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Abstract
Odometry calibration adjusts the kinematic parameters or directly the robot’s model to improve the wheeled odometry
accuracy. The existent literature considers in the calibration procedure only one steering geometry (differential drive,
Ackerman/tricycle, or omnidirectional). Our method, the OptiOdom calibration algorithm, generalizes the odometry
calibration problem. It is developed an optimization-based approach that uses the improved Resilient Propagation without
weight-backtracking (iRprop-) for estimating the kinematic parameters using only the position data of the robot. Even though
a calibration path is suggested to be used in the calibration procedure, the OptiOdom method is not path-specific. In the
experiments performed, the OptiOdom was tested using four different robots on a square, arbitrary, and suggested calibration
paths. The OptiTrack motion capture system was used as a ground-truth. Overall, the use of OptiOdom led to improvements
in the odometry accuracy (in terms of maximum distance and absolute orientation errors over the path) over the existent
literature while being a generalized approach to the odometry calibration problem. The OptiOdom and the methods from the
literature implemented in the article are available in GitHub as an open-source repository.

Keywords Calibration · Dead reckoning · Mobile robots · Robot kinematics · Wheeled odometry

1 Introduction

Localization is one of the most critical problems in
autonomous navigation. Indeed, autonomous navigation is
only achieved if it is possible to determine the robot’s
pose in the environment in which is inserted. Two
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basic localization methods commonly applied together
using sensor fusion are absolute and relative localization.
Absolute localization usually depends on map matching,
identification of active or passive landmarks or beacons.
Relative localization is usually based on wheel, visual
and/or laser odometry [3, 12, 23, 29].

Wheel odometry uses the robot’s kinematic model and
the displacement of the wheels to estimate the robot’s pose.
The estimated pose is relative to a previous instant. Usually,
wheel odometry is combined with other localization
methods using sensor fusion techniques. Furthermore, the
kinematic model is specific to each steering geometry.
The model’s parameters are the physical dimensions of
the robot, such as diameters of the wheels, steering angle
offsets, among others. [31]. As for the wheels displacement,
it is estimated, e.g., from the measurement of wheel
revolutions (usually obtained from optical encoders) and/or
steering angles. In comparison with other localization
methods, wheel odometry is computationally inexpensive,
high sampling rate, and easy to apply in real-time [3].

A well-known disadvantage of odometry is the accumu-
lation of errors. Some of these errors are systematic, i.e.,
they are deterministic and constantly accumulate over time
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(e.g., uncertainty of the robot’s kinematic parameters) [3,
16]. Calibration can be used to reduce the uncertainty of the
kinematic parameters and the effect of systematic errors.

So, odometry calibration is essential to improve the
accuracy of wheel odometry. The main goal is to estimate
the kinematic parameters of the robot, increasing the
accuracy of the odometry’s pose estimation. In the
literature, several methods were proposed for the most
frequent steering geometries: differential drive ([1–6, 8,
13, 16, 17, 25–27, 34, 37]), Ackerman/tricycle ([7,
11, 18, 19]), and omnidirectional ([14, 22, 24]). The
existent works on odometry calibration illustrate three main
trends: path-specific algorithms with closed-form equations,
optimization-based methods, and methods that implement
Augmented Kalman Filters (AKF). However, all of them
only focus on estimating the kinematic parameters for a
specific steering geometry.

This paper presents the OptiOdom odometry calibration
method. OptiOdom is an optimization-based method, and
has the following contributions:

1. generic odometry calibration algorithm (tested in
real environments for the differential drive, Acker-
man/tricycle, and omnidirectional steering geometries);

2. comparison of OptiOdom with popular calibration
methods for the differential drive, Ackerman/tricycle,
and omnidirectional steering geometries.

Our previous works [32, 33] are the basis for the dis-
cussion of the related work, and provides a comprehensive
literature review on odometry calibration methods. Further-
more, to the best of our knowledge, the OptiOdom is the
only odometry calibration method that intends to calibrate
simultaneously three different steering geometries (differ-
ential drive, Ackerman/tricycle, and omnidirectional).

The rest of the paper is organized as follows. Section 2
presents the related work. Section 3 defines the kine-
matics for the differential drive, Ackerman/tricycle, and
omnidirectional steering geometries. Section 4 formulates
the OptiOdom method for wheeled odometry calibration.
Section 5 analyses the results obtained from the experi-
ments made. Section 6 presents the conclusions of the work
performed.

2 Related Work

2.1 Path-specific with Closed-form Equations

Borenstein and Feng [3] was the pioneer method in odom-
etry calibration. The authors proposed the University of
Michigan Benchmark (UMBmark) for the differential drive

steering geometry. The method used a 4x4m bi-directional
square as a calibration path. Closed-form equations for-
mulated in [3] estimate the kinematic parameters. Similar
to [3], Jung and Chung [17] used a square calibration
path, but changed its length to 2m. Also, new closed-form
equations were formulated for the kinematic parameters.
The authors determined the square length by demonstrat-
ing that the path size influences the calibrated odometry
accuracy (for the robot used in their experiments). However,
it was not proven that the proposed path size effectively
improves the odometry for all robots when compared to the
4x4m square calibration path. The methodology proposed
by Tomasi and Todt [34] is also based on UMBmark [3].
However, instead of using a square path, it uses rotational
motions only: 180◦ and 360◦ rotations in both clockwise
(CW) and counterclockwise (CCW) directions.

Bostani et al. [4] proposed moving a differential drive
robot back and forward, with an intermediate 180◦ rotation
(CW and CCW directions). The closed-form equations
defined in [4] considered the initial, intermediate and final
position of the robot through the path. Maddahi et al. [25]
also used a straight-line as a calibration path, but only
with forward motion. The final position is used to estimate
the kinematic parameters of differential drive robots.
The adaptation of [25] for omnidirectional robots was
formulated by Maddahi et al. [24]. As an alternative to
square and straight-line calibration paths for differential
drive robots, Abbas et al. [1] proposed the Bi-directional
Circular Path Test (BCPT). The measurements from the
circumferences diameters (after each CW and CCW runs)
allow the estimation of the kinematic parameters.

As for the Ackerman/tricycle steering geometry, De
Cecco [7] proposed a self-calibration algorithm. The
method required for the robot to go through a specific
path defined in [7]. Both position and orientation of the
robot at intermediate and final waypoints were used to
estimate the kinematic parameters. The method proposed by
Jung et al. [18] is also intended for the Ackerman/tricycle
steering geometry. It required the robot to go through a
1.75m straight-line and a 1.75m diameter semicircle to
the CW direction, repeating these two motions to finish
ideally in the starting pose. The path is also repeated on the
CCW direction. The final orientation is used to calibrate the
kinematic parameters.

