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Abstract High levels of dependability are required to pro-
mote the adherence by public and medical communities
to wearable medical devices. The study presented herein
addresses fault detection and diagnosis in these systems.
The main objective resides on correctly classifying the cap-
tured physiological signals, in order to distinguish whether
the actual cause of a detected anomaly is a wearer health
condition or a system functional flaw. Data fusion tech-
niques, namely fuzzy logic, artificial neural networks, deci-
sion trees and naive Bayes classifiers are employed to
process the captured data to increase the trust levels with
which diagnostics are made. Concerning the wearer con-
dition, additional information is provided after classifying
the set of signals into normal or abnormal (e.g., arrhythmia,
tachycardia and bradycardia). As for the monitoring system,
once an abnormal situation is detected in its operation or
in the sensors, a set of tests is run to check if actually the
wearer shows a degradation of his health condition or if the
system is reporting erroneous values. Selected features from
the vital signals and from quantities that characterize the
system performance serve as inputs to the data fusion algo-
rithms for Patient and System Status diagnosis purposes.
The algorithms performance was evaluated based on their
sensitivity, specificity and accuracy. Based on these criteria
the naive Bayes classifier presented the best performance.
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1 Introduction

The advances on sensors, wireless communications and
information technologies have promoted a rapid devel-
opment of various wellness or disease monitoring sys-
tems, which enable extended independent daily living and
improve the quality of life. Traditionally, medicine has been
practised on an intervention basis (drugs, surgeries, pros-
thesis, etc.) to treat them. Nowadays, and regardless of the
patients’ age, the health care community is trying to focus
on prevention and wearable monitoring systems have been
proposed to meet this task.

Remote health monitoring can be used only if the mon-
itoring device is based on a comfortable, easy to use, and
customizable sensing interface. The textile approach to the
implementation of sensing elements embedded in clothing
items, allows for low cost and long-term monitoring of
patients and to easily customize the sensor configuration
according to the needs of each individual [27]. By applying
this concept it is possible to reduce health care costs, main-
taining high quality of care, shift the focus of health care
expenditures from treatment to prevention, provide access
to health care to a larger number of patients, reduce the
length of hospital stays and address the issue of specific
requirements for elderly population and/or chronically ill
patients.

Because these wearable monitoring systems are to be
used for medical purposes, their dependability has to be
perfectly controlled. Unfortunately, the complexity and the
functional specificities of these systems make the exist-
ing dependability techniques, specifically developed for the
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aeronautics, space and automotive applications, not totally
appropriate for the medical field [17].

To overcome the lack of a dependability model that can
be used for the development of complex pervasive medi-
cal monitoring devices, a fault tree analysis approach has
been developed to identify the main risk of failure. A typ-
ical wearable device (hereafter the system) comprises a
module to capture the biosignals, including the electrodes
and the analogue front-end, a microcontroller, and a radio-
frequency module to transmit data to a smartphone or per-
sonal computer. In our approach the captured biosignals are
received and analysed within a smartphone. A classification
algorithm decides whether these are normal or not. If not,
it is diagnosed if the wearer shows an abnormal situation or
instead the system is faulty. That is, a data abnormality can
be due to a wearer irregular state (pathological condition or
intense physical activity) or due to a degradation of the sys-
tem operation. On the other hand, cases can occur where
measured data is taken as correct when actually the system
is faulty or the measurement procedure is not performed cor-
rectly. A flatline ECG is obtained when either the person is
dead or the ECG meter is faulty. A correct heart beat rate
could be fooled by an oscillating circuit.

Methodologies have been proposed to increase the reli-
ability of medical wearable systems, which address faults
detection in sensors, electronic modules, and communica-
tion links [2, 11, 12, 15, 18, 31]. Data fusion techniques have
also been applied as a means for a combined analysis of sev-
eral physiological signals to extract additional information
on a patient’s condition. Kenneth et al. performed the fusion
of ECG, blood pressure, saturated oxygen content and res-
piratory data for achieving improved clinical diagnosis of
patients in cardiac care units [14].

