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Abstract

Background

Changes in the retinal vessel caliber are associated with a variety of major diseases, namely

diabetes, hypertension and atherosclerosis. The clinical assessment of these changes in

fundus images is tiresome and prone to errors and thus automatic methods are desirable for

objective and precise caliber measurement. However, the variability of blood vessel appear-

ance, image quality and resolution make the development of these tools a non-trivial task.

Metholodogy

A method for the estimation of vessel caliber in eye fundus images via vessel cross-sec-

tional intensity profile model fitting is herein proposed. First, the vessel centerlines are deter-

mined and individual segments are extracted and smoothed by spline approximation. Then,

the corresponding cross-sectional intensity profiles are determined, post-processed and ulti-

mately fitted by newly proposed parametric models. These models are based on Difference-

of-Gaussians (DoG) curves modified through a multiplying line with varying inclination. With

this, the proposed models can describe profile asymmetry, allowing a good adjustment to

the most difficult profiles, namely those showing central light reflex. Finally, the parameters

of the best-fit model are used to determine the vessel width using ensembles of bagged

regression trees with random feature selection.

Results and conclusions

The performance of our approach is evaluated on the REVIEW public dataset by comparing

the vessel cross-sectional profile fitting of the proposed modified DoG models with 7 and 8

parameters against a Hermite model with 6 parameters. Results on different goodness of fit-

ness metrics indicate that our models are constantly better at fitting the vessel profiles. Fur-

thermore, our width measurement algorithm achieves a precision close to the observers,

outperforming state-of-the art methods, and retrieving the highest precision when evaluated

using cross-validation. This high performance supports the robustness of the algorithm and
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validates its use in retinal vessel width measurement and possible integration in a system

for retinal vasculature assessment.

1 Introduction

The retina is a light-sensitive tissue that converts the incoming light into neural signals that are

interpreted by the brain. Adequate techniques, such as color fundus photography, allow to

non-invasively assess the retina and its structures. Namely, the retinal blood vessels are the

only portion of the circulatory system that is directly observable and thus the study of their

morphological changes has been associated with a variety of conditions and their risk [1, 2].

For instance, changes in retinal vessel caliber are an important sign of diabetes mellitus, hyper-

tension, arteriosclerosis and cardiovascular diseases [3, 4], as well as pre-diabetes and pre-

hypertension [2, 5]. Consequently, vessel width alterations could be used for prevention and

diagnosis. The early diagnosis of these mentioned diseases is crucial to prevent and reduce

health damages. Due to the effort and time that would be required to manually measure the

vessels calibers at a large portion of the vasculature, this option is currently unfeasible in clini-

cal practice. With that in mind, automated segmentation and measurement of the vessels is

desirable, since it would enable the systematic evaluation of the vessel width changes that

could be useful for diagnosis, and contribute to the efficiency, reliability and reproducibility of

the measurements. Automatic methods are particularly useful in wide screening programs for

vascular conditions, since the human analysis of a large number of images together with the

complexity of the retinal vascular network is a heavy task. Consequently, there is the need for

developing computer-aided diagnosis (CAD) systems to help in the quantification of retinal

structures and biomarkers assessment. Several authors stress that the vessel width measure-

ment stage is sufficiently critical to be individually and carefully studied [6, 7]. The develop-

ment of automated methods for width measurement is a demanding process, considering: 1)

the variability of the appearance of blood vessels; 2) the variability of image quality and resolu-

tion and 3) the lack of standardized data and criteria for comparing algorithms, preventing sig-

nificant comparisons in large scale [8].

1.1 State-of-the-art methods

State-of-the art methods for retinal vessel width measurement can be grouped in two major

schemes, as proposed in [8]: methods based on vessel contour detection or on parametric

model fitting. The first type of methods generally measure the diameter from the vessel con-

tours and thus heavily rely on the contrast between vessel and the background. Common fac-

tors that can hinder the segmentation are the presence of other anatomical structures, low

contrast and image artifacts. For that, active contours [9], graphs [10], wavelets [11] and track-

ing [12, 13] can be used. Whilst some authors measure the vessel caliber directly from the

segmented vessels, others use the segmentation solely as a starting point, using it for vessel cen-

terline determination or for having an initial estimation of the widths [11]. Bankhead et al.
[11] proposed a method for vessel detection and diameter measurement using wavelet-based

segmentation and edge refinement. This involves centerline computation and refinement

from the segmented vessels, cross-section vessel profile generation and vessel edge identifica-

tion based on gradient information.

Methods that fit parametric models to the vessel cross-section intensity profiles rely on the

found parameters to determine the vessel widths. The general approach usually starts by vessel

Parametric model fitting-based approach for vessel caliber estimation in fundus images

PLOS ONE | https://doi.org/10.1371/journal.pone.0194702 April 18, 2018 2 / 27

Funds through the FCT within project CMUP-ERI/

TIC/0028/2014. Publication fees are partially

financed by the Doctoral Program in Electrical and

Computer Engineering (PDEEC) from Faculdade de

Engenharia da Universidade do Porto (FEUP). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0194702


segmentation, centerline detection and removal of junctions to obtain individual vessel seg-

ments. Then, vessel cross-section intensity profiles are computed, and a parametric intensity

model is fitted to the profile. The determination of the vessel widths is based on the parameters

of the best-fit profile. Alternatively, some approaches do not perform vessel detection and

instead measure the width at specific points [8]. Commonly, these methods rely on the

expected Gaussian-like shape of the vessel cross-section intensity profile [14, 15]. However,

central light reflex (CLR) alters the shape of the Gaussian by creating a high intensity peak on

the center region of the profile [16, 17] (S1 Appendix). CLR can be accounted for by using, for

instance, piece-wise Gaussian models [18] and Difference-of-Gaussian-based models [6, 16].

Further, vessels can present an asymmetrical shape [19]. Unlike most studies, Lupascu et al.
[8] proposed an Hermite model, adapted from the approach introduced in [20], that considers

both CLR and vessel asymmetry, but the asymmetry is restricted to the vessel center region

and does not significantly affect the vessel limits. Parametric model fitting approaches can be

1D or 2D if one or multiple cross section intensity profiles are considered, respectively. From

these, 2D approaches are more robust against noise. The determination of the width from

the best-fit model’s parameters is usually done using fixed scaling factors [6, 14, 21, 22]. For

instance, Zhou et al. [14] fitted a 1D-Gaussian function to the vessel profile and estimated the

vessel diameter by multiplying the spread of the best fit model by a constant equal to 3.92.

More sophisticated approaches have been recently proposed, applying supervised learning to

find the relationship between the model’s parameters and the vessel diameter [8]. Most of the

state-of-the-art methods present limitations, such as poor performance in low resolution

images or thin vessels, as well as susceptibility to artifacts and pathologies.

1.2 Contributions

The herein proposed vessel caliber measurement method contributes to the state-of-the-art as

follows:

1. Novel parametric models for vessel intensity profile fitting. These are modified Difference-

of-Gaussian models where a multiplying line with varying slope modulates the asymmetry

of the vessel edges, thus allowing the adjustment of a large variety of vessel profiles. The per-

formance of the models is extensively evaluated and proves to outperform other known

models for fitting of vessel cross-section intensity profiles;

2. A top performing model fitting-based approach for retinal vessel width estimation. The

method combines model fitting with multiple preprocessing steps, estimating the vessel

diameter using ensembles of bagged regression trees with random feature selection. The

combination of different approaches makes the algorithm robust and reliable for width esti-

mation in images with pathologies and artifacts, with performance independent of the true

vessel widths. The results are close to the medical gold standard and often outperform the

state-of-the-art methods.

This study is an extension of our previous work [23], in which we first proposed one of the

herein presented parametric models and the approach for vessel width estimation. Here we

present another version of this model and evaluate the models’ goodness of fit to the vessel

cross-section profiles. Besides being more focused on the fitting component of the method

than the previous publication, the overall performance of the width estimation method is also

explored in detail. Additionally, we have developed a graphical user interface for the proposed

method, which was implemented in MATLAB (S1 Video), and is available at https://rdm.

inesctec.pt/dataset/nis-2018-002.
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This document is divided as follows: in section 2 the novel method for retinal vessel width

estimation is described. Section 3 presents and discusses the experimental results. Finally, in sec-

tion 4 the main conclusions of this work are presented, as well as suggestions for future work.

2 Method for retinal blood vessel width estimation

The proposed method for retinal blood vessel width estimation follows a model fitting-based

approach, including several profile processing steps prior to model fitting. Then, ensembles of

bagged regression trees are used for estimating the vessel diameters from the best-fit model

parameters. An overview of the different phases involved in the algorithm is shown in Fig 1.

First, vessels are segmented from the eye fundus image and the respective centerlines are

obtained through thinning. Each vessel segment is then smoothed through spline approxima-

tion and, for each segment pixel, the intensity profile normal to the segment at that point is

extracted. These profiles, spatially smoothed to reduce noise, are used for the parametric

model fitting. We propose a new parametric model for the cross-section intensity profiles,

where the parameters are estimated through least square minimization. Then, the best-fit

model parameters are the input of a random forest regression system, that allows the estima-

tion of the vessel width, exploring the embedded relationship between the width and the

model parameters.