The main problem of path-specific methods with closed-
form equations is that they are specific to a given steering
geometry. Indeed, either the path or equations are required
to be modified to implement the method on other steering
geometries. Furthermore, the convergence of the estimated
kinematic parameters could depend on the path size and the
initial estimation for the kinematic parameters [36].
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2.2 Optimization-based Methods

As for optimization-based methods, Antonelli et al. [2]
was the first to use the linear least-squares algorithm to
minimize the final pose (position and orientation) error
relative to the absolute and odometry estimations. This
method formulated the least-squares algorithm specifically
for differential drive robots. This formulation was possible
because the velocity of a differential drive robot is linearly
related to the motors’ angular speed. Due to the use
of least-squares, [2] required several runs with different
paths to compute an unbiased estimator. It is proposed
the use of open and long paths. The adaptation of [2] for
omnidirectional robots was formulated by Lin et al. [22].
Given that the velocity of omnidirectional robots is linearly
related to the motors’ angular speed, [22] also used the
least-squares algorithm. In contrast to [2], Lin et al. [22]
adjusts directly the kinematic model and not each kinematic
parameter. Also, it has more Degrees of Freedom (DoFs)
than the robot’s kinematic model: 6 vs 4 DoFs and
8 vs 5 DoFs for three and four-wheel omnidirectional
robots, respectively. Han et al. [14] also used the linear
least-squares algorithm to calibrate the odometry of
omnidirectional robots. Han et al. [14] adjusted directly
the kinematic model by minimizing the error between the
expected robot’s velocity with the one measured from the
wheels’ encoders. However, the method only considered
error sources specific to omnidirectional robots (slippage,
bearing and/or axle friction, and point contact friction).
Goronzy and Hellbrueck [13] implemented a weighted non-
linear least-squares algorithm for differential drive robots to
estimate the kinematic parameters. The main goal of this
method is online odometry calibration for differential drive
robots with “noisy” ground-truth data (e.g., ultrawideband
or QRpos).

Another work for the differential drive steering geometry
that used the linear least-squares algorithm was proposed
by Censi et al. [8]. This method performs simultaneously
odometry and extrinsic sensor calibration for a laser
scanner. However, the two calibrations cannot be performed
independently of each other, and it is required for the
robot to have constant wheels’ velocities in each path
segment. Based on [8], Kallasi et al. [19] formulated the
odometry and extrinsic sensor calibration independently
for tricycle robots. This method implements a linear least-
squares algorithm using the orientation displacement as
input data. Also, [19] proposed a circular-based calibration
path (circular motion with decreasing radius) to generate
the input data for the calibration algorithm. Similar to [8],
this method requires constant wheels velocities in path
segments. The equivalent method of [19] for the Ackerman
(front-wheel drive) and dual-drive (Ackerman, but with

rear-wheel drive) steering geometries is formulated in the
work of Galasso et al. [11]. Both works [11, 19] did
not estimate the distance between front and rear wheels,
assuming that this distance is known.

Ivanjko et al. [16] minimized the final pose error
for differential drive robots by using an optimization
algorithm (it is suggested the Gauss-Newton or Nelder-Med
algorithms). First, [16] estimated the diameter of the wheels
from the straight-line path. Then, the distance between the
two wheels is estimated from the 180◦ rotation motions
in both CW and CCW. This calibration path specific for
differential drive robots assumed that linear motion is
affected mostly by unequal wheels diameters and rotational
motion by distance between wheels. Mondal et al. [27]
developed a terminal iterative learning control algorithm
to calibrate differential drive robots. This method proposes
only one run through an arbitrary path.

The optimization-based methods found in the literature
are all specific to one steering geometry. Also, only
Mondal et al. [27] and Censi et al. [8] compared their works
with another odometry calibration method. The comparison
in both works was to UMBmark [3]. Mondal et al. [27]
improved the odometry accuracy of a differential drive
robot over [3]. Although Censi et al. [8] obtained similar
odometry accuracy compared to [3], the method also
estimated the extrinsic parameters of a laser scanner.

2.3 Augmented Kalman Filter

The methods based on Augmented Kalman Filters (AKF)
implement Extended Kalman Filters (EKF) that simultane-
ously estimate the robot pose and its kinematic parame-
ters[26]. These methods can perform the calibration proce-
dure while the robot is performing tasks, i.e., performing
online odometry calibration without the need of the robot
going through specific paths. The AKF-based methods
differ mostly in terms of the filter’s update step. Mar-
tinelli et al. [26] proposed an AKF that needed a known map
(e.g., landmarks) to fuse the laser scanner with odometry
data and update the AKF. Caltabiano et al. [5] required Dif-
ferential Global Positioning System (DGPS) data to update
the filter. Although [5] is similar to [26], the data fusion
in [5] also considered attitude and heading measurements
from an inertial measurement unit. Lastly, Yun et al. [37]
did not require external sensors given that it is focused on
“home positioning”, i.e., the robot returning to its “home”
or charging spot after it goes through an arbitrary path. The
loop closure updates the AKF and corrects the kinematic
parameters.

Even though the AKF-based methods can perform
online odometry calibration without the need of the
robot going through specific paths, the works found
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were only formulated for differential drive robots. Also,
only Caltabiano et al. [5] performed comparisons with
UMBmark [3] obtaining better odometry accuracy over the
last. Indeed, the rest of the AKF-based methods did not
make any comparisons with other works proposed in the
literature.

3 Kinematics

This section presents the forward and inverse kinematics of
the steering geometries considered in this paper: differential
drive, Ackerman/tricycle, and omnidirectional (three and
four wheels). The forward kinematics are required to
formulate the OptiOdom odometry calibration method. As
for the inverse kinematics, these are presented here for
reproducibility reasons (relative to the experimental results).
The inverse kinematics formulated in this section were used
to perform all the experiments presented in this paper.

3.1 Differential Drive Steering Geometry

A differential drive robot is illustrated in Fig. 1. The two
driving wheels rotate around the center of the robot. One
or more ground contact points can be added to improve the
stability of the robot. If it is added more than one contact
point, it should be ensured that the traction wheel is always
in contact with the floor. The type of contact points can be
a spherical ball or a caster wheel [31]. The kinematic model
of this steering geometry is characterized by the following
parameters: wheelbase of the robot (b), and the diameters of
the left and right wheels (Di).

Fig. 1 Differential drive steering geometry

3.1.1 Forward Kinematics

The linear displacement of a wheel i at a time instant k

(�di,k) is defined in Eq. 1. It depends on the diameter of
the wheel (Di), the gear reduction ratio (n), the encoders’
resolution (Ce), and the impulses increment (#ii,k) measured
by the respective encoder.

�di,k = πDi

nCe

#ii,k (1)

Next, Eqs. 2 and 3 are relative to the linear (�dk)
and angular (�θk) displacements of the robot on its frame
({XR, YR}), respectively.

�dk = �dR,k + �dL,k

2
(2)

�θk = �dR,k − �dL,k

b
(3)

Finally, the robot’s pose relative to the world frame
({XW , YW }) can be computed by the odometry equations
using the centered discrete approximation presented in [31].
This approximation is illustrated in the set of Eq. 4 for
differential drive robots.

xk = xk−1 + �dk · cos (θk−1 + �θk/2)

yk = yk−1 + �dk · sin (θk−1 + �θk/2)

θk = θk−1 + �θk

(4)

3.1.2 Inverse Kinematics

The inverse kinematics is necessary to control the robot
through a specific path. As illustrated in Eq. 5, the
linear velocities of the right and left (vi,k) wheels can be
formulated as dependent on the robot’s linear (vk) and
angular (ωk) velocities at a certain time instant k [31].

vR,k = vk + ωkb

2

vL,k = vk − ωkb

2

(5)

Lastly, the motors’ angular velocity (ϕ̇i,k) is computed
depending on the desired wheels’ linear velocity (vi,k),
diameter of the wheel (Di), and on the gear reduction ratio
(n), as illustrated in Eq. 6.

ϕ̇i,k = 2n

Di

· vi,k (6)

3.2 Ackerman/Tricycle Steering Geometry

The Ackerman and tricycle steering geometries are very
similar. An Ackerman robot can have multiple wheels, but
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must have only a single Instantaneous Center of Rotation
(ICR) to avoid slippering. A single ICR can be achieved by
having different steering angles on the steering wheels. As
for the tricycle geometry, it always has only one ICR given
that tricycle robots have only one steering wheel. So, these
two steering geometries are kinematically equivalent [30,
31].