Our objective is to achieve the fastest and most effi-
cient way to detect and diagnose deviations occurring in the
captured data, having in mind the concern of correctly dif-
ferentiating errors due to faults in the system, from those
due to a change of the person health status. This proce-
dure should be done in ambulatory and able to run in
the microcontroller of the data capture module and/or in
a smartphone. That is, the overall procedure is divided in
different operations, being the data aggregation device (typi-
cally a smartphone) the main information processing device,
due to the need of high computation capabilities and to mini-
mize power consumption in the wearable devices. These are
involved in the dependability process when specific local
test operations need to be executed.

A data fusion model for wearable medical systems based
on fuzzy logic was presented in [25]. It was shown how
fuzzy logic can be explored to correlate data obtained from
different sensors in order to obtain status indicators that
characterize the operation correctness of a monitoring sys-
tem or a pathological condition of the wearer. Ideally there
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should be a database with all possible hardware faults (a
fault dictionary) and a database with the clinical data of each
wearer (patient being monitored). If clinical data records are
not available, or the database of a new patient does not have
enough information to build a reliable classifier, the diagno-
sis could be run based on fuzzy logic, until enough data is
gathered to create a robust classifier.

In this paper a database with information regarding the
hardware (fault dictionary) and clinical data is introduced
and utilized to explore possible data fusion algorithms
capable of both system and patient diagnosis. The data
fusion algorithms evaluated here are all supervised learn-
ing algorithms. Their inputs (features from the monitoring
system and the patient vital signs) and outputs (system and
patient status) are labelled and this information is used in
the training proccess. There are several supervised learn-
ing algorithms available, with different processing speeds,
memory usage needs and interpretability. Four data pro-
cessing approaches to fuse data extracted from features,
based on Fuzzy Logic (FL), Artificial Neural Networks
(ANN), Classification Trees (CT), and Naive Bayes Clas-
sifiers (NBC), were evaluated for anomaly detection and
classification purposes.

Fuzzy Logic can be used to solve problems of differ-
ent types and domains, including medicine, as it resembles
human reasoning and decision making. It looks into the not
precisely formulated relationships and solves uncertainties
and ambiguities created by human language where every-
thing cannot be described in precise and discrete terms.
ANN offer a number of advantages, such as requiring less
formal statistical training, ability to implicitly detect com-
plex nonlinear relationships between dependent and inde-
pendent variables, ability to detect all possible interactions
between predictor variables, and the availability of multiple
training algorithms. However, its “black box” nature does
not allow to see the relations between inputs and outputs.
CT have a fast prediction speed, small memory usage and
the results are easy to interpret. NBC prediction speed and
memory usage vary according to the distribution size, but
usually perform better than CT and the results are also easy
to interpret.

The on-line methodology being proposed is based on a
top-down evaluation process that starts with the detection
of anomalies in the captured data. This detection triggers
an analysis to check if actually the wearer shows a degra-
dation of his health condition or if the system is reporting
erroneous values. If it is found that the system is faulty, spe-
cific test operations can be executed to find the origin of the
fault. To the best of our knowledge, no previous work was
published where fusing data from both the data acquisition
system and patient vital signs, is explored for simultane-
ous diagnosis of the patient health condition and the system
status.
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Fig.1 Wearable ECG data
capture and transmitter module

Compact, low-power and
dependable ERU incorporating
analog front-ends for both ECG
and pressure detection
signals, storage memory and
radio-frequency transmitter

Next section describes the wearable system being used as
a case study. Section 3 presents the dependability strategy
being proposed and introduces the mode how the four data
fusion algorithms are being explored. Section 4 discusses
the obtained results and addresses the main conclusions
highlighted in Section 5.

2 The SIVIC Monitoring System

The SIVIC! system, a combined cardiac and aortic mon-
itoring system under development (Fig. 1), provides the
synchronous measurement of a patient’s ECG (electrocar-
diogram) and pressure in the abdominal aortic aneurysm
(AAA) sac, in order to obtain a more robust and reliable
monitoring. Biologically compatible capacitive pressure
sensors, which show suitable linearity and sensitivity [22],
are used to capture the intra-sac AAA pressure and detect
endoleaks.