2.1 Vessel segment extraction

Vessel segment extraction starts from the segmentation of the retinal vasculature using a

morphology-based state-of-the-art approach [24] (Fig 2). Then, vessel centerlines are

Fig 1. Method overview. Retinal blood vessels are segmented and their centerlines are detected, followed by junction removal to extract segments

which are then smoothed. Cross-section intensity profiles are extracted perpendicularly to the centerlines and model fitting is performed on smoothed

profiles. Based on the best-fit model parameters, vessel width is estimated through regression.

https://doi.org/10.1371/journal.pone.0194702.g001
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detected using a thinning technique [25, 26] followed by the removal of bifurcation and

crossover points by analyzing the number of neighbors of each pixel. This divides the whole

centerline network into individual segments where the diameters will be measured. These

segments correspond to a pixel-thin group of connected pixels limited by two end points,

i.e., pixels with a single neighbor. Fig 2E and 2F show an example of thinning and junction

removal steps.

The obtained segments are then refined by removing short spurs that may have resulted

from the thinning process. All terminal segments, i.e., that contain end points, shorter than 10

pixels are removed [11]. These structures usually result from irregularities on the vessel seg-

mentation and thus are not of interest. Longer structures are kept because they may corre-

spond to short vessel segments.

2.2 Vessel cross-section intensity profile determination

Once vessel segments are found, intensity profiles are determined perpendicularly to the vessel

centerlines. For each vessel segment, at each center point, the intensity values along the normal

to the centerline at that point are obtained. In order to do this, we use a process similar to the

one presented in [11].

2.2.1 Vessel segment smoothing. The extraction of the intensity profiles requires knowl-

edge of the blood vessel orientation. A simple approach would be to compute the derivatives

at the pixel-discrete vessel segments. However, this process may retrieve inaccurate results

because very abrupt changes can occur between one pixel and its neighbor. Spline fitting is

applied to each segment to smooth the vessel and thus avoid this problem [11, 27] [28–30].

Least-squares cubic spline approximation is performed, being Lee’s centripetal scheme used

for parametrization [31]. The number of polynomial pieces of the spline are determined by

dividing the length of the segment by 20 pixels, since this pixel spacing was found to retrieve

an acceptable smoothing for the tested images. Fig 2 shows the effect of the spline fitting on

the vessel centerlines, and Fig 3 shows a full image with smoothed segments.

A B C D

E F G H

Fig 2. Blood vessel segmentation, centerline detection, and segment extraction and smoothing. Top row: example of vessel segmentation; second row: example of

removal of junctions from a thinned vessel image and vessel segment smoothing through spline fitting. A: image from REVIEW dataset (CLRIS001); B: segmented

image [24]; C: region from [A]; D: region from [B]; E: thinned vessels for a region of [D]; F: vessel segments, after junction removal; G: vessel segments of [F], labeled

with different colors; H: vessel segments of [G] after spline approximation. Colors are used for better distinguishing between vessel segments.

https://doi.org/10.1371/journal.pone.0194702.g002
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Once the splines are fitted to the vessel segments, the new smoothed segment points are

retrieved and the first derivatives of the splines at these points are computed. From the direc-

tion of the vessel at a given point, the normal at that point can be determined.

2.2.2 Profile extraction. The intensity profiles along the normals to the segments are

determined (Fig 4A) on the green channel of the RGB image due to the high contrast between

vessel structures and the background. The intensities along the normal to the vessel are

obtained with 1 pixel spacing and by applying bilinear interpolation of the intensities at non-

integer locations.

The length of the profiles for a given image is determined based on the binary vessel seg-

mentation mask, thus guaranteeing that this length is larger than the largest vessel of the

image. Fig 4B shows a surface constituted by the 1D profiles extracted from the segment of Fig

4A, stacked together in parallel to each other, aligned by their center points. In Fig 4C the top

Fig 3. Blood vessel segments obtained for CLRIS001 image (REVIEW dataset). Segments are numbered, colored

and overlapped with the green channel of the RGB image (note that different segments may be represented in the same

color). White marks along some blood vessel edges represent ground truth points.

https://doi.org/10.1371/journal.pone.0194702.g003
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Fig 4. Vessel intensity profile determination and smoothing, for one segment from Fig 3. A: profile directions; B: segment intensity profiles stacked in parallel; C:

top view of [B]; D: smoothed intensity profiles; E: top view of [D]. Colors in the plots are representative of the intensity values: warmer colors represent higher

intensity whilst cooler colors represent lower intensity. The white marks in [A] and the black marks in [C] and [E] represent the ground truth annotations.

https://doi.org/10.1371/journal.pone.0194702.g004
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view of the surface is shown, along with the ground truth marked by the observers. This image

is a straightened vessel image, where all the profiles of the segment lay horizontally.

2.2.3 Determination of profile lengths. Since the obtained intensity profiles may include

more than one vessel, if they are close to each other, the region containing only the vessel of

interest must be detected prior to model fitting. For that, a method based on peak search on

the intensity profiles is applied to the mean of the vessel profiles along 11 adjacent sections (5

at each side) since the averaged profiles offer less noise than the individual one [8]. The mean

profile is then smoothed using Savitzky-Golay filtering [32], and the minima and maxima in

the resulting profile are detected.

The profile length determination is performed in two steps, since a simple search for a typi-

cal vessel region, i.e., two maxima adjacent to a minimum, would not account for the possible

existence of central light reflex (CLR), resulting in wrong detections on vessels with this char-

acteristic. The profile of a vessel with CLR can be characterized as a region containing a maxi-

mum with one adjacent minimum and maximum on each side (Fig 5B). A search for CLR

regions in the profile is performed under a set of validity rules, explained in the following

paragraphs. If no CLR vessel is found, vessel regions without CLR are searched (Fig 5A). The

minimum closest to the vessel center and the adjacent maximum on each side are found and

validated. In the end, the length of the profiles for a given segment is set to be equal to the

median of the lengths of profiles determined for that segment.

Search for CLR regions. First, the CLR center, corresponding to a maximum in the center

region of the vessel, is detected. Assuming that all vessel maxima are always lower than back-

ground maxima, one can simply detect the maximum with lowest intensity, and consider its

position to be the CLR center. However, other vessels may be present in the profile (see Fig

6B), possibly leading to a wrong maximum detection. To avoid this, the maximum closest to

the center of the profile is detected, and chosen instead of the lowest profile maximum if it is

not too far from the profile center and it is close in value to the lowest maximum.

Then, the two adjacent minima to the CLR center are detected, one to the left and one to

the right of that maximum (Fig 6A). Finally, the two adjacent maxima are detected, one to the

right of the right minimum and one to the left of the left maxima. These maxima positions are

considered the limits of the vessel. A set of conditions is established to avoid the recognition

of false CLR regions. First, the locations of the two minima should have a minimum distance.

This prevents misclassifications as CLR if the peaks are too close (Fig 6C). The depths of the

two bumps of the CLR should not differ too much, in order to avoid large intensity differences

between the two sides of the CLR (Fig 6D). Then, the distances between the vessel center and

the two maxima should not differ more than a established value (Fig 6E). Besides, the maxima

should not be too far from the vessel center. If only one of the maxima is too far away from the

center, what happens in the other side of the vessel is replicated, symmetrically to the vessel

Fig 5. Typical shape of a blood vessel with and without central light reflex (CLR). A: blood vessel without CLR; B:

blood vessel with CLR. The extreme point positions are also shown.

https://doi.org/10.1371/journal.pone.0194702.g005
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center. These conditions avoid a big asymmetry between the two sides of the CLR. Addition-

ally, the elevation of the CLR center should not surpass the limits of the vessel (Fig 6F).

If no such region containing the vessel center is found, the algorithm proceeds by

searching for non-CLR vessels. Otherwise, the length of the profile is computed as follows:

proflength = 2 ×mean(|xmaxL − xmaxC|, |xmaxR − xmaxC|), where xmaxL and xmaxR correspond to

the positions of the maxima that limit the vessel region and xmaxC to the position of the cen-

tral minimum (see Fig 6A). The parameters used in these rules were obtained by experimen-

tation, having achieved good results in the tested images.

Search for non-CLR regions. The found peaks are analysed to verify the validity of the limits.

If there is no maximum to the left or to the right of the minimum, what occurs in the the other

side is replicated. The two maxima must not be too close to the vessel center: if only one of the

maxima is too close to the center, what happens in the opposite side is replicated; if both are too

close, an iterative search for other maxima to the left and to the right of the vessel is performed

until suitable maxima are found. If the above conditions are met, the length of the profile is

computed as follows: proflength = 2 ×mean(|xmaxL − xminC|, |xmaxR − xminC|), where xminC, xmaxR

and xmaxL represent the positions of the central minimum, right maximum and left maximum,

respectively. Otherwise, the profile length is considered to be equal to the initial profile length.