In this paper, we analyze the tricycle geometry, illustrated
in Fig. 2. The kinematic parameters of tricycle robots are the
diameter of the front-driven wheel (D), the steering angle
offset (αoff ), and the distance between the front and rear
wheels (l).

3.2.1 Forward Kinematics

The linear displacement of the front wheel (�df,k) is
computed as in Eq. 1. Next, the wheel’s linear displacement
and steering angle (αk) compute the robot’s linear (�dk)
and angular (�θk) displacement, as illustrated in Eqs. 7 and
8 [30]. Note that the steering angle offset (αoff ) influences
both displacements, offsetting the value of the real steering
angle of the robot (αk + αoff ).

�dk = cos
(
αk + αoff

) · �df,k (7)

�θk = sin
(
αk + αoff

)

l
· �df,k (8)

The robot’s pose can be estimated using the same
odometry equations defined in Eq. 4 for the differential
drive steering geometry [31].

Fig. 2 Tricycle steering geometry

3.2.2 Inverse Kinematics

The steering angle (αk) and the wheel’s linear velocity
(vf ) are computed by Eqs. 9 and 10, respectively. Note
that, in the case of vk = 0, the steering angle have two
possible values. The reference for the steering angle is set
by the closest angle relative to the current one. The angular
velocity of the front wheel (ϕ̇f,k) can be calculated as in
Eq. 6 [31].

αk =

⎧
⎪⎪⎨

⎪⎪⎩

αk−1 if ωk = 0 ∧ vk = 0

±π
2 − αoff if vk = 0

arctan
(

lωk

vk

)
− αoff other cases

(9)

vf,k =
{

sign{αk + αoff } · lωk if vk = 0
vk

cos(αk+αoff )
other cases

(10)

3.3 Omnidirectional Steering Geometry

The three and four-wheeled omnidirectional robots studied
in this paper are illustrated in Fig. 3a and b, respectively. In
terms of the kinematic model, the diameter of the wheels
(Di) and the distance between the robot’s geometrical center
and the wheels (l) characterize the model for the three-
wheeled omnidirectional robot. The difference between the
three and the four-wheeled robot’s model is that the last
does not depend directly on l. The four-wheeled geometry
is characterized by the sum of the distance between the front
and rear wheels (l1) plus the distance between the left and
right wheels (l2).

3.3.1 Forward Kinematics

The kinematic model of an omnidirectional robot can be
formulated through the motion constraints of the individual
wheels. As analysed in Siegwart et al. [31] and illustrated
in Fig. 4, an omnidirectional wheel can be characterized by
four parameters:

– (li , αi): polar coordinates of the wheel i relative to the
robot coordinate frame;

– βi : angle of the wheel i plane relative to the robot
chassis;

– γi : angle between the roller axis and the wheel i plane.

Furthermore, Tables 1 and 2 defines the four parameters
for both three and four-wheeled omnidirectional robots,
respectively. Note that the indexes i are the same as the ones
illustrated in Fig. 3a and b.

Then, the inverse kinematics defined by the matrix
J−1

omnim
is formulated with the four parameters of the

omnidirectional wheel, as illustrated in Eq. 11 [24, 31].
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Fig. 3 Omnidirectional steering
geometry

Also, note that Eqs. 12 and 13 define the matrix J−1
omnim

for
three and four-wheeled omnidirectional robots, respectively.

J−1
omnim

=

⎡

⎢⎢
⎣

sα1+β1+γ1
cγ1

−cα1+β1+γ1
cγ1

−lcβ1+γ1
cγ1

...
...

...
sαm+βm+γm

cγm

−cαm+βm+γm

cγm

−lcβm+γm

cγm

⎤

⎥⎥
⎦ (11)

J−1
omni3

=
⎡

⎢
⎣

−
√

3
2 − 1

2 −l√
3

2 − 1
2 −l

0 1 −l

⎤

⎥
⎦ (12)

J−1
omni4

=

⎡

⎢⎢
⎣

1 −1 − 1
2 · (l1 + l2)

−1 −1 − 1
2 · (l1 + l2)

1 1 − 1
2 · (l1 + l2)

−1 1 − 1
2 · (l1 + l2)

⎤

⎥⎥
⎦ (13)

Next, Eq. 14 illustrates that the linear (�dk), normal
(�dn,k), and angular (�θk) displacements of the robot can
be computed using the matrices Jomni3 and Jomni4 , defined

Fig. 4 Parameters of an omnidirectional wheel

in Eqs. 15 and 16. These two matrices were computed using
the Monroe-Penrose pseudo-inverse.

⎡

⎣
�dk

�dn,k

�θk

⎤

⎦ = Jomnim ·
⎡

⎢
⎣

�d1,k

...
�dm,k

⎤

⎥
⎦ (14)

Jomni3 =
⎡

⎢
⎣

−
√

3
3

√
3

3 0
− 1

3 − 1
3

2
3

− 1
3l

− 1
3l

− 1
3l

⎤

⎥
⎦ (15)

Jomni4 =
⎡

⎣

1
4 − 1

4
1
4 − 1

4
− 1

4 − 1
4

1
4

1
4

− 1
2·(l1+l2)

− 1
2·(l1+l2)

− 1
2·(l1+l2)

− 1
2·(l1+l2)

⎤

⎦

(16)

Finally, the odometry equations using a centered discrete
approximation can be formulated as illustrated in Eq. 17

Table 1 Wheels’ parameters of the three-wheeled omnidirectional
robot

i l (m) α (rad) β (rad) γ (rad)

1 l −π/3 0 0

2 l π/3 0 0

3 l π 0 0
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Table 2 Wheels’ parameters of the four-wheeled omnidirectional
robot

i l (m) α (rad) β (rad) γ (rad)

1
√

(l1/2)2 + (l2/2)2 α = atan
(

l2
l1

)
π/2 − α −π/4

2
√

(l1/2)2 + (l2/2)2 −α −π/2 + α π/4

3
√

(l1/2)2 + (l2/2)2 π − α −π/2 + α π/4

4
√

(l1/2)2 + (l2/2)2 π + α π/2 − α −π/4

[31]. These equations apply to any omnidirectional robot.

if (ω = 0)

xk = xk−1 + �dkcθk−1 − �dn,ksθk−1

yk = yk−1 + �dksθk−1 + �dn,kcθk−1

else

xk = xk−1+
+ (

�dks�θk
+ �dn,k

(
c�θk

− 1
)) cθk−1+�θk/2

�θk

− (
�dk

(
1 − c�θk

) + �dn,ks�θk

) sθk−1+�θk/2

�θk

yk = yk−1+
+ (

�dks�θk
+ �dn,k

(
c�θk

− 1
)) sθk−1+�θk/2

�θk

+ (
�dk

(
1 − c�θk

) + �dn,ks�θk

) cθk−1+�θk/2

�θk

end

θk = θk−1 + �θk

(17)

3.3.2 Inverse Kinematics

As already mentioned, the inverse kinematics of any
omnidirectional robot (Eq. 18) depend on the matrix J−1

omnim
.