The pressure monitoring system relies on an inductive
coupling interface to capture the resonant frequencies of a
cluster of LC sensors placed on the stent-graft wall [21]. An
electronic readout unit (ERU) capable of energizing sensors
and capture the pressure data is placed in the patient’s chest.
This unit provides also the monitoring of a 12-lead ECG
using textile dry electrodes [30]. The electronic unit and the
electrodes are built in a customized clothing. Data is trans-
mitted to a smartphone for further processing and diagnosis,
data display, and eventually can also be transmitted by the
smartphone to a healthcare center.

Figure 2 shows the SIVIC 12-lead ECG DAT (Data
Acquisition and Transmission Unit) that was developed to
be integrated within the T-Shirt and transmit the data to
a smartphone. It is a circular board (30 mm @) with an

IPortuguese acronym for integrated cardiovascular surveillance sys-
tem.

Customized clothing with
embedded electrodes for the ECG
and the integration of an
electronic readout unit (ERU):
pressure sensors and ECG

Smartphone or PC provides
the final processing and
presentation of the
captured data for doctors
usage

Implantable wireless
pressure sensors which are
biologically compatible and
have suitable linearity and
sensitivity

ECG analogue front-end based on the Texas Instruments
low-power, 8-channel, 24-bit ADS1298 chip for biopoten-
tial measurements and the PAN1740 Bluetooth Low Energy
(BLE) module from Panasonic. The internal microcontroller
(32-bit ARM Cortex MO) present on the BLE module is
used to perform data acquisition, preliminary processing,
and communication operations, thus saving the cost of
an external microcontroller, the additional PCB area, and
power consumption. The DAT is set with a sampling fre-
quency of 250 Hz, which provides a good balance in terms
of data accuracy and power consumption. This frequency
is adequate to ensure that phase noise does not impair the
estimation of the R-wave fiducial point [16].

Wireless ECG monitoring systems with a high number of
leads (e.g. 12-lead) are usually designed for clinical usage,
being systems with a lower number of acquisition channels
(e.g. 1 to 3 channels) commonly used in ambulatory cases
[3, 8]. Our system was designed having in mind its use in
both clinical and ambulatory scenarios and thus the number
of ECG data acquisition channels is reconfigurable between
a single lead (1 channel) to twelve leads. Inputs not used to
capture ECG signals can be used to acquire other biosignals.

Fig.2 Front and back pictures of the SIVIC 12-leads ECG acquisition
unit prototype
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Figure 3a shows a prototype of the T-shirt with the
cardiac monitoring SIVIC system. It integrates five snap
fasteners in the configuration corresponding to the deriva-
tions of the triangle of Einthoven and Wilson leads I,
Il and I and the precordial V1. The T-shirt was fabri-
cated using seamless knitting technology and is composed
of two superimposed fabrics, integrating snap fasteners
to attach the ECG electrodes. These interconnect to the
DAT unit through embedded textile interconnects and a
custom designed socket. Five snaps are also available to
connect to a external conventional Holter for comparison
purposes.

Figure 3b shows ECG signals displayed on a smart-
phone, captured when a person wears the T-Shirt in a steady
position and without any skin preparation. In this case the
smartphone receives three leads (LI, LII, V1) and from them
calculates four more leads (LIII, aVR, aVL, aVF) [30].

3 Dependability Strategy
3.1 Failure Mode and Effects Analysis

A failure mode and effects analysis (FMEA) based on the
approach made in [7] was carried out during the system’s
design. This analysis is very important to identify the most
problematic components and functions of the system and
determine, at the system design phase, which components
or blocks should include built-in self-test (BIST) or other
type of testing. From this analysis it was concluded that the
wearable system blocks with higher severity and probabil-
ity classification, i.e., those whose failure is more dangerous
and probable, are located in the sensing hardware, power
supply and microcontroller. Therefore it is necessary to
be able to detect faults in the sensors (ECG electrodes
and implantable pressure sensors), the sensors conditioning
circuits, the battery and the microcontroller.

Fig. 3 a) A SIVIC 5-leads unit a
and T-shirt prototype; b)
Android application screenshot
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Concerning testing and BIST for these parts the fol-
lowing features are available. The ADS1298 IC provides
an electrodes impedance measurement circuit, as well as
internally-generated test stimuli for subsystem verification,
which allows testing the entire analogue front-end chain.
The electrode-skin impedance measurement circuit enables
detecting if the electrodes are connected to the patient or are
loose/disconnected.