In Fig 7 examples of difficult cases in which the algorithm succeeds and others in which it

fails are shown. For example, in Fig 7A and 7B, the established conditions allowed to not

wrongly detect a CLR. However, in Fig 7D and 7E the conditions were not restrictive enough

and so a CLR was detected in a non-CLR vessel. Fig 7C shows a case where the conditions led

to the replication of the right side of the vessel since the left limit was too far away from the

center. Fig 7F is an example of a common problem, that is the lack of peaks near the vessel lim-

its. This leads to an overestimation of the profile length. Note that, despite the cases where the

Fig 6. Typical shape of a vessel with CLR and cases where the conditions imposed for CLR detection are violated. A: typical shape of a vessel with CLR, along with

its extreme point positions; B: the lowest maximum of the profile is not the correct CLR center; C: the found minima positions are too close to each other to constitute

a CLR region; D: the two bumps of the CLR have an intensity difference larger than the acceptable; E: the distances between the maxima and the vessel center are too

different; F: the elevation in the CLR center has larger intensity than the vessel limits. The arrows indicate the locations of the peaks that would define the CLR region,

if one of the conditions had not been violated.

https://doi.org/10.1371/journal.pone.0194702.g006
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profile length is overestimated, the length actually considered in the next steps is the median of

the profiles for a given segment, and not the individual profile lengths. This means that the

final length is less affected by the overestimation. Further, the overestimation, although not

desirable, is preferable to the underestimation, which would lead to the loss of vessel profile

information. Before model fitting, the profiles are cut, symmetrically relatively to the center-

line, to the determined profile length for that segment, i.e., all profiles belonging to the a given

segment have the same length.

2.2.4 Profile smoothing. The obtained vessel profiles can be noisy, resulting mainly

from the retinal image formation process, which can lead to poor image quality. To over-

come this, a smoothing filter is applied to the segment profiles stacked in parallel to each

other. A colormapped version of this straightened image is shown in Fig 4C, where one can

see the all the vessel center points aligned vertically in the center column, and the profiles

laying horizontally, one per row. Smoothing is performed using anisotropic Gaussian

filtering, due to the different standard deviations along the two directions [11]. Since the

straightened image has the profiles oriented horizontally, this filtering allows to apply a

lower degree of smoothing in the direction of the cross-section profiles than in the direction

of the vessel (perpendicularly to profiles), allowing to reduce noise without excessively

blurring the vessel edges. The standard deviation values used are function of the

estimated profile length, so that wider vessels are more smoothed than thinner ones [11].

Specifically, sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1� prof lengthsegment

q
and sy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:5� prof lengthsegment

q
are used,

where prof_lengthsegment is the determined profile length, and x and y stand for the

Fig 7. Examples of profile length determination results. Top row: successful cases; bottom row: non-successful cases, for which the conditions were not restrict

enough. Curve: smoothed mean intensity profile; triangular marks: detected maxima; square marks: detected minima; orange vertical lines: detected vessel limits;

yellow vertical line: center of the profile. A and B: CLR correctly rejected due to the big difference in the depth of the two depressions; C: left limit symmetric to the

right, since it was too far away from the center; D and E: CLR wrongly detected (conditions not restricted enough); F: profile region overestimated (lack of peaks near

the vessel limits).

https://doi.org/10.1371/journal.pone.0194702.g007
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horizontal and vertical directions, respectively. Fig 4 shows the effect of the anisotropic

Gaussian smoothing filter on a vessel segment.

2.3 Model fitting

The vessel intensity profiles are approximated by finding the model parameters that lead to the

best fit between the model curve and the observed profile [33]. These parameters will after-

wards be used for estimating the vessel widths. Different models, all with CLR-fitting capabil-

ity, are herein tested. The Hermite model was selected due to its good performance on

previous approaches [8]. Two new models based on Difference-of-Gaussians are proposed.

Vessel model fitting can be performed either in 1D or 2D, i.e., considering a single or multi-

ple neighboring vessel cross-section profiles, respectively. Our approach uses 2D model fitting

since it increases the robustness to noisy data by introducing some smoothing in the process,

being the one used in this work. Note that these 2D models usually consist in the extrusion of a

1D model x, i.e., the equation of the 2D model is independent of y (considering the indepen-

dent variables x and y). As thus, it is identical to consider a 2D model surface and fit it to the

2D cylinder of profiles or to consider the points of all the neighboring profiles (projected) in

one single plane, and fit the 1D model, being that in this work we do the latter.

2.3.1 Hermite model. The adapted Hermite model with 6 parameters presented in [8]

was first evaluated, and is defined as:

mðx; yÞ ¼ t þ hð1þ bððx � m � dÞ
2
� 1ÞÞ

1
ffiffiffiffiffiffiffiffiffiffi
2ps2
p e� ð

x� mffiffi
2
p

s
Þ2

ð1Þ

where x is the coordinate along the vessel cross-section, y is the coordinate along the perpen-

dicular direction, t is the maximum of the function, h is the height of the Gaussian, μ the loca-

tion of the center, σ the standard deviation of the Gaussian, β is an adaptive parameter

controlling the depth of the concavity of the CLR and δ is a parameter that controls the asym-

metry of the model. As referred, the 2D model can be seen as a cylinder of 1D models along

the y axis direction and, consequently, the expression is independent of y. The model can also

be expressed, by separating its terms, as:

mðx; yÞ ¼ t þ h
1
ffiffiffiffiffiffiffiffiffiffi
2ps2
p e� ð

x� mffiffi
2
p

s
Þ2

� hb
1
ffiffiffiffiffiffiffiffiffiffiffiffi
2p s2
p e� ð

x� mffiffi
2
p

s
Þ2

þ

þhbðx � m � dÞ
2 1
ffiffiffiffiffiffiffiffiffiffi
2ps2
p e� ð

x� mffiffi
2
p

s
Þ2

ð2Þ

where the first term is the main Gaussian, that models the overall vessel shape, the second

term is the second Gaussian, that is subtracted to the first Gaussian and models the CLR,

and the last is a Gaussian multiplied by a parabola, displaced in x, which controls the model

asymmetry. Note that all the Gaussians have the same center and spread. The Gaussian which

modulates the CLR has an independent amplitude. However, the third Gaussian, which is mul-

tiplied by the parabola, is also multiplied by the amplitude parameter of the CLR Gaussian.

The effect of the values of the model parameters in the model shape is shown in Fig 8.

One of the problems of this model is the fact that the second Gaussian (CLR) has the same

spread as the main and the third Gaussians which in real vessel profiles is not necessarily true.

In Fig 8B we can see this effect: when σ changes the spreads of all Gaussians change—since one

single parameter is used -, thus forcing that wider vessels have wider CLR. Further, the fact

that the two last Gaussian are multiplied by the same parameter (β) leads to restrictions in the

fitting: the amplitudes of the CLR Gaussian and the third Gaussian are dependent. In Fig 8C

the influence of changing β is shown, depicting the mentioned effect: changing the amplitude
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of the second Gaussian directly affects the amplitude of the third Gaussian. This means that

we can not control the amplitude of the CLR independently. When comparing the curves with

β = 1 and β = 0.2, for instance, we observe that the differences go beyond the change in ampli-

tude of the CLR, being a consequence of the modification of the third Gaussian’s amplitude

also. Additionally, by checking Fig 8D one can see that the modification of the δ parameter

leads to more than the adjustment of the degree of asymmetry—it also affects greatly the

amplitude of the final profile. Considering all these comments, we consider that, although

addressing the existence of CLR and asymmetry in the vessel profile central region, the model

parameters’ influence in the final profile are not that intuitive to capture and probably do not

allow to cover all possible vessel profile shapes. An example of the fitting result to a vessel pro-

file using the Hermite model is shown in Fig 9A and 9D. Although the model fits well simpler

profiles, vessels with CLR are often poorly adjusted by this model.

2.3.2 Modified DoG model with 7 parameters (DoG-L7). A new model consisting in a

modified Difference-of-Gaussians (DoG) is proposed. Although the common DoG model

takes into account the CLR, it does not allow asymmetry between the vessel edges. This asym-

metry is in fact present in some vessel profiles, which can lead to a poor fitting. This new

model takes an adapted DoG (constrained in some parameters) and multiplies it by a line, in

order to achieve the desired asymmetry in the vessel edges:

m1ðx; yÞ ¼ ðt þ h1e
� ð

x� mffiffi
2
p

s1
Þ2

� h2e
� ð

x� mffiffi
2
p

s2
Þ2

Þðlðx � mÞ þ tÞ ð3Þ

where x is the coordinate along the vessel cross-section, t is the maximum of the function, h1

is the height of the first (main) Gaussian, μ the location of the center, σ1 the spread of the first

Gaussian, h2 the height of the second Gaussian, σ2 the spread of the second (CLR) Gaussian

and λ is the slope of the multiplying line. As can be seen, the means of the two Gaussians are

the same, centering the light reflex in the center of vessel. The effect of the values of the model

parameters in the overall shape of the curve is shown in Fig 10. Comparing to what happened

with the Hermite model, now there is a more clear relation between the parameters and their

influence in the final profile. For instance, λ parameter (Fig 10E) just adjusts the inclination of

the line that defines the asymmetry in the vessel profile edges. Note that his type of asymmetry

is not the same as the considered in the Hermite model, where it was focused on the central

part of the profile and not on their edges, as it is the case here. The amplitudes of the two Gaus-

sians, h1 and h2, are two different parameters and thus independent (Fig 10A and 10C. Further,

the spreads of the two Gaussians, σ1 and σ2 are also independent (Fig 10B and 10D). An exam-

ple of the fitting result to a vessel profile using the DoG-L7 model is shown in Fig 9B and 9E.