Lastly, the angular velocity of the wheels (ϕ̇i,k) can be
calculated as in Eq. 6 [31].
⎡

⎢
⎣

v1,k

...
vm,k

⎤

⎥
⎦ = J−1

omnim
·
⎡

⎣
vk

vn,k

ωk

⎤

⎦ (18)

4 OptiOdom Calibration Method

4.1 Optimization-based Algorithm

As shown in Section 3, the odometry equations define
the current robot’s pose relative to the previous instant.
However, these equations could be formulated to a time
instant in which it is possible to obtain a known pose
from a tracking system. For exemplification purposes, this
formulation is illustrated next for the differential drive or

Ackerman/tricycle steering geometries:

xj = xi +
j∑

k=i+1

�dk · cos (θk−1 + �θk/2)

yj = yi +
j∑

k=i+1

�dk · sin (θk−1 + �θk/2)

θj = θi +
j∑

k=i+1

�θk

(19)

where the time instants i and j are relative to known poses
of the robot. Note that the formulation illustrated in the set
of Eq. 19 is also possible for omnidirectional robots. The
only difference is that each element of the sum is dependent
on the angular velocity of the robot.

Therefore, it is possible to define the final position error
(εxy,s) of the odometry (x/yo,j(s)) and the ground-truth
(x/ygt,j (s)) estimations (acquired at time instants i and j )
on each path segment s, as illustrated in Eq. 20. Given a
set of segments (s ∈ {1, 2, . . . , Nseg}), we estimate the
kinematic parameters by minimizing a cost function f , as
illustrated in Eq. 21. This cost function represents the sum
of squares of the position errors. In terms of performing
the minimization procedure, any iterative optimization
algorithm could be used. The one used in this article
was the improved Resilient Propagation without weight-
backtracking (iRprop-) formulated by Igel and Hüsken [15].
The advantages of using a Rprop algorithm is that it is only
a first-order optimization algorithm, highly accurate and
robust, simple to implement, and provides good results in
terms of convergence speed [20].

εxy,s =
√

(xo,j (s) − xgt,j (s) )2 + (yo,j (s) − ygt,j (s) )2 (20)

min f =
Nseg∑

s=1

ε2
xy,s (21)

Note that the calibration algorithm formulated is inde-
pendent on the robot’s steering geometry. Even though the
steering geometries considered in the experiments were
the differential drive, Ackerman/tricycle, and omnidirec-
tional ones, the algorithm could be adapted to other steering
geometries. The only requirement is that the forward kine-
matics must be defined as dependent on the kinematic
parameters.

4.2 Calibration Path

The OptiOdom calibration method is not path-specific.
Indeed, the odometry data used for the calibration can
be acquired during the robot’s operation. However, the
choice of the calibration path should be one that the
odometry data related to each kinematic parameter are
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uncorrelated [8]. For example, Borenstein and Feng [3]
demonstrated that a differential drive robot can obtain
the same final position error on a unidirectional square
path with different systematic errors (i.e., unequal wheels
diameters or uncertainty on the wheelbase) between runs.
In a practical view, if a robot only performs linear motion,
it will not be possible to retrieve information for kinematic
parameters that only contribute to angular motion, and vice-
versa. So, the path should combine these two types of
motions independently or simultaneously.

Therefore, we propose the use of a circular path with a
decreasing radius after 180◦ turns in both CW and CCW
directions, just as in the works of Kallasi et al. [19] and
Galasso et al. [11], and illustrated in Fig. 5. This type of
calibration path combines linear and angular motion with
different wheels’ velocities after 180◦ turns. The points on
the path in Fig. 5 represent the ground-truth data acquisition
instants. In the case of omnidirectional robots, the robot
should execute the calibration path with linear velocity not
only in the direction of XR but also in YR both clock
and counterclockwise. Note that omnidirectional robots can
drive sideways, unlike differential or Ackerman/tricycle
robots. So, we should also retrieve odometry data in the
direction of YR for observability purposes of all kinematic
parameters.

As for acquiring ground-truth data, Kallasi et al. [19] and
Galasso et al. [11] specified that after 180◦ curves it should
be measured the robot’s pose. This metric is more suitable
on paths highly dependent on angular movement. Even
though we used the same path for odometry calibration, we
defined that should be measured the robot’s position (the
method does not require the orientation of the robot) after a
certain value of linear displacement. This metric is suitable
not only for the calibration path used but also for square or
arbitrary paths, given that the robot usually performs at least
linear motion.

In terms of processing the ground-truth and the odometry
data, Fig. 6a and b illustrates two possible different
approaches. The first approach defines a path segment as the

Fig. 5 Calibration path used in this article, Kallasi et al. [19] and
Galasso et al. [11]

sub-path between the initial position and the data acquisition
points along the path, while the second approach defines a
sub-path between the data acquisition points and the final
pose. Note that the only matching segment between these
two is the entire path. However, segments of these two
approaches can be correlated with each other if the robot
performs the same motion over the segment. In order to have
only uncorrelated data for the optimization procedure, we
implemented the approach illustrated in Fig. 6a. However,
the one illustrated in Fig. 6b could also be used.

4.3 Calibration Procedure

Next, it is enumerated the steps required to perform our
calibration algorithm with the circular-based calibration
path:

1. Measure the absolute position of the robot and initialize
the odometry system with that position (the orientation
can be initialized with 0◦)

2. Run the robot through a curvilinear motion in CW
direction (ω < 0):

– Set the initial radius (R0) taking into consideration
the available space (ω0 = v0/vn,0

R0
)

– Set a radius decreasing ratio (r%)
– Update the linear velocities of the robot after each

l 180◦ curve (vl+1/vn,l+1 = r% · vl/vn,l)
– Measure the robot’s absolute position after the

robot has gone through 0.5m linear displacement
(based on odometry)

3. Repeat steps 1-2 if needed (for noise robustness)
4. Repeat steps 1-3 in CCW direction
5. Omnidirectional robot: repeat steps 1-4 with linear

velocity in direction of vn

6. Perform the optimization procedure
7. Adjust the robot parameters given the result from the

previous step

However, we underline that the OptiOdom optimization-
based algorithm also works with other types of calibration
paths. The experimental results presented in the next section
show that it is possible to use OptiOdom for odometry
calibration with square and arbitrary paths.

5 Experiments

5.1 Robots Used in the Experiments

OptiOdom has been tested on four different robots:
differential drive, tricycle, and three and four-wheeled
omnidirectional. The use of these robots illustrated in Fig. 7
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Fig. 6 Different definitions for
the path segments

Fig. 7 Robots used in the
experiments
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intends to test the odometry calibration algorithm on the
three most used steering geometries (differential drive,
Ackerman/tricycle, omnidirectional) and compare its results
with traditional calibration methods.

For comparison purposes, all the calibration algorithms
implemented in this article will use the same initial
estimations for the kinematic parameters. These initial
estimations measured with a metric tape are described for
the four robots used, as follows:

– Differential drive: b = 0.2m, DR = DL = 0.084m
– Tricycle: l = 0.15m, D = 0.065m
– Three-wheeled omnidirectional: l = 0.195m,

D1 = D2 = D3 = 0.102m
– Four-wheeled omnidirectional: l1 = l2 = 0.2m,

D1 = D2 = D3 = D4 = 0.06m

5.2 Ground-truth

The OptiTrack [21] motion capture system is used as a
ground-truth referencing system. Our system is composed
of 6 Flex3 InfraRed (IR) cameras (one of them shown in
Fig. 8a) that can locate the robot in an area of approximately
3x2.5m, although the total area available for the experiments
(illustrated in Fig. 8b) is 6x2.5m. This motion capture
system is widely used for human tracking, as exemplified
in the literature review of Nagymáté and Kiss [28]. In
robotics, the works of Yang and Shen [35], Furtado et al.
[10], and Dudsizk [9] are examples of applications of
the OptiTrack [21] tracking system for ground and aerial
vehicles. The synchronized data of OptiTrack [21] and
odometric estimations for the robot’s pose are used to obtain
all error metrics results and graphs (illustrating the pose of
the robot in the space XY) presented in this article.