The signal-to-noise ratio (SNR) of bioelectrical signals is
known to be related to the electrode-skin impedance [24].
Since the impedance varies for each person and is affected
by other factors like temperature and applied pressure, the
electrode-skin impedance is measured when the system is
switched on and afterwards it is monitored periodically
to establish a normal region for the impedance values,
for which the acquired ECG quality is considered accept-
able. These values are then used for comparison with the
impedance measured during normal operation of the system.

The Programmable Gain Amplifier (PGA) can be tested
for high gain variations, e. g. due to components aging and
for catastrophic faults, by using an internal square wave
stimulus with an amplitude of +/- 2 mV and a frequency of
4 Hz. Class B safety software library routines, which com-
ply with IEC 60730 Class B certification process standard,
allow detecting faults in the microcontroller. A power sup-
ply monitoring circuit, such as an watchdog circuit, allows
detecting battery failures.

A methodology to test and measure the L and C values
of the pressure sensors, after measurements of the power
and impedance seen from the reader circuit, was developed
using a simple data fusion approach [23]. The process-
ing of the implantable pressure sensor signals with other
physiological signals like the electrocardiogram (ECG) and
arterial blood pressure (ABP) allows obtaining better reso-
lution and decision trust with the acquired information in
terms of diagnosability of faults eventually occurring in the
stent-graft and the pressure sensors.

OPTIONS OPENFILE PREVIOUS NEXT
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Fig. 4 Typical ECG signal and its main characterizing waves [9]

An alternative BIST approach that could be used to test
the front-end of data acquisition unit was proposed in [28].
The targeted tests are electrode-skin impedance measure-
ment and detection of functional deviations of the signal
conditioning circuit.

3.2 ECG Feature Extraction

The ECG conveys important hemodynamic information,
such as the heart rate (HR). During an ECG cycle three
main events take place: the P wave (contraction of the
atria), the QRS complex (corresponding to the contraction
of left ventricle) and the T wave (relaxation of the ven-
tricles) (see Fig. 4). Their morphologies (amplitude and
interval/segment length) will vary according to the person’s
physiological condition.

The HR is given in beats per minute (bpm) of con-
secutive R-waves. However, noise contamination such as

Table 1 Data fusion model for the measured signals

baseline wander, power line interference, and body activ-
ity can corrupt the signal and reduce the clinical value
of an ECG recording. Since wearable devices are more
prone to perturbations by noise, filtering of the ECG is
a necessary pre-processing step to ensure a reduction of
the noise components while preserving the QRS complex
shape. The Pan-Tompkins algorithm is used for ECG fil-
tering and HR calculation [26]. Other biosignals, such as
the blood pressure (BP), can provide important information
about the patient’s condition. BP is defined by the mean
arterial pressure (MAP) and is measured in millimetres of
mercury (mmHg). BP is affected by the physical activity of
the patient or associated diseases.

The main features of each signal eventually measured by
the SIVIC system and the classification of the patient or
system condition are presented in Table 1.

3.3 Fault Dictionary

As the SIVIC system is still under development not enough
data from measurements performed in patients is yet avail-
able. To overcome this a database with all possible hardware
faults, a fault dictionary, and clinical data of patients being
monitored was created.

A diagram of the main SIVIC blocks is presented in
Fig. 5. This model includes the vital signs being mea-
sured, the sensor model (for the pressure sensors) and the
electrode-skin interface model (for the ECG and respiration
electrodes), the amplifiers, the ADC, the microcontroller,
the BLE communication, and the smartphone. Associated to
these are the anomalies that can occur: faults in the system
(electrodes, analogue front-end, microcontroller, communi-
cation link) and extreme change of the physical activity or
pathology in the wearer.