Fig 8. Examples of curves of the Hermite model as defined in Eq 1, but in 1D. A: effect of the amplitude of the main Gaussian (h); B: effect of the spread of the

Gaussians (σ); C: effect of the amplitude of the two other Gaussians (β); D: effect of the CLR asymmetry (δ). A profile length of 20 pixels was set to the vessel. In each plot

a parameter is varied at a time, with the remaining parameters fixed, in order to evaluate the influence of that parameter in the overall model shape (t = 1, h = −0.588, β =

0.2, μ = 10, δ = 0.2, σ = 2.5).

https://doi.org/10.1371/journal.pone.0194702.g008
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2.3.3 Modified DoG model with 8 parameters (DoG-L8). Although the modified DoG

model from Eq 3 behaves fairly well on the tested profiles, it does not allow to control in a

good extent the asymmetry in the CLR. This means that in certain cases, such as the one

shown in Fig 9, the central part of the vessel is not very well fitted by the model. To overcome

this, another parameter is added to the model. Here, we choose to allow the CLR Gaussian to

have a different mean from the main one:

m2ðx; yÞ ¼ t þ h1e
�

x� m1ffiffi
2
p

s1

� �2

� h2e
�

x� m2ffiffi
2
p

s2

� �2
0

@

1

Aðlðx � m1Þ þ tÞ ð4Þ

where μ1 and μ2 are the center (mean) of the first and second Gaussians, respectively, and the

other parameters have the same meaning as in Eq 3. This new parameter allows the displace-

ment of the CLR Gaussian relatively to the main one, being able to model the desired asymme-

try. The influence of this new parameter in the shape of the model is shown in Fig 10F. The

profile can now have asymmetry in the central profile region—in a similar manner to what

happened with Hermite model—and also on the profile limits—as happened with the DoG-L7

model. Fig 9C and 9F show the result of the fitting a profile using the DoG-L8 model. It is visi-

ble that the central region is now being very appropriately adjusted by the model curve.

Prior to fitting, the allowed range of parameters and the parameter initialization are defined

based on the common appearance of the vessel profiles (S2 Appendix). In order to find the

parameters of the best-fit model to the vessel profiles, a non-linear least squares problem is

solved. The solution consists in the set of parameters that minimize the sum of the squared

Fig 9. Examples of fitting of the Hermite, DoG-L7 and DoG-L8 models to smoothed and non-smoothed real vessel profiles. Profiles from 11 adjacent profiles are

used. Black dots: profile data points; orange curve: fitted curve through Trust-Region-Reflective method; vertical yellow line: center of the profile; vertical purple lines:

ground truth. A: original data, Hermite model (Eq 1); B: original data, DoG-L7 model (Eq 3); C: original data, DoG-L8 model (Eq 4); D: smoothed data, Hermite model;

E: smoothed data, DoG-L7 model; F: smoothed data, DoG-L8 model.

https://doi.org/10.1371/journal.pone.0194702.g009
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differences, defined as:

sðβÞ ¼
Xm

i¼1

½yi � f ðxi; βÞ�
2

ð5Þ

where (xi, yi) are empirical data pairs, m is the number of points, f(x, β) is the model curve and

β are parameters of the model curve.

The method used in this work to find the parameter values is the Trust-Region-Reflective

[34], a region algorithm that is robust, reliable and has very strong convergence [35]. They

have good performance, retrieving accurate results and being suitable for solving difficult non-

linear problems more efficiently than other algorithms.

2.4 Width estimation

Once the best-fit model to the vessel profile is found, the relationship between its parameters

and the vessel width must be determined. In this work, this relation is found by using ensem-

bles of bagged regression trees [8]. Ensemble methods, such as bagging, i.e., bootstrap aggrega-

tion, combine multiple weak trees, forming a more accurate and robust regressor than the

individual trees [36]. We use, in fact, random forests [37, 38], where each tree in the ensemble

can randomly select predictors for the decision splits, improving the accuracy of the predic-

tions. Specifically, in this work we train the random forests having as input the N parameters

of the model and as desired output the ground truth diameter. In this case, the regressor learns

the mapping from a point in the N—dimensional parameter space, where N is the number of

Fig 10. Examples of curves of the DoG-L7 (A-E) and DoG-L8 models (F), but in 1D. A: amplitude of the 1st Gaussian (h1); B: spread of the 1st Gaussian (σ1); C:

amplitude of the 2nd Gaussian (h2); D: spread of the 2nd Gaussian (σ2); E: slope of the multiplying line (λ); F: center of the 2nd Gaussian (μ2). A profile length of 20 pixels

was set to the vessel. In each plot a parameter is varied (inside a established range) at a time, with the remaining parameters fixed (t = 0.5, h1 = −0.5, μ = 10, σ1 = 3, h2 =

−0.33, σ2 = 1, λ = 0.02), in order to evaluate the influence of that parameter in the overall model shape.

https://doi.org/10.1371/journal.pone.0194702.g010

Parametric model fitting-based approach for vessel caliber estimation in fundus images

PLOS ONE | https://doi.org/10.1371/journal.pone.0194702 April 18, 2018 13 / 27

https://doi.org/10.1371/journal.pone.0194702.g010
https://doi.org/10.1371/journal.pone.0194702


parameters of the model, to the vessel width. Then, the trained random forests can be used for

outputting the estimated diameter value for a given test (i.e., never seen) profile, having as

input the set of N parameters of the best-fit model to that profile.

3 Results

The conceived methodologies are evaluated in a publicly available dataset of annotated images.

The experimental methodology for evaluating our approach is detailed in this section. The

results of our method as well as from other state-of-the-art algorithms are presented and

discussed.

3.1 REVIEW dataset

The Retinal Vessel Image set for Estimation of Widths (REVIEW) dataset [39] is the only pub-

lic dataset with vessel width measurements, based on vessel edges marked by 3 observers on

randomly selected segments using a special drawing tool. This dataset can be downloaded at

http://ReviewDB.lincoln.ac.uk. REVIEW is the reference dataset for evaluation of width esti-

mation algorithms in eye fundus images, and has been used by the majority of the state-of-the-

art methods. It has 4 subsets, 16 images, 193 segments and 5066 profiles. These images have a

variety of resolutions, pathologies and artifacts. The ground truth is the mean of the annota-

tions of the 3 observers. The four subsets are: HRIS (The high resolution image set), VDIS

(The vascular disease image set), CLRIS (The central light reflex image set) and KPIS (The

kick point image set). The characteristics of these subsets are detailed in Table 1. Examples of

images from REVIEW along with the ground truth markings are shown in S3 Appendix.

3.2 Evaluation metrics

For the current application, it is more relevant that the algorithms retrieve precise results, i.e.,

with a low standard deviation of the width errors, than accurate, i.e., low mean of the width

errors [6], since any consistent bias can be compensated, whereas no compensation is possible

for fluctuating bias. The standard deviation of the point-by-point differences between the mea-

sured and the ground truth diameters should thus be used to evaluate the performance of the

algorithms [39]. This difference, at given vessel profile i, is given by χi = ωi − ψi, where ωi is the

estimated width and ψi is the correspondent ground truth. The standard deviation of the width

differences is given by

serror ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

np � 1

Xnp

i¼1

ðwi � merrorÞ
2

v
u
u
t ð6Þ

where μerror represents the mean of the width differences and is given by merror ¼
1

np

Pnp
i¼1 wi,

Table 1. REVIEW subsets characteristics. HRIS: The high resolution image set; VDIS: The vascular disease image set; CLRIS: The central light reflex image set; KPIS: The

kick point image set (px: pixels; FOV: field of view; im: images; seg: segments; prof: profiles).

Dataset size (pixels) FOV # im # seg # prof notes

HRIS 2438×3584 60˚ 4 90 2368 different grades of DR;

images usually sampled by a factor of 4 for algorithm evaluation

VDIS 1024×1360 50˚ 8 79 2249 normal and diseased retina (diabetic and atherosclerotic retinopathies

CLRIS 1440×2160 50˚ 2 21 285 early atherosclerotic changes with an exaggerated CLR

KPIS 288×119

and

170×192

60˚ 2 3 164 good quality images (retrieved from 2600×3330 pixel images);

clean, large and non tortuous vessels

https://doi.org/10.1371/journal.pone.0194702.t001
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being np the number of vessel cross-sections, i.e., profiles, evaluated. The success rate (SR) is

commonly used as a measure of stability [8]. It is usually defined as the ratio between the

meaningful measurements returned by the algorithm and the total number of measurements.

The mean and the standard deviation of the width measurements is also commonly reported.