5.3 Evaluation of the OptiOdom Calibration Method

Our main goal was to evaluate the calibration accuracy
of OptiOdom using the circular-based calibration path
described in Section 4. Also, we evaluated the OptiOdom’s
accuracy using other types of calibration paths: square (the
same used in UMBmark [3]) and an arbitrary one (i.e., using
arbitrary motions for the robot). In the case of the square
path, a simple proportional controller on the distance error
to the closest point to a line was used for controlling the
robot’s linear and angular velocities to follow each side of
the square. For the other paths used in the experiments, the
wheels’ angular velocity is directly controlled based on the
desired velocity for the robot. The angular velocities are
computed based on the robot’s inverse kinematics presented
in Section 3. The use of square and arbitrary paths allows
evaluating the method’s accuracy of the estimated kinematic
parameters when using other calibration paths than the one

proposed in this paper. Note that OptiOdom is not path-
specific (see Section 4.2). The experimental procedures for
each path used in this article are available in videos on a
YouTube playlist.1

Furthermore, the different methods implemented for all
steering geometries are tested on three different types of
paths: circular path described in Section 4.2, square, and
an arbitrary one. If a method from the literature is not
specific to a certain path, we use these three calibration
paths with that method to estimate the odometry parameters.
Each set of kinematic parameters estimated by OptiOdom
are represented by a symbol depending on the calibration
path used for the optimization procedure: ∗ (circular), †
(square), and ‡ (arbitrary). This terminology also applies to
the literature methods that are not path-specific. The tests
with the initial estimation are represented by the symbol 0.

Finally, the proposed algorithm is compared to other
methods presented in the literature using the following
metrics:

– εmax,d : maximum distance error over the path
– εmax,|θ |: maximum absolute orientation error over the

path
– εmax,fin,d : maximum final distance error
– εmax,fin,|θ |: maximum final absolute orientation error

The evaluation of the results obtained from the different
methods is presented in comparison tables and categorized
by the robot used in the experiments. When an arbitrary path
is used, the path is presented on an XY graph.

5.3.1 Differential Drive

The differential drive robot was first tested with the mea-
sured kinematic parameters (0), as indicated in Section 5.1.
Next, we used the circular calibration path (∗) (described
in Section 4.2 and illustrated in Fig. 9a) with OptiOdom to
estimate the kinematic parameters of the robot. This cali-
bration path is defined by its initial radius (R0), decreasing
radius ratio (r%), number of 180◦ curves (#180◦), and total
runs (N). We also used a LxLm square (†) and an arbitrary
(‡) calibration paths (illustrated in Figs. 9a and 10, respec-
tively) for the OptiOdom calibration algorithm (described
in Section 4.1). Then, we retrieved the estimated kinematic
parameters relative to each one of these paths.

The works from the literature considered for com-
parison purposes were Borenstein and Feng [3],
Jung and Chung [17], and Ivanjko et al. [16]. The first [3]
for historical reasons, the [17] due to the improvements
presented in their experiments over the methods [3, 4],
and [16] given that it is an optimization-based and uses

1https://www.youtube.com/watch?v=-aL24R5CkGw&list=PLpCUb5
UCOnV09bBFDVtbkEs0w-YA9eP4S
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Fig. 8 Experimental setup

a simple calibration path. In terms of calibration paths
required for these methods, Borenstein and Feng [3] and
Jung and Chung [17] use a square path (illustrated in
Fig. 9b) and Ivanjko et al. [16] uses a specific path proposed
in their work (illustrated in Fig. 9c).

The experimental results obtained for the differential
drive robot are presented in Table 3. These results represent
the evaluation of the estimated kinematic parameters on
different test paths: circular (same as the one described in
Section 4.2), square, and an arbitrary one. Each experiment
is represented in Table 3 either by a symbol (type
of calibration path used for the OptiOdom optimization
algorithm described in Section 4.1) or a bibliographic
reference (literature methods). The kinematic parameters
estimated by each calibration method and the calibration
path used for obtaining these parameters are presented as
follows:

• OptiOdom – circular (∗) – Fig. 9a:

– R0 = 0.85m, #180◦ = 4 , r% = 90%
– N = 6 (3 CW + 3 CCW)
– b = 0.20150m
– DR = 0.08340m, DL = 0.08346m

• OptiOdom – square (†) – Fig. 9b:

– L = 1.7m
– N = 6 (3 CW + 3 CCW)
– b = 0.20127m
– DR = 0.08349m, DL = 0.08356m

• OptiOdom – arbitrary (‡) – Fig. 10:

– b = 0.20104m
– DR = 0.08348m, DL = 0.08353m

• Borenstein and Feng – UMBmark [3] – square –
Fig. 9b:

– L = 1.7m
– N = 6 (3 CW + 3 CCW)
– b = 0.20170m
– DR = 0.08398m, DL = 0.08402m

• Jung and Chung [17] – square – Fig. 9b:

– L = 1.7m
– N = 6 (3 CW + 3 CCW)
– b = 0.20083m
– DR = 0.08399m, DL = 0.08401m

• Ivanjko et al. [16] – straight-line + 180◦ rot. – Fig. 9c:

– L = 2m
– N = 9 (3 straight-line + 3 180◦ rot. CW + 3

180◦ rot. CCW)
– b = 0.20132m
– DR = 0.08396m, DL = 0.08390m

As for the discussion of the results, first, it should be
noted that the OptiOdom had similar or lower maximum
distance and orientation errors than the methods proposed in
the literature. For example, comparing the proposed method
using the circular (∗) path’s data with the UMBmark [3],
the last only had a lower maximum final distance error than
OptiOdom (0.03964m vs 0.06527m, respectively).

Furthermore, the difference of the error metrics between
using the circular (∗) or square (†) calibration paths for
estimating the parameters with OptiOdom is very low.
Indeed, this difference was less than 0.035m and 1◦ when
we evaluate the estimated parameters on the different test
paths (circular, square, and arbitrary). So, it shows that
the calibration path described in Section 4.2 did not lead
to overfitting the kinematic parameters only to circular
motions. Also, it shows that the square path could be another
possibility to use with the OptiOdom for the differential
drive robot. As for using the arbitrary (‡) path to estimate
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Fig. 9 Calibration and test
specific paths used in the
experiments with the differential
drive robot (paths (a) and (b) are
used also for the experiments
with the tricycle robot)
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Fig. 10 Arbitrary path tested on the differential drive robot using the
kinematic parameters obtained with OptiOdom∗ and OptiOdom‡

the kinematic parameters, the results demonstrate that the
path illustrated in Fig. 10 was also suitable for this robot
and OptiOdom. Even though it seemed that it occurred

overfitting due to the error metrics being below 0.02m and
2◦ in its own path (‡), the difference for circular (∗) or
square (†) data estimations on their respective paths is less
than 0.03m and 3◦.

