. Yet, they do not constraint the quality of the graphical feedback
provided in the Asura game, which were left to the creativity of the authors. At
the date of the experiment, the CLI tool was not finished yet. Thus, a Maven
archetype was used instead to generate the project, requiring the authors to
configure Maven before starting.

At the end of the experiment, students were asked to fill-in an online question-
naire to measure the user acceptance of the Builder. The questionnaire follows
Davis’ model [3] for evaluating perceived usefulness and ease of use of a system
in a 7-value Likert scale, extended with questions about time spent in each type
of problem, multiple-choice questions to compare the difficulty of authoring both
types (in a 7-value Likert scale), and open text questions to identify weaknesses
and strengths, and provide suggestions.

The global results indicate a perceived usefulness of 95.24% and a perceived
ease of use of 76.19%. Regarding the comparison of developing an Asura challenge
against creating and ICPC-like problem, a value of 73.81% was obtained (highest
values are better). Nevertheless, statements regarding difficulty and time had a
below average score, such as I’m capable of developing an Asura challenge faster
than an ICPC problem (28.57%) and It is easier to develop an Asura challenge
than an ICPC problem (71.42%). When asked to rate, in a Likert scale, the
sentence The additional hurdle of developing an Asura challenge is something
that we can disregard considering the gains for students, students agreed with
42.86%.

The free text answers highlighted the user acceptance of the Builder. For
example, The Framemork for the development of challenges is very flexible and
it’s mechanics are easy to understand.

5 https://mooshak2.dcc.fc.up.pt/asura/static/asura-validation-problem-a.pdf.
6 https://mooshak2.dcc.fc.up.pt/asura/static/asura-validation-problem-b.pdf.
7 https://mooshak2.dcc.fc.up.pt/asura/static/asura-validation-problem-c.pdf.

https://mooshak2.dcc.fc.up.pt/asura/static/asura-validation-problem-a.pdf
https://mooshak2.dcc.fc.up.pt/asura/static/asura-validation-problem-b.pdf
https://mooshak2.dcc.fc.up.pt/asura/static/asura-validation-problem-c.pdf


612 J. C. Paiva et al.

6 Conclusion

Motivating students to learn in practice intensive courses, particularly in pro-
gramming courses, is challenging. The time dedicated to solve exercises is typ-
ically inadequate for the amount of knowledge they have to acquire and tech-
niques they must master. As students start getting bad results, their interest
in the learning activities diminishes. To mitigate this problem, it is necessary
to find new educational methods that promote coding practice outside of the
classes. One of such methods is to wrap learning activities as game challenges.

Even though games are already widely used in programming education, there
is a lack of tools for creating them. This paper presents the authoring component
of Asura, an environment for assessment of game-based programming challenges.
The goal of this component is to minimize the hurdle of creating these challenges,
making its difficulty similar to that of creating an ICPC-like problem.

The conducted validation, even though with a very low number of partici-
pants due to the final exams, has demonstrated the usefulness of Asura Builder
and its ease of use. Nevertheless, there is still a long way to go to achieve the fast
creation of game-based programming exercises. The results highlighted a signif-
icant difference in terms of time, when comparing the two types of problems.
It is expected that the CLI tool can make the generation, addition of features,
and deployment phases faster, but not that much. More improvements and extra
features are needed, particularly in the game movie builder. The collected com-
ments have also revealed the need to support multiple programming languages
in the creation of games, which was already planned in a future release.

The next step is to validate the effectiveness of Asura as an environment to
keep students motivated while working on their programming assignments.

Acknowledgments. This work is partially funded by the ERDF – European Regional
Development Fund – through the COMPETE 2020 Programme within project POCI-
01-0145-FEDER-006961, and by National Funds through the FCT – Fundação para a
Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) – as part
of project UID/EEA/50014/2013.

References

1. Bennedsen, J., Caspersen, M.E.: Failure rates in introductory programming.
SIGCSE Bull. 39(2), 32–36 (2007)

2. Dagiene, V., Skupiene, J.: Learning by competitions: olympiads in informatics as
a tool for training high-grade skills in programming. In: ITRE 2004, 2nd Inter-
national Conference Information Technology: Research and Education, pp. 79–83
(2004)

3. Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of
information technology. MIS Q. 319–340 (1989)