In order to evaluate the performance of the algorithm, a correspondence has to be estab-

lished between each ground truth center point (i.e., center point of the marked edge points)

and a point in the detected centerline. Here, we associate each ground truth center point with

the closest detected center point, as long as they are within less than 5 pixels from each other

and that no other ground truth center point is closer to that detected point. This value is cho-

sen since it is smaller than most of the diameters on the dataset and ensures some margin to

account for possible mislocation of the detected center point. This leads to a unique match

between ground truth and detected center points, ensuring that each center point is only used

once for measurement. In the work of [11] a similar scheme is used, but a larger tolerance is

given when it comes to the maximum distance between the two points (it has to be less than

the true vessel diameter at that point). This strict criteria of unique matching between a ground

truth and a detected point can lead to a decrease in the SR in cases where the ground truth

points have a distance of less than 1 pixel from each other.

3.2.1 Results per range of diameters. The analysis performance of the algorithm for dif-

ferent ranges of diameters is also performed. Ideally, the behaviour should be independent of

the real vessel diameter, but some algorithms tend to retrieve worse results for a given range of

diameters, generally for thinner vessels. One simple way to coarsely assess this is to compare

the distributions of the measured and ground truth diameters. However, this does not retrieve

information regarding the error for each range of diameters. Consequently, evaluation can be

performed using Bland-Altman plots of the results, by plotting the differences between the

measured and the ground truth widths (χi) as a function of the mean of those differences.

3.2.2 Goodness-of-fit. As the determination of the diameters is performed based solely

on the model parameters,the goodness-of-fit of the model curves to the intensity cross-sec-

tional profiles should be analysed, since the curves should represent the profile as accurately as

possible, without compromising the performance of the regressor. Different metrics are herein

used to evaluate this goodness-of-fit. The sum of squares due to error (SSE), also called sum of

square of residuals, represents the deviation of the data points from the fitted curve. It is given

by:

SSE ¼
Xn

i¼1

ðyi � ŷiÞ
2

ð7Þ

where n is the number of points in the profile, ŷi the predicted, i.e., the model, value at point i
and yi the observation value. A smaller value, i.e., closer to zero, means that the model has a

smaller random error, being more useful for prediction.

The R-square (R2) metric measures how well the fit explains the variation of the data, and is

given by:

R2 ¼
SSR
SST
¼ 1 �

SSE
SST

ð8Þ

where SSR is the ratio of the sum of squares of the regression, SSR ¼
Pn

i¼1
ðŷi � �yÞ2, SST is

the total sum of squares, SST ¼
Pn

i¼1
ðyi � �yÞ2, verifying SST = SSR + SSE, with �y being the

mean of the observations. It is also called the square of the correlation between the observation

and the predicted values. R2 ranges from 0 to 1, with higher values indicating that the model

accounts for a greater proportion of variance. Note that if the number of model coefficients
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increases, R2 increases without the fitting necessarily improving. To avoid this, the number of

degrees of freedom should be accounted for (adjusted R-square). This adjusted R-square (R2
adj)

is given by:

R2

adj ¼ 1 �
SSEðn � 1Þ

SSTðvÞ
ð9Þ

where v is the number of residual degrees of freedom, v = n −m, with n being the number of

data points and m the number of fitting coefficients. This metric can have any value smaller or

equal to 1, being that values closer to 1 are indicative of a better fit.

Finally, the root mean squared error (RMSE), also called fit standard error, is defined as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffi
MSE
p

¼

ffiffiffiffiffiffiffiffi
SSE
v

r

ð10Þ

RMSE values closer to 0 indicate a fit more useful for prediction.

3.3 Model fitting

The goodness-of-fit is evaluated for the three tested models: DoG×line model with 7 parame-

ters (DoG-L7), DoG×line model with 8 parameters (DoG-L8) and the Hermite model with 6

parameters. The results of the goodness-of-fit (gof) metrics for each dataset of REVIEW are in

Table 2. For each metric and dataset, it shows the mean of the metrics for all the profiles in

that dataset. In Fig 11, examples of intensity profiles and their best-fit models are shown, along

with the computed gof metrics.

As it can be seen, the DoG-L8 model consistently returns better gof metrics than the other

two models, followed by the DoG-L7. In fact, the 8 parameter model has always the lowest SSE
and RMSE and the highest R2 and R2

adj, which suggests it is the model with smaller random

error and the one that better explains the variation of the data. This is specially noticeable for

the CLRIS dataset, where the DoG-L8 model shows the largest improvement relatively to

DoG-L7. This is expected since the new introduced parameter allows to model the asymmetry

in the CLR, which is frequent in the CLRIS images. The Hermite model with 6 parameters is

the worst fitting model, retrieving worse values for all the gof metrics, being more prominent

in CLRIS.

Table 2. Goodness-of-fit metrics obtained for the DoG-L7, DoG-L8 and Hermite models. The results shown are the mean of the values from all the profiles of each data-

set. The best results for each dataset are highlighted.

Model Dataset SSE R2 R2
adj RMSE

DoG-L7 CLRIS 0.0072 0.9774 0.9769 0.0043

HRIS 0.0075 0.9733 0.9721 0.0062

KPIS 0.0055 0.9935 0.9932 0.0053

VDIS 0.0072 0.9726 0.9718 0.0045

DoG-L8 CLRIS 0.0053 0.9817 0.9813 0.0037

HRIS 0.0071 0.9750 0.9736 0.0060

KPIS 0.0050 0.9942 0.9940 0.0050

VDIS 0.0064 0.9744 0,9735 0.0043

Hermite CLRIS 0.0412 0,9208 0.9197 0.0097

HRIS 0.0090 0,9694 0.9683 0.0069

KPIS 0.0110 0,9873 0.9870 0.0078

VDIS 0.0114 0.9683 0.9675 0.0054

https://doi.org/10.1371/journal.pone.0194702.t002
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3.4 Width measurement

The results of the method proposed in this work are evaluated in four different ways:

1. k-fold cross-validation, with k = 10, in each dataset (CLRIS, HRIS, KPIS and VDIS);

2. k-fold cross-validation, with k = 10, in the whole REVIEW dataset;

3. leave-one-segment-out validation, in each dataset;

4. leave-one-segment-out validation, in the whole REVIEW.

Tables 3 and 4 show the results of the different tested models, for each of the datasets of

REVIEW, using each of the 4 referred evaluation schemes. The metrics presented in the table

are the success rate of the algorithm, the mean and standard deviation of the measurements

and the mean and standard deviation of the measurement errors. For comparison, results

from the observers and the ground truth values are also shown. The goal here is not to achieve

zero standard deviation of the errors, but instead to be close to the observers’ results.

3.4.1 k-fold cross-validation results. In k-fold cross-validation, the original dataset is

randomly partitioned in k subsets. At each time, k − 1 subsets are used for training and the

remaining one for testing. This is repeated k times, so that each subset is used exactly one time

for testing. This ensures that each profile enters exactly once for testing. In this work we use 10

folds, as in [8]. In [8] the authors perform cross-validation in each dataset. This means that for

each of the 4 datasets in REVIEW, the cross-validation scheme is applied, independently of the

other datasets. Here, we also perform cross-validation in the whole REVIEW. This allows to

assess the robustness of the regression method, evaluating if it is able to return good results

even when dealing with a large variety of images, both in terms of size, resolution, contrast,

presence of pathologies, etc.

The results of the proposed method using the 3 tested models, evaluated through 10-fold

cross-validation in each dataset and in the whole REVIEW, are shown in Tables 3 and 4.

Results show to be close to the observers’ in terms of precision. The standard deviation of the

errors, σerror, is consistently higher for CLRIS and VDIS datasets comparing to the HRIS and

KPIS, which is coherent with the observers’ values. This is true across all the tested models,

and for both cross-validation schemes. It is known that CLRIS is a difficult dataset due to the

presence of accentuated CLR, and VDIS has a large variety of images, both normal and dis-

eased, representing a greater challenge for diameter measurement.

Fig 11. Example of fitting of the models to a vessel intensity profile. Black dots: profile; orange curve: best-fit model. A: Hermite model; SSE = 0.0586, R2 =

0.9329, R2
adj ¼ 0:9320, RMSE = 0.0128; B: DoG-L7 model; SSE = 0.01524, R2 = 0.9825, R2

adj ¼ 0:9822, RMSE = 0.0065; C: DoG-L8 model; SSE = 0.0030, R2 =

0.9965, R2
adj ¼ 0:9964, RMSE = 0.0029.

https://doi.org/10.1371/journal.pone.0194702.g011
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Table 3. Results of the proposed method for retinal vessel width estimation using the DoG-L7, DoG-L8, and Hermite models in the CLRIS and HRIS datasets from

REVIEW. Four evaluation schemes are presented: cross-validation in each dataset (Cv_d) and in the whole REVIEW (Cv_R) and leave-one-segment-out in each dataset

(Lso_d) and in the whole REVIEW (Lso_R). O1, O2 and O3 are the observers, and G.T. is the ground truth, i.e., mean of the 3 observations. SR is the success rate, μmeas
and σmeas are the mean and standard deviation of the width measurements, respectively, and μerror and σerror are the mean and standard deviation of the measurement

errors. � SR values are negatively influenced by errors found in the observers’ annotations.