Lastly, the UMBmark [3] obtained lower error metrics
than Jung and Chung [17]. Even though the kinematic
parameters for each method were retrieved from the same
dataset, this result was not expected because the comparison
results shown in [17] concluded that [3] should be worse.
However, we point out that the square path finishes with a
90◦ on-the-spot rotation, and [17] uses the final orientation
of the robot to estimate the parameters. Consequently, while
the position should remain the same, the final orientation
could be affected by minor wheels slippering or the inertia
of the robot itself. As for Ivanjko et al. [16], it was
the method that had worse results. The main reasons
are the following ones: the method assumes that unequal
wheels diameters only affect the straight-line motion and
the uncertainty on the wheelbase only affects the on-
the-spot rotations; also, it occurs the same problem as
Jung and Chung [17] because Ivanjko et al. [16] uses the
final orientation after the 180◦ rotations to estimate the
wheelbase.

Table 3 Experimental results using the differential drive robot

Test Calibration εmax,d εmax,|θ | εmax,fin,d εmax,fin,|θ |
path method (m) (◦) (m) (◦)

circular 0 0.16160 14.46810 0.15530 13.63979

OptiOdom∗ 0.02930 3.00911 0.02862 1.51651

OptiOdom† 0.04175 3.93018 0.03392 2.81830

OptiOdom‡ 0.05680 5.15923 0.04856 4.09603

[3] 0.07914 7.27295 0.07291 6.29723

[17] 0.12131 10.86131 0.11504 10.02437

[16] 0.12392 11.06147 0.11735 10.22426

square 0 0.13823 9.44422 0.11389 7.48425

OptiOdom∗ 0.07088 3.79842 0.06527 2.23851

OptiOdom† 0.07766 4.19466 0.04385 1.62312

OptiOdom‡ 0.07460 4.89713 0.04659 2.39684

[3] 0.07946 5.85275 0.03964 3.56040

[17] 0.10839 7.61089 0.07563 5.54945

[16] 0.12429 8.41763 0.08849 6.20836

arbitrary 0 0.27740 11.36851 0.16488 6.02200

OptiOdom∗ 0.07196 2.60562 0.04311 1.73422

OptiOdom† 0.04097 2.44194 0.01832 1.54702

OptiOdom‡ 0.01276 2.09365 0.00594 0.19647

[3] 0.07159 3.75981 0.04449 1.18289

[17] 0.17649 7.61779 0.10614 3.62400

[16] 0.16948 8.55794 0.08728 6.84406

Page 13 of 22    39J Intell Robot Syst (2022) 105: 39



5.3.2 Tricycle

The side-length of the square had to be reduced to 1.5m
to prevent the tricycle’s path exceeding the available
space. The method presented by Kallasi et al. [19] was
implemented to present another comparison reference other
than the initial estimation of the kinematic parameters.
This calibration method is formulated considering that the
circular calibration path (described in Section 4.2 and the
same path as the one illustrated in Fig. 9a) is used to obtain
the kinematic parameters.

The experimental results are presented in Table 4, and
the estimated parameters of each method were the following
ones:

• OptiOdom – circular (∗) – Fig. 9a:

– R0 = 0.85m, #180◦ = 4 , r% = 90%
– N = 6 (3 CW + 3 CCW)
– l = 0.15106m
– D = 0.06172m
– αoff = −1.14443◦

• OptiOdom – square (†) – Fig. 9b:

– L = 1.5m
– N = 6 (3 CW + 3 CCW)
– l = 0.15788m
– D = 0.06414m
– αoff = −1.15044◦

• OptiOdom – arbitrary (‡) – Fig. 11:

– l = 0.15046m
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Fig. 11 Arbitrary path tested on the tricycle robot using the kinematic
parameters obtained with OptiOdom∗ and OptiOdom‡

– D = 0.06154m
– αoff = −1.21378◦

• Kallasi et al. [19] – circular – Fig. 9a:

– R0 = 0.85m, #180◦ = 4 , r% = 90%
– N = 6 (3 CW + 3 CCW)
– l = 0.15000m
– D = 0.06138m
– αoff = −1.10158◦

In terms of the experiments performed with the tricycle
robot, using the circular (∗) or the square (†) calibration

Table 4 Experimental results using the tricycle robot

Test Calibration εmax,d εmax,|θ | εmax,fin,d εmax,fin,|θ |
path method (m) (◦) (m) (◦)

circular 0 1.23668 107.77487 1.07760 101.38498

OptiOdom∗ 0.12748 8.20463 0.04407 7.99657

OptiOdom† 0.12751 12.04124 0.12726 11.83317

OptiOdom‡ 0.13490 11.62948 0.06517 11.42141

[19] 0.14871 6.22815 0.05576 4.54606

square 0 1.31560 88.17917 1.28562 65.60522

OptiOdom∗ 0.20796 25.22979 0.11053 4.42432

OptiOdom† 0.17762 23.33737 0.10906 4.38200

OptiOdom‡ 0.21098 22.95523 0.14249 7.39547

[19] 0.23960 27.27458 0.11799 4.57535

arbitrary 0 0.82386 56.60013 0.82359 56.46539

OptiOdom∗ 0.05440 4.38828 0.01385 2.43165

OptiOdom† 0.08286 5.45476 0.08242 3.72467

OptiOdom‡ 0.05447 5.14007 0.02238 4.96001

[19] 0.07254 5.01587 0.02871 0.46385
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path for estimating the parameters with the OptiOdom led
to similar results in terms of the error metrics. The only
exceptions are the maximum absolute orientation errors on
the circular test path, and the maximum final distance on
the circular and the arbitrary test paths (differences greater
than 4◦ and 0.07m, respectively). Indeed, the estimated
kinematic parameters using the circular (∗) calibration path
with OptiOdom seemed to be more suitable to the tricycle
geometry than the square (†) calibration path. As for using
an arbitrary (‡) calibration path (illustrated in Fig. 11)
with OptiOdom, the estimated kinematic parameters led to
similar error metrics to the circular (∗) data’s parameters.

Another observation is relative to the fact of the
maximum distance and orientation errors (over the entire
path, not the final error metrics) being greater than 0.15m
and 20◦ on the square test path, even after calibrating the
robot. This result is due to unmodelled effects for the
tricycle robot. For example, the intersection of the steering
rotation axis with the ground and the point of contact with
it of the wheel are slightly different because of mechanical
imperfections. This difference is more noticeable when the
robot is performing on-the-spot rotations, such as the 90◦
ones required for square paths. The robot moves slightly
while rotating upon itself, while the odometry is estimating
only rotational motion.

The OptiOdom using the circular (∗) data’s param-
eters had similar error metrics when compared to
Kallasi et al. [19]. However, it should be noted that the
last cannot estimate the distance between the rear and front
wheels (l). Indeed, [19] assumes that this distance is known.

Ultimately, the parameter that most influenced the
difference between the initial estimation and the calibrated
robot was the steering angle offset (αoff ). Both OptiOdom
and Kallasi et al. [19] led similar estimations for this
kinematic parameter (−1.21◦ < αoff < −1.10◦).

5.3.3 Three-wheeled Omnidirectional

The difference to the square path tested using the tricycle
robot is that it was possible to increase the square side-
length from 1.5m to 1.6m. As for methods in the literature
intended for an omnidirectional robot, it was implemented
the method proposed by Lin et al. [22]. This calibration
method is not path-specific. So, similar to OptiOdom, we
used three types of calibration paths – circular (∗), square
(†), and an arbitrary (‡) paths illustrated in Fig. 12a and
b, and 13, respectively – to calibrate the kinematic model
with Lin et al. [22]’s method. Note that both circular
and square calibration paths were performed in v and vn

directions. As already analyzed in Section 2.2, Lin et al. [22]
adjusts directly the kinematic model (specifically, the matrix
Jomni3 ), instead of estimating the kinematic parameters.