4. Dietrich, J., Tandler, J., Sui, L., Meyer, M.: The primegame revolutions: a cloud-
based collaborative environment for teaching introductory programming. In: Pro-
ceedings of the ASWEC 2015, 24th Australasian Software Engineering Conference,
ASWEC 2015, vol. 2, pp. 8–12. ACM, New York, NY, USA (2015). http://doi.acm.
org/10.1145/2811681.2811683

http://doi.acm.org/10.1145/2811681.2811683
http://doi.acm.org/10.1145/2811681.2811683


Authoring Game-Based Programming Challenges 613

5. Göbel, S., Salvatore, L., Konrad, R.A., Mehm, F.: Storytec: a digital storytelling
platform for the authoring and experiencing of interactive and non-linear stories.
In: Spierling, U., Szilas, N. (eds.) Interactive Storytelling, pp. 325–328. Springer,
Berlin (2008)

6. Han, K.W., Lee, E., Lee, Y.: The impact of a peer-learning agent based on pair
programming in a programming course. IEEE Trans. Educ. 53(2), 318–327 (2010)

7. Ibáñez, M.B., Di-Serio, A., Delgado-Kloos, C.: Gamification for engaging computer
science students in learning activities: a case study. IEEE Trans. Learn. Technol.
7(3), 291–301 (2014)

8. Kelleher, C., Pausch, R.F.: Using storytelling to motivate programming. Commun.
ACM 50, 58–64 (2007)

9. Kohn, A.: No Contest: The Case Against Competition. Houghton Mifflin Harcourt
(1992)

10. Kohn, A.: Why Incentive Plans Cannot Work. Houghton Mifflin Company, Boston
(1993)

11. Kölling, M., Henriksen, P.: Game programming in introductory courses with direct
state manipulation. In: Proceedings of the 10th Annual SIGCSE Conference on
Innovation and Technology in Computer Science Education, ITiCSE 2005, pp.
59–63. ACM, New York, NY, USA (2005). http://doi.acm.org/10.1145/1067445.
1067465

12. Leal, J.P., Silva, F.: Mooshak: a web-based multi-site programming contest system.
Softw. Pract. Exp. 33(6), 567–581 (2003)

13. Leal, J.P., Silva, F.: Using Mooshak as a competitive learning tool. In: The 2008
Competitive Learning Symposium (2008)

14. Liu, P.L.: Using open-source robocode as a java programming assignment. SIGCSE
Bull. 40(4), 63–67 (2008). http://doi.acm.org/10.1145/1473195.1473222

15. Lykke, M., Coto, M., Mora, S., Vandel, N., Jantzen, C.: Motivating programming
students by problem based learning and lego robots. In: 2014 IEEE Global Engi-
neering Education Conference (EDUCON), pp. 544–555 (2014)

16. Morris, C.L., Silberman, G.M.: Programming contests in academic environments.
In: fie, pp. F1F7–7. IEEE (2003)

17. Nuutila, E., Törmä, S., Malmi, L.: PBL and computer programming-The seven
steps method with adaptations. Comput. Sci. Educ. 15(2), 123–142 (2005)

18. Paiva, J.C., Leal, J.P., Queirós, R.A.: Enki: a pedagogical services aggregator for
learning programming languages. In: Proceedings of the 2016 ACM Conference on
Innovation and Technology in Computer Science Education, pp. 332–337. ACM
(2016)

19. Ryan, R.M., Deci, E.L.: Intrinsic and extrinsic motivations: classic definitions and
new directions. Contemp. Educ. Psychol. 25(1), 54–67 (2000)

20. Torrente, J., del Blanco, Á., Marchiori, E.J., Moreno-Ger, P., Fernndez-Manjn, B.:
<e-adventure>: introducing educational games in the learning process. In: IEEE
EDUCON 2010 Conference, pp. 1121–1126 (2010)

21. Utomo, A.Y., Amriani, A., Aji, A.F., Wahidah, F.R.N., Junus, K.M.: Gamified e-
learning model based on community of inquiry. In: 2014 International Conference
on Advanced Computer Science and Information System, pp. 474–480 (2014)

http://doi.acm.org/10.1145/1067445.1067465
http://doi.acm.org/10.1145/1067445.1067465
http://doi.acm.org/10.1145/1473195.1473222

	Authoring Game-Based Programming Challenges to Improve Students' Motivation
	1 Introduction
	2 State-of-the-Art
	2.1 Authoring Tools for Game-Based Challenges
	2.2 Competitive Game-Based Programming Environments

	3 Asura
	4 Asura Builder
	4.1 Game Movie Builder
	4.2 Game Manager
	4.3 Communication Manager-Players
	4.4 Wrappers
	4.5 CLI Tool

	5 Validation
	6 Conclusion
	References