CLRIS HRIS

Method SR

(%)

μmeas
(px)

σmeas
(px)

μerror
(px)

σerror
(px)

SR

(%)

μmeas
(px)

σmeas
(px)

μerror
(px)

σerror
(px)

O1 100 13.19 4.01 -0.61 0.566 100 4.12 1.25 -0.23 0.288

O2 100 13.69 4.22 -0.11 0.698 100 4.35 1.35 0.002 0.256

O3 100 14.52 4.26 0.72 0.566 100 4.58 1.26 0.23 0.285

G.T. 100 13.80 4.12 - - 100 4.35 1.26 - -

DoG-L7 Cv_d 97.5� 13.78 3.90 0.01 0.563 98.4� 4.30 1.21 0.002 0.217

Cv_R 13.61 3.92 -0.16 0.685 4.36 1.22 0.06 0.302

Lso_d 13.56 3.64 -0.20 1.236 4.30 1.10 -0.004 0.539

Lso_R 13.12 3.51 -0.64 1.156 4.53 1.32 0.23 0.829

DoG-L8 Cv_d 97.5� 13.78 3.93 0.01 0.592 98.4� 4.31 1.19 0.002 0.248

Cv_R 13.43 3.90 -0.34 0.796 4.37 1.23 0.062 0.320

Lso_d 13.63 3.68 -0.14 1.297 4.28 1.06 -0.03 0.598

Lso_R 12.64 3.29 -1.12 1.519 4.49 1.35 0.19 0.901

Hermite Cv_d 97.5� 13.78 3.62 0.02 1.152 98.4� 4.30 1.21 0.002 0.221

Cv_R 13.52 3.23 -0.24 1.391 4.38 1.22 0.07 0.287

Lso_d 13.70 3.24 -0.06 2.306 4.32 1.12 0.02 0.488

Lso_R 12.92 2.59 -0.85 2.752 4.60 1.29 0.29 0.718

https://doi.org/10.1371/journal.pone.0194702.t003

Table 4. Results of the proposed method for retinal vessel width estimation using the DoG-L7, DoG-L8, and Hermite models in the KPIS and VDIS datasets from

REVIEW. Four evaluation schemes are presented: cross-validation in each dataset (Cv_d) and in the whole REVIEW (Cv_R) and leave-one-segment-out in each dataset

(Lso_d) and in the whole REVIEW (Lso_R). O1, O2 and O3 are the observers, and G.T. is the ground truth, i.e., mean of the 3 observations. SR is the success rate, μmeas
and σmeas are the mean and standard deviation of the width measurements, respectively, and μerror and σerror are the mean and standard deviation of the measurement

errors. � SR values are negatively influenced by errors found in the observers’ annotations.

KPIS VDIS

Method SR

(%)

μmeas
(px)

σmeas
(px)

μerror
(px)

σerror
(px)

SR

(%)

μmeas
(px)

σmeas
(px)

μerror
(px)

σerror
(px)

O1 100 7.97 0.47 0.45 0.233 100 8.50 2.54 -0.35 0.543

O2 100 7.60 0.42 0.08 0.213 100 8.91 2.69 0.06 0.621

O3 100 7.00 0.52 -0.53 0.234 100 9.15 2.67 0.30 0.669

G.T. 100 7.52 0.42 - - 100 8.85 2.57 - -

DoG-L7 Cv_d 98.8 7.40 0.26 -0.001 0.298 99.7� 8.78 2.45 0.007 0.690

Cv_R 7.34 0.29 -0.06 0.299 8.75 2.53 -0.02 0.721

Lso_d 7.37 0.14 -0.03 0.384 8.69 2.25 -0.08 1.048

Lso_R 7.16 0.27 -0.24 0.365 8.68 2.44 -0.09 1.092

DoG-L8 Cv_d 98.8 7.41 0.23 0.005 0.304 99.7� 8.79 2.39 0.016 0.780

Cv_R 7.33 0.28 -0.08 0.327 8.78 2.49 0.008 0.840

Lso_d 7.39 0.15 -0.001 0.434 8.62 2.10 -0.155 1.234

Lso_R 7.12 0.26 -0.29 0.408 8.66 2.36 -0.11 1.270

Hermite Cv_d 98.8 7.40 0.26 0.002 0.283 99.7� 8.77 2.41 0.001 0.726

Cv_R 7.33 0.27 -0.07 0.292 8.72 2.51 -0.05 0.785

Lso_d 7.42 0.17 0.02 0.359 8.66 2.24 -0.11 1.099

Lso_R 7.18 0.22 -0.22 0.384 8.58 2.44 -0.19 1.139

https://doi.org/10.1371/journal.pone.0194702.t004
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Further, one notices that σerror is generally slightly higher when performing cross-validation

in the whole REVIEW than in each dataset. This effect is expected, since, despite the increase

on the training set size that occurs when all datasets are considered, the variability of vessels

properties also increases, as referred above. For instance, the range of diameters when per-

forming the cross-validation in the whole REVIEW is larger than when each dataset is consid-

ered separately.

From the tested models, DoG-L7 shows better results. Although in the majority of the data-

sets the results of the three models are relatively close, for the CLRIS dataset the Hermite

model behaves considerably worse, doubling σerror of the other models. As referred in subsec-

tion 3.3, the fitting of the CLRIS profiles by this model is relatively poor, which negatively

affects the results. Although the DoG-L8 model fits slightly better the CLR vessels (subsection

3.3), this improvement seems not to add much relevant information for regression. As can be

seen, σerror is similar for both DoG×line models in CLRIS, but for VDIS, for instance, it is

higher for the 8 parameter model. This suggests that the addition of the parameter introduces

extra information not relevant for the ensembles of bagged regression trees, which can even

constitute noise that hinders the regression.

Regarding the success rates (SR), the major reason for the less than 100% SR of the pro-

posed algorithm is the fact that no association is found between the dubious ground truth

points (S4 Appendix) and the detected center points, due to the misplacement of the ground

truth and the strict association criteria (subsection 3.2). In the case of KPIS, where no dubious

ground truth marks were found, the profiles not measured correspond to junction regions.

These junction points are removed in the algorithm’s preprocessing phase. It appears that

some junctions were not avoided when marking the ground truth, probably due to the inter-

sections with thin vessels that were not accounted for. However, as our segmentation detects

even the thinnest vessels, these junctions are detected. Similar cases may occur in HRIS and

VDIS datasets. Since our association criteria leads to a unique match between ground truth

and detected center points, no association is performed at bifurcations and crossings. Despite

this, considering the whole REVIEW, 99% of the ground truth vessel profiles are measured by

the algorithm.

In S5 Appendix one can see that the measured diameters (DoG-L7 model) and the ground

truth diameters follow a similar distribution. CLRIS is the dataset for which the distribution of

the measurements is farther from the reference one. We can also see that the range of diame-

ters present in the CLRIS and VDIS datasets are significantly larger that the ones from HRIS

and KPIS, having KPIS the narrowest diameter range. Further, CLRIS is practically the only

dataset that contains diameters over 15 pixels. HRIS, by its turn, contains very small diameters

that are poorly represented in the other datasets. These facts help corroborating the obtained

results, since the lower precision found in CLRIS and VDIS datasets when cross-validating in

each dataset may be due to their broader diameter ranges. In fact, in [8] the authors suggest

that when constructing datasets for ensembles of regression trees the distribution of the diame-

ters in the training set should be approximately uniform and the range of widths in the train-

ing and testing sets should not be very wide.

Fig 12A and 12B show the Bland-Altman plots of the ground truth and the measured diam-

eters from REVIEW, using the DoG-L7 model and cross-validation in each dataset and in the

whole REVIEW. In these plots, each point has coordinates (xp, yp − xp), where xp is the ground

truth diameter and yp the measured diameter. One can see that there is little dispersion of the

points, indicating a small variance of the errors. As the points are close to the yp − xp = 0 line,

a low measurement error is verified. Consequently, the measurements are both precise and

accurate. The standard deviation of the errors for REVIEW is 0.51 pixels when the cross-

validation is performed in each dataset, and 0.56 pixels when it is performed in the whole
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REVIEW, being the mean error close to zero. Further, the errors do not seem to depend on the

range of diameters, since the points appear to be distributed in a similar manner regardless of

the true diameter.

3.4.2 Leave-one-segment-out validation results. The algorithm is also evaluated per-

forming leave-one-segment-out validation. This consists in leaving out at each time one vessel

segment for testing, and training in the remaining segments. The procedure is repeated n
times, where n is the number of segments in the dataset. We evaluate our method in each data-

set, as well as in the whole REVIEW. This way of evaluating the results ensures that similar

neighboring profiles are not considered both in training and testing, which may not happen

for the cross-validation scheme. Further, since 2D model fitting is performed, i.e., 11 neighbor-

ing profiles are considered, consecutive 2D profiles have 1D profiles in common.

The results of the proposed method using the 3 tested models and this evaluation scheme

are shown in Tables 3 and 4. In general, the errors follow a tendency similar to the described

for cross-validation, being verified higher σerror for the CLRIS and VDIS datasets, for the three

models and for the two validations (in-dataset and in the whole REVIEW). Similarly to what

happened for cross-validation, DoG-L7 shows better or similar results to the ones from the

other models, being the biggest improvement verified for CLRIS and when comparing with

the Hermite model.