Table 5 presents the experimental results for the
three-wheeled omnidirectional robot, and the estimated
parameters relative to each method are presented next:

• OptiOdom – circular (∗) – Fig. 12a:

– R0 = 0.85m, #180◦ = 4 , r% = 90%
– N = 12 (v: 3 CW + 3 CCW; vn: 3 CW + 3

CCW)
– l = 0.19133m
– D1 = 0.09785m, D2 = 0.09667m,

D3 = 0.09697m

• OptiOdom – square (†) – Fig. 12b:

– L = 1.6m
– N = 12 (v: 3 CW + 3 CCW; vn: 3 CW + 3

CCW)
– l = 0.19145m
– D1 = 0.09951m, D2 = 0.09779m,

D3 = 0.09853m

• OptiOdom – arbitrary (‡) – Fig. 13:

– l = 0.19375m
– D1 = 0.10202m, D2 = 0.09947m,

D3 = 0.10023m

• Lin et al. [22] – circular (∗) – Fig. 12a:

– R0 = 0.85m, #180◦ = 4 , r% = 90%
– N = 12 (v: 3 CW + 3 CCW; vn: 3 CW + 3

CCW)

– Jomni3 =
⎡

⎣
−0.557474 0.526741 0
−0.321858 −0.304114 0.669212
−1.684883 −1.658193 −1.667353

⎤

⎦

• Lin et al. [22] – square (†) – Fig. 12b:

– L = 1.6m
– N = 12 (v: 3 CW + 3 CCW; vn: 3 CW + 3

CCW)

– Jomni3 =
⎡

⎣
−0.568508 0.538931 0
−0.328228 −0.311152 0.665076
−1.709092 −1.673875 −1.692844

⎤

⎦

• Lin et al. [22] – arbitrary (‡) – Fig. 13:

– Jomni3 =
⎡

⎣
−0.565847 0.582452 0
−0.326692 −0.336279 0.628914
−1.753347 −1.654622 −1.752061

⎤

⎦

The OptiOdom seemed to have overfitted the kinematic
parameters when using the circular (∗) path’s data for
the optimization procedure. The overfit is noticed when
the respective kinematic parameters are evaluated on the
square test path with maximum distance and absolute
orientation errors greater than 0.25m and 12◦, respectively.
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Fig. 12 Calibration and test
specific paths used in the
experiments with
omnidirectional robots
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Fig. 13 Arbitrary path tested on the three-wheeled omnidirectional
robot using the kinematic parameters obtained with OptiOdom† and
OptiOdom‡

The OptiOdom using the square (†) data’s parameters
seemed to be the most suitable calibration path for the three-
wheeled omnidirectional robot used in the experiments. In
terms of the parameters estimated from the arbitrary (‡) path

(illustrated in Fig. 13) using the OptiOdom, it had worse
error metrics than the other experiments on both circular and
square test paths. This observation leads to the conclusion
that the arbitrary (‡) calibration path was not suitable for
calibrating the three-wheeled omnidirectional robot.

Lin et al. [22] obtained the best result on the circular
test path with a maximum distance and absolute orientation
error less than 0.132m and 6.2◦, respectively. This result
was obtained using the circular (∗) calibration path. Similar
to OptiOdom, the kinematic parameters estimated with Lin
et al. [22] using the circular (∗) calibration path seemed
to have overfitted. When tested on the square path, these
same kinematic parameters lead to maximum distance and
absolute orientation errors greater than 0.17m and 8◦,
respectively. Note that these error metrics are lower than
the ones obtained with OptiOdom. Indeed, when either the
circular (∗) or the square (†) calibration paths are used,
Lin et al. [22] can achieve similar or improved accuracy
over OptiOdom. One possible explanation is the greater
number of DoFs estimated with Lin et al. [22] compared
to OptiOdom (6 versus 4 DoFs, respectively). However, the
main disadvantage is the model’s overfitting when the data
does not allow the computation of an unbiased estimator.
Analyzing the results when the arbitrary calibration (‡)
path is used (tested on circular and square paths),

Table 5 Experimental results using the three-wheeled omnidirectional

Test Calibration εmax,d εmax,|θ | εmax,fin,d εmax,fin,|θ |
path method (m) (◦) (m) (◦)

circular 0 0.30354 26.16780 0.26510 25.95029

OptiOdom∗ 0.13349 13.32930 0.13292 13.23028

OptiOdom† 0.19542 12.75036 0.13647 12.26674

OptiOdom‡ 0.25487 18.24839 0.18152 16.57484

[22]∗ 0.13103 6.12798 0.07426 5.79114

[22]† 0.24231 18.19126 0.18912 17.69994

[22]‡ 0.60563 54.37142 0.55068 53.85433

square 0 0.28213 15.28968 0.28172 13.21701

OptiOdom∗ 0.25265 12.77193 0.25255 12.55824

OptiOdom† 0.12232 5.81393 0.10434 4.67215

OptiOdom‡ 0.15615 8.66265 0.10884 4.97658

[22]∗ 0.17240 8.90042 0.17230 8.26980

[22]† 0.12997 5.89576 0.04339 3.04288

[22]‡ 0.50766 29.57256 0.46031 25.82433

arbitrary 0 0.16019 13.93151 0.08301 5.81438

OptiOdom∗ 0.13752 14.02916 0.09684 0.74009

OptiOdom† 0.13554 13.98898 0.06129 0.41018

OptiOdom‡ 0.13297 13.97173 0.03535 2.80621

[22]∗ 0.13504 14.01217 0.10402 1.04475

[22]† 0.13392 13.97440 0.08682 0.30449

[22]‡ 0.16232 13.93299 0.05125 1.25880
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Lin et al. [22] achieved worse odometry accuracy than
OptiOdom: maximum distance and absolute orientation
errors over the entire path of 0.61m and 55◦ versus 0.26m
and 19◦, respectively.

Lastly, it should be noted that the three-wheeled
omnidirectional robot used in the experiments has a wheel
that can have 2 different and distinct contact points with the
ground when the robot is moving. So, this type of wheel
increases the uncertainty on the odometry estimation and the
accuracy of the distance between the wheels and the robot’s
geometric center (l).

5.3.4 Four-wheeled Omnidirectional

A circular and a square paths (illustrated in Fig. 12a
and b, respectively) were used to compare the OptiOdom
calibration algorithm to Lin et al. [22]’s work on the four-
wheeled omnidirectional robot, just as for the three-wheeled
omnidirectional robot.