We see there is an increase of σerror when using this validation instead of cross-validation,

for all the datasets, which is expected. Removing an entire segment from the training set may

significantly reduce or eliminate the presence of similar profiles to the tested ones. This effect

is most prominent for the CLRIS dataset. As known, CLRIS contains segments with strong

CLR, and has a very wide range of diameters. Further, it contains the majority of the vessels

with diameters >20 pixels (S5 Appendix). Additionally, it only contains 20 segments. Since the

diameter range is very wide, few segments are available for each diameter. Consequently, the

removal of one segment from the training set can largely affect the ensembles of bagged regres-

sion trees since it is probably a representative segment. In S5 Appendix one sees that the mea-

sured diameter distribution does not have any profile with>20 pixels.

Further, σerror does not vary in the same manner for the different datasets when comparing

both leave-one-segment-out validations. For HRIS, σerror is higher (for all three models) when

performing the validation in the whole REVIEW, whereas for the other datasets the differences

are negligible. For the HRIS dataset, the diameter range is relatively narrow, and there are 90

segments in total (S5 Appendix). The fact that σerror increases significantly when validating in

the whole REVIEW is considered to be due to the introduction of noise by other datasets. Fig

13 shows a vessel profile from HRIS where the measured diameter was, for certain profiles, the

double of the real one. This is caused by the similarity of the vessel profile with a profile of a

Fig 12. Bland-Altman plots of the ground truth and measured diameters, using the DoG-L7 model for fitting. Results for both 10-fold cross-validation and leave-

one-segment-out validation, in each dataset (CLRIS, HRIS, KPIS and VDIS) and in the whole REVIEW, are shown (in the xx axis the ground truth diameters are plotted

instead of the mean between the ground truth and measured diameters). A: cross-validation in each dataset; B: cross-validation in the whole REVIEW; C: leave-segment-

out validation in each dataset; D: leave-segment-out validation in the whole REVIEW.

https://doi.org/10.1371/journal.pone.0194702.g012
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vessel with CLR, caused by the inclusion of a near vessel in the profile. This identification of

CLR only happened because of the presence of CLRIS in the training set.

Nevertheless, one should note that, even when a segment is left out of the training proce-

dure, the obtained results are still very satisfactory, never surpassing approximately 1 pixel of

σerror (except for CLIRS, where σerror is of 1.236 pixels). Finally, μerror is considerably higher for

the leave-one-segment-out validation in the whole REVIEW than for the other three validation

schemes. Despite this, they are still close to the values of the observers.

An additional analysis is performed in order to assess the similarity between the segments

in each dataset, aiming to corroborate the results of the leave-one-segment-out validation in

each dataset. If the similarity between segments in a dataset is low, it is expected that the

removal of a segment from the training set significantly affects the results. Obviously, this

depends also on the number of segments in the dataset. To assess the segment similarity, for

each dataset, the correlation between each pair of segments is computed. For that, the profile

for a given segment is taken as the mean of the profiles from that segment. For each segment

pair, the two profiles are aligned by their maximum value. Results are normalized by dividing

by the maximum of the autocorrelations of the two profiles. Results are shown in Table 5.

Fig 13. Example of poor width measurements due to a false central light reflex (CLR) detection. A: HRIS vessel

segment (labeled as 1), that at a given point runs next to another segment (labeled as 2); B: smoothed profile extracted

from region X; C: smoothed profile extracted from region Y, where the presence of another vessel close to the main

vessel simulates the presence of CLR. Profiles as the one in [C] were wrongly measured by our algorithm when leave-

one-segment-out validation in the whole REVIEW is performed, being retrieved a diameter that is approximately two

times the real diameter. Black points in [B] and [C]: intensity profiles; orange curves: best-fit models, yellow vertical

lines: centers of the profiles; purple vertical lines: ground truth locations; white marks in [A]: ground truth points.

https://doi.org/10.1371/journal.pone.0194702.g013

Table 5. Correlation between the segments of each dataset. μcorr and σcorrr are the mean and standard deviation of the

correlations of all pairs of segments, maxcorr is the maximum correlation and #comb is the number of combinations of

2 segments found in the dataset.

Dataset μcorr σcorr maxcorr #comb
CLRIS 0.510 0.252 0.982 190

HRIS 0.612 0.217 0.996 3160

KPIS 0.804 0.103 0.960 15

VDIS 0.454 0.258 0.997 6670

https://doi.org/10.1371/journal.pone.0194702.t005
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KPIS is the dataset that shows highest correlation between its segments (higher μcorr and

smaller σcorr), which is coherent with the evolution of σerror when a segment is left out of the

training, which is not very significant. CLRIS dataset shows one of the lowest correlations,

which corroborates the big effect of the removal of a segment from the training set. Although

VDIS has lower correlation values, the largest number of segments (79 vs 20) justifies the

smaller increase in σerror when comparing to CLRIS.

Fig 12C and 12D show the Bland-Altman plots of the ground truth and the measured diam-

eters from REVIEW, using the DoG-L7 model and leave-one-segment-out in each dataset and

in the whole REVIEW. Although there is little dispersion of the points, indicating a small vari-

ance of the errors, the dispersion is larger than that of cross-validation results. The standard

deviation of the errors for REVIEW is 0.84 pixels when the cross-validation is performed in

each dataset, and 0.99 pixels when it is performed in the whole REVIEW, being the mean error

close to zero. Similarly to cross-validation, the errors do not seem to depend on the range of

diameters, although a slight tendency to underestimate the widths for larger vessels can be

detected.

3.5 Comparison with the state-of-the-art

Together with our DoG-L7 and DoG-L8-based methods, Table 6 depicts the performance of

some of the methods in the literature on the REVIEW dataset in terms of standard deviation

of the error. Additionally, in S6 Appendix the mean of the errors and the success rate of

these methods are presented. Note that the evaluation of the methods that are not herein

compared is not available in the literature. From the analysis of the state-of-the-art results,

the majority of the methods tend to underestimate the widths (mean of the measurement

errors� 0). The best results, considering both accuracy and precision, usually occur for the

HRIS and KPIS datasets. Some of the methods, as the earlier methods and that of [40], see

their performance reduced in CLRIS dataset, namely in terms of precision and success rate.

Generally, the most recent methods (from 2009 onwards) have more promising results,

showing higher precision and accuracy. The most robust state-of-the-art algorithms are the

ones from [9, 11] and [8], being those that return consistently low standard deviation of the

errors for all 4 datasets.

Our method shows, in general, the best performance, having the lowest σerror when cross-

validation is performed, both in each dataset and in the whole REVIEW. Even with other vali-

dation schemes, our results are among the best found in the literature. Considering a score

defined as the mean of the standard deviation of the errors for all datasets, our DoG-L7-based

method presents scores of 0.442 pixels and 0.502 pixels when using cross-validation in each

dataset and in the whole REVIEW, respectively. When using the DoG-L8 model, the scores are

0.481 pixels and 0.571 pixels, respectively. The work of [11] has the third best score (0.628 pix-

els). When leave-one-segment-out is performed, our method is still among the three best

scored-works (see Table 6).

Regarding the method of [8], which is conceptually closest to our proposal, as it performs

Hermite model fitting and regression for width estimation, its performance is evaluated

through cross-validation in each dataset. Using the same evaluation scheme, our method

achieves almost half of the σerror for the majority of the datasets. The improvement of the

results can be attributed to the use of a model that fits best the vessel profiles (DoG-L7 and

DoG-L8), specially those with CLR, and to the preparation of the profiles before model fitting

using several preprocessing steps that improved the subsequent steps. This is true since the

results of our method (see Tables 3 and 4) using the Hermite model with 6 parameters of [8]

are still superior to those of that work for the majority of the datasets.
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4 Conclusions

The method herein presented for vessel width measurement in retinal images combines model

fitting with several preprocessing steps, and estimates the widths based on the best-fit-model

parameters using ensembles of bagged regression trees with random feature selection. It uses a

novel parametric model based on a Difference-of-Gaussians (DoG) model, modified through

a multiplying line with varying inclination which is able to describe profile asymmetry.

Our method often shows better results than the top-performing state-of-the art algorithms.

It has consistently the higher precision (lowest standard deviation of the errors) when cross-

validation is performed. When a segment is left out, our results are still among the best found

in the literature. Our method practically halves the standard deviation of the errors reported

by [8]. The novel DoG-L7 and DoG-L8 models fit best the vessel profiles, specially the most

challenging ones, such as the ones with central light reflex (CLR). Results are further improved

due to the use of several preprocessing steps before model fitting.

Despite all this, there is still room for improvement and adaptations. The method was

designed independently of any framework. However, depending on the future application, it

could be of interest to adapt the width measurement algorithm to be autonomous from the

vessel centerlines.

Table 6. Standard deviation of the width errors for each of the four REVIEW datasets. The width errors are the point-by-point differences between the ground truth

and the width measurements (pixels). Cv_d, Cv_R, Lso_d and Lso_R stand for cross-validation in the dataset and in the whole REVIEW, and leave-one-segment-out vali-

dation in the dataset and in the whole REVIEW, respectively. The score is the mean of the values of all datasets. The 3 best scores at highlighted.