The results obtained in the experiments performed are
presented in Table 6. The parameters estimated by each
method are presented next:

• OptiOdom – circular (∗) – Fig. 12a:

– R0 = 0.8m, #180◦ = 4 , r% = 90%
– N = 12 (v: 3 CW + 3 CCW; vn: 3 CW + 3

CCW)
– l1 + l2 = 0.4106m
– D1 = 0.06259m, D2 = 0.06354m,

D3 = 0.06355m, D4 = 0.06323m

• OptiOdom – square (†) – Fig. 12b:

– L = 1.7m
– N = 12 (v: 3 CW + 3 CCW; vn: 3 CW + 3

CCW)
– l1 + l2 = 0.42264m
– D1 = 0.06715m, D2 = 0.06737m,

D3 = 0.06734m, D4 = 0.06767m

• OptiOdom – circular (∗) + square (†) – Fig. 12a + b:

– l1 + l2 = 0.41564m
– D1 = 0.06409m, D2 = 0.06452m,

D3 = 0.06451m, D4 = 0.06469m

• Lin et al. [22] – circular (∗) – Fig. 12a:

– R0 = 0.8m, #180◦ = 4 , r% = 90%
– N = 12 (v: 3 CW + 3 CCW; vn: 3 CW + 3

CCW)

– Jomni4 =
⎡

⎣
0.26403 −0.27877 0.24872 −0.26705

−0.26403 −0.27877 0.24872 0.26705
8.34430 −10.90538 −10.90500 8.33169

⎤

⎦

• Lin et al. [22] – square (†) – Fig. 12b:

– L = 1.7m
– N = 12 (v: 3 CW + 3 CCW; vn: 3 CW + 3

CCW)

– Jomni4 =
⎡

⎣
0.24137 −0.261887 0.28703 −0.31733

−0.24137 −0.261887 0.28703 0.31733
−2.09739 −0.533079 −0.53361 −2.10845

⎤

⎦

• Lin et al. [22] – circular (∗) + square (†) – Fig. 12a + b:

Table 6 Experimental results using the four-wheeled omnidirectional

Test Calibration εmax,d εmax,|θ | εmax,fin,d εmax,fin,|θ |
path method (m) (◦) (m) (◦)

circular 0 0.33397 33.29796 0.33308 32.92056

OptiOdom∗ 0.08201 7.38059 0.08034 6.46070

OptiOdom† 0.35689 36.35712 0.35468 35.30545

OptiOdom∗, † 0.12575 13.43768 0.12339 12.23475

[22]∗ 0.07098 8.06643 0.06814 6.59450

[22]† 0.29078 29.06596 0.28646 28.03468

[22]∗, † 0.13074 10.90957 0.12363 8.31950

square 0 0.54130 28.12519 0.53934 28.10249

OptiOdom∗ 0.32550 19.21303 0.32413 15.25876

OptiOdom† 0.13032 21.09370 0.07962 5.75179

OptiOdom∗, † 0.27185 19.59780 0.27050 12.39728

[22]∗ 0.33138 19.66074 0.33015 14.94858

[22]† 0.13815 20.73310 0.12115 4.25336

[22]∗, † 0.29754 19.84756 0.29624 14.94723
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– Jomni4 =
⎡

⎣
0.24870 −0.27379 0.26489 −0.28242

−0.24870 −0.27379 0.26489 0.28242
−18.39197 15.82822 15.82570 −18.40799

⎤

⎦

The kinematic parameters estimated with OptiOdom
from the square (†) calibration path seemed to be overfitted
to this type of path. When testing the same parameters
on the circular test path, the resulting error metrics were
even worse than the initial estimation (0). Although the
parameters estimated from the circular (∗) path’s data did
not have worse error than the initial estimation (0), the
maximum distance and absolute orientation errors on the
square path were greater than 0.32m and 19◦, respectively.
In comparison to Lin et al. [22], OptiOdom obtains similar
accuracy when we compared these two methods using the
same calibration and test paths. Lin et al. [22] was slightly
better overall than OptiOdom on the circular test path, in
terms of the error metrics present in Table 6; and vice versa
for the square path.

In comparison with the other robots, additional exper-
iments were considered for the four-wheeled omnidirec-
tional robot. Moreover, these experiments considered the
data retrieved from both circular and square (∗, †) calibra-
tion paths for odometry calibration. After estimating the
kinematic parameters with OptiOdom and Lin et al. [22], we
evaluated the odometry accuracy on the circular and square
test paths. Analyzing the results obtained for both methods,
we conclude that these experiments reduced the overfit-
ting. Indeed, the error metrics of these experiments are a
middle ground compared to considering the circular and
square calibration paths individually for the optimization
procedure.

The consideration of both circular and square (∗, †)
calibration paths for odometry calibration originate a
dataset with all possible combinations of linear (in both
v and vn directions) and angular motions, similar to an
arbitrary path. The square calibration path does not combine
simultaneously linear and angular motions, and the circular
one combines these two types of motion together. Also,
note that in Section 4.2 we defined that the calibration
path (even if an arbitrary path was used) should combine
linear and angular motions. So, we considered that it was
not necessary to test the four-wheeled omnidirectional robot
on an arbitrary path. This type of path is already analyzed
for the omnidirectional steering geometry (three-wheeled
omnidirectional robot).

Lastly, we point out that the combination of different
types of motions as input data for the optimization
procedure reduces the probability of overfitting. This
approach can be applied to all steering geometries using
OptiOdom. The method does not require a specific type of
path.

6 Conclusions and Future Work

In conclusion, this article proposes a generalized approach
(in terms of the steering geometry) for odometry calibration
of wheeled mobile robots. To the best of our knowledge,
the OptiOdom is the only calibration algorithm that intends
to calibrate three different steering geometries: differential
drive, Ackerman/tricycle, and omnidirectional.

Our previous work [32, 33] allowed us to analyzed
thoroughly the literature on odometry calibration. The main
conclusions taken from this work were the more recent
trend of developing optimization-based algorithms, and the
fact that none of the works found calibrated more than one
distinct steering geometry. Then, we analyzed the kinematic
model for the differential drive, Ackerman/tricycle, and
omnidirectional geometries. This analysis showed that the
estimation of the kinematic parameters could be done by
implementing an interactive optimization algorithm, given
that the calibration problem is usually a non-linear one.
The cost function defined for the optimization procedure
is not specific to a certain type of motion or path.
Although we propose the use of a specific calibration
path for odometry calibration, OptiOdom is not path-
specific. As for the requirements of the method, they are
the following ones: the robot must perform linear and
angular motions when acquiring data for calibration, and the
kinematic model should be described as a relation with the
kinematic parameters. The latter would be already needed
for obtaining the odometry estimation for the robot’s pose.

The results obtained in the experiments demonstrate
that OptiOdom is similar or better (in terms of maximum
distance and absolute orientation errors along the path) than
the methods from the literature implemented in this article
([3, 16, 17, 19, 22]). Furthermore, OptiOdom was not only
tested with the suggested calibration path (the circular path
with decreasing radius proposed by [19]) but also with a
square and arbitrary calibration paths for the three different
steering geometries considered for tests. The tests on these
three different types of paths confirm that the method is not
path-specific.

As for the four mobile platforms used in the tests
(differential drive, tricycle, and three and four-wheeled
omnidirectional), OptiOdom achieved maximum distance
and absolute orientation errors lower than 0.10m and 5◦ on
the differential drive robot. For tricycle robots, the proposed
method accomplished error metrics below 0.13m and 13◦
independently of the type of calibration path used for
odometry calibration. Even though the error metrics were
above 0.20m and 20◦ in the square test path, these metrics
are affected by mechanical imperfections of the robot.
The results obtained for the three and the four-wheeled
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omnidirectional robots were very similar. In both cases,
it was occurring overfitting of the estimated kinematic
parameters. The solution studied and tested was to consider
both circular and square data for the optimization procedure.

Lastly, the OptiOdom odometry calibration method
accomplished its main goal of being a generalized
approach for odometry calibration while achieving similar
or improved odometry accuracy over the current literature.
The OptiOdom and the methods from the literature
considered in this article are implemented in MATLAB
and available in a GitHub repository.2 However, the
code can be easily adapt to another language. The
implementation available in the repository allows the
execution of the odometry calibration methods tested in
this article (OptiOdom plus the ones from the literature).
The only requirement is the availability of synchronized
ground-truth and odometry data. The next developments
will be studying the online implementation of OptiOdom
(executing it while the robot is in operation) and evaluate the
use of this algorithm for fault detection (evaluation of derail
of localization algorithms).
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