Method HRIS VDIS CLRIS KPIS Score

O1 0.288 0.543 0.567 0.233 0.408

O2 0.256 0.621 0.698 0.213 0.447

O3 0.285 0.669 0.566 0.234 0.439

Gregson [41] 1.479 1.494 2.841 0.602 1.604

HHFW [42] 0.926 0.879 - 0.389 -

Zhou (1D-G) [14] 0.896 2.110 4.137 0.399 1.886

Lowell (2D-G) [6] 0.703 1.328 6.019 0.337 2.097

Al-Diri (ESP) [9] 0.420 0.766 1.469 0.328 0.746

Yin, Y. [12] - - - - -

Xu (Graphs) [10] 0.567 1.43 1.78 0.67 1.112

Trucco [43] 0.760 1.381 1.229 0.319 0.922

Kumar (ULDM) [7] 0.79 1.18 1.79 0.60 1.090

Lupascu [8] 0.438 1.073 1.154 0.318 0.746

Bankhead [11] 0.32 0.95 0.95 0.29 0.628

Yin, X. [44] 1.11 1.55 1.49 1.32 1.368

Vazquez- G [40] 0.85 1.11 2.17 0.76 1.223

Vazquez- L [40] 0.88 1.08 4.26 0.74 1.740

Vazquez- J [40] 0.80 1.19 2.30 0.73 1.255

Vazquez- I [40] 0.96 1.12 2.51 0.75 1.335

Proposed, DoG-L7 (Cv_d) 0.217 0.690 0.563 0.298 0.442

Proposed, DoG-L7 (Cv_R) 0.302 0.721 0.685 0.299 0.502

Proposed, DoG-L7 (Lso_d) 0.539 1.048 1.236 0.384 0.802

Proposed, DoG-L7 (Lso_R) 0.829 1.092 1.156 0.365 0.860

Proposed, DoG-L8 (Cv_d) 0.248 0.780 0.592 0.304 0.481

Proposed, DoG-L8 (Cv_R) 0.320 0.840 0.796 0.327 0.571

Proposed, DoG-L8 (Lso_d) 0.598 1.234 1.297 0.434 0.891

Proposed, DoG-L8 (Lso_R) 0.901 1.270 1.519 0.408 1.204

https://doi.org/10.1371/journal.pone.0194702.t006
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Further, considering the nature of the method used for width estimation, which relies

on supervised learning, the definition of the training dataset is a key factor. However, the

REVIEW dataset, as well as its sub-datasets, does not contain an uniform distribution of the

diameters. This is not desirable and can influence the ensembles’ performance, being that a

more balanced dataset would be of much more interest.

Additional efforts in optimizing certain steps of the algorithm would probably improve the

results. For instance, the determination of the profile lengths prior to model fitting could be

further refined, since a better initial width estimation could improve the model fitting results.

Although the parameter choice is not very determinant to the ensembles of trees’ performance,

the influence of the parameters, could be further assessed. Further, other regression methods

could be tested for results comparison, such as Support Vector Machines or Neural Networks

for regression.

Our retinal vessel width measurement method has a performance that is close or outper-

forms the top-performing state-of-the-art methods. The method shows to retrieve precise

results, close to that of the observers, as was the goal. This shows the robustness of our method

and its great potential to be used directly for measurement of retinal vessel widths and/or to be

integrated in a framework for retinal vascular assessment.
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23. Araújo T, Mendonça AM, Campilho A. Estimation of retinal vessel caliber using model fitting and ran-

dom forests. In: SPIE Medical Imaging. vol. 10134; 2017. p. 10134–10134–8.

24. Mendonça AM, Dashtbozorg B, Campilho A. Segmentation of the Vascular Network of the Retina. In:

Image Analysis and Modeling in Ophthalmology; 2014. p. 85–110.

25. Lam L, Lee SW, Suen CY. Thinning methodologies-a comprehensive survey. IEEE Transactions on

Pattern Analysis and Machine Intelligence. 1992; 14(9):869–885.

26. Gonzalez RC, Woods RE. Digital Image Processing. Robbins, Tom; 2002.

27. Rice JR. The approximation of functions, Vol. 2: Nonlinear and multivariate theory. Reading Massachu-

setts: Addison-Wesly; 1969.

28. Hunter A, Lowell J, Ryder R, Basu A, Steel D. Tram-Line filtering for retinal vessel segmentation. Pro-

ceedings of the 3rd European Medical and Biological Engineering Conference. 2005;11(1):3–6.

29. Poletti E, Grisan E, Ruggeri A. Image-level tortuosity estimation in wide-field retinal images from infants

with Retinopathy of Prematurity. Proceedings of the Annual International Conference of the IEEE Engi-

neering in Medicine and Biology Society, EMBS. 2012;(1):4958–4961.

30. Cavinato A, Ballerini L, Trucco E, Grisan E. Spline-based refinement of vessel contours in fundus retinal

images for width estimation. In: 2013 IEEE 10th International Symposium on Biomedical Imaging.

IEEE; 2013. p. 872–875.

31. Lee ETY. Choosing nodes in parametric curve interpolation. Computer-Aided Design. 1989; 21(6):363–

370. https://doi.org/10.1016/0010-4485(89)90003-1

32. Savitzky A, Golay MJE. Smoothing and Differentiation of Data by Simplified Least Squares procedures.

Anal Chem. 1964; 36(8):1627–1639. https://doi.org/10.1021/ac60214a047

33. Arlinghaus SL, Arlinghaus WC, Drake WD, Nystuen JD. Practical Handbook of Curve Fitting. CRC

Press; 1994.

34. Coleman T, Branch MA, Grace A. Optimization Toolbox For Use with M ATLAB. Matlab The Mathworks

Inc; 1999.

35. Yuan Yx. A review of trust region algorithms for optimization. ICIAM. 2000;99(271-282).

36. Breiman L. Bagging predictors. Machine Learning. 1996; 24(2):123–140. https://doi.org/10.1023/

A:1018054314350

37. Breiman L. Random Forests. Machine learning. 2001; 45(1):5–32. https://doi.org/10.1023/

A:1010933404324

38. Liaw A, Wiener M. Classification and Regression by randomForest. R news. 2002; 2(3):18–22.

39. Al-Diri B, Hunter A, Steel D, Habib M, Hudaib T, Berry S. REVIEW—a reference data set for retinal vessel

profiles. In: Conference proceedings: 30th Annual International Conference of the IEEE Engineering in

Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society; 2008. p. 2262–2265.

40. Vazquez SG, Barreira N, Penedo MG, Pena-Seijo M, Gomez-Ulla F. Evaluation of SIRIUS retinal ves-

sel width measurement in REVIEW dataset. In: Proceedings of the 26th IEEE International Symposium

on Computer-Based Medical Systems. IEEE; 2013. p. 71–76.

41. Gregson PH, Shen Z, Scott RC, Kozousek V. Automated Grading of Venous Beading. Computers and

Biomedical Research. 1995; 28(4):291–304. https://doi.org/10.1006/cbmr.1995.1020 PMID: 8549121

42. Brinchmann-Hansen O, Heier H. Theoretical relations between light streak characteristics and optical

properties of retinal vessels. Acta Ophthalmologica. 2009; 64(S179):33–37. https://doi.org/10.1111/j.

1755-3768.1986.tb00701.x

Parametric model fitting-based approach for vessel caliber estimation in fundus images

PLOS ONE | https://doi.org/10.1371/journal.pone.0194702 April 18, 2018 26 / 27

http://www.ncbi.nlm.nih.gov/pubmed/17304729
https://doi.org/10.1136/bjo.85.1.74
http://www.ncbi.nlm.nih.gov/pubmed/11133716
https://doi.org/10.1016/0010-4485(89)90003-1
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1023/A:1018054314350
https://doi.org/10.1023/A:1018054314350
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1006/cbmr.1995.1020
http://www.ncbi.nlm.nih.gov/pubmed/8549121
https://doi.org/10.1111/j.1755-3768.1986.tb00701.x
https://doi.org/10.1111/j.1755-3768.1986.tb00701.x
https://doi.org/10.1371/journal.pone.0194702


43. Trucco E, Ballerini L, Relan D, Giachetti A, MacGillivray TJ, Zutis K, et al. Novel VAMPIRE algorithms

for quantitative analysis of the retinal vasculature. In: 2013 ISSNIP Biosignals and Biorobotics Confer-

ence; 2013. p. 1–4.

44. Yin X, Ng BWH, He J, Zhang Y, Abbott D. Accurate Image Analysis of the Retina Using Hessian Matrix

and Binarisation of Thresholded Entropy with Application of Texture Mapping. PLoS ONE. 2014; 9(4).

https://doi.org/10.1371/journal.pone.0095943

Parametric model fitting-based approach for vessel caliber estimation in fundus images

PLOS ONE | https://doi.org/10.1371/journal.pone.0194702 April 18, 2018 27 / 27

https://doi.org/10.1371/journal.pone.0095943
https://doi.org/10.1371/journal.pone.0194702