To ensure that the evaluation of the test and diagno-
sis approaches under analysis is carried out with a large
number of real cases, the inputs of this model (ECG and
ABP signals) are obtained from the MIT Multiparameter
database (MGH/MF) [10, 32]. This database includes ECG
signals (leads I, II and V), the arterial blood pressure, and

Signals Features Classifier
ECG HR1 Normal/Abnormal
HR I
HR III
Blood Pressure MAP Hypotensive/Normal/Hypertensive

AAA Pressure

Electrode-Skin Impedance

Mean Pressure
Resistance

Square-wave Stimulus

Amplitude and Frequency

Normal/Endoleak
Electrodes Connected/ Disconnected
PGA Stuck-at/ High Gain / High Frequency variation
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Fig. 5 Block diagram of the SIVIC system describing the signal path from the sensors to the smartphone

respiratory rate. Since this database includes annotations of
the patients’ conditions made by doctors and presents also a
broad diversity of cases, information is available to validate
the diagnosis performed in the smartphone.

3.4 Classification

The proposed anomaly detection algorithms yields two out-
puts (Patient Status and System Status) that constitute a
critical and extremely useful step of the diagnosis process.

The dataset for training, testing and validating the algo-
rithms contains 161 data cases collected during experiments
and/or from simulations (in the case of the hardware). The
dataset was normalized so that all the input values range
from O to 1 and randomly divided in two sets: training
(70 %) and testing (30 %).

The goal is to compare all the supervised learning clas-
sification algorithms presented in this section in terms of
performance, complexity and computation load (time and
memory requirements), so that the classification can be
implemented in the wearable system and achieved in real
time.

The inputs for the classifiers are:

— HR: Mean heart rate of the 5 last beats;

— BP: Mean MAP of samples with the same length as the
HR;

— ABP: Pressure measured by the sensors implanted
inside the aneurysm sac;

—  Z: electrode-skin impedance;

— Ampjyyi,: Minimum amplitude of the test square wave;

—  Ampy,,: Maximum amplitude of the test square wave;

— Freq: Frequency of the test square wave.

The outputs of the classification algorithms that provide
binary classifiers (Fuzzy Logic and ANN) are:

— Patient Status: 1 if ok, 0O if there is a health problem;
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— System Status: 1 if ok, O in case a fault is detected.

while for the categorical classification algorithms (Deci-
sion Trees and Naive Bayes Classifier) the provided output
classes are:

— 0k - both the patient and the system are good;

—  pf - the patient shows a health problem;

— sf - the system is failing;

— and pf-sf - the patient shows a health problem and the
system is failing.

3.4.1 Fuzzy Logic

Fuzzy Logic enables the creation of a decision making
process based on logic and straightforward principles. Its
implementation is relatively easy and thus suitable for
implementation in a smartphone. The extensive literature in
the medical field provides a solid knowledge base for the
implementation of a medical decision support system. This
technique can be applied to monitoring a patient’s vital signs
during an invasive surgery [5], support medical decisions in
a intensive care unit [4], or cancer diagnosis based on image
processing [1, 19].

In our case, FL is used in the data fusion process tak-
ing advantage of its probability assignment based on rules.
Since the values of the features extracted from the biosig-
nals can be sorted in ranges well defined in the medical
literature, the creation of rules is relatively straightforward.
Table 2 shows common normal values for the HR and BP,
and some pathological cases.

The FL decision process comprises 4 main components:
fuzzy rules (knowledge base), fuzzy sets, fuzzy inference
engine and defuzzification (Fig. 6) [33]. The inputs of the
FL algorithm are the features previously extracted from the
measured signals (Table 1). The outputs are the diagnostic
results inferred from the observed quantities values and their
correlations, i. e, Patient Status and the System Status, which
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Table 2 Fusion rules for

patient condition diagnosis Features Condition Rule
HR (ms) Normal HR between 60 and 100 bpm
Asystole No QRS for at least 4 seconds
Extreme Bradycardia HR lower than 40 bpm for 5 consecutive beats
Extreme Tachycardia HR higher than 140 bpm for 17 consecutive beats
MAP (mmHg) Normal 70-105
Hypotension <170
Hypertension < 105
ABP (mmHg) Normal Low pressure (~40)
Endoleak Sistemic Pressure (> MAP)
7 () Normal < leb
Disconnected > 1e0
Ampysin, Max (mV)  Normal + 2mV * PGA Gain
Fault DC or dif > 25 % from expected
Freq (Hz) Normal 4
Fault 0 or dif > 25 % from expected

can be normal or anomalous. The outputs are determined
based on the input values of the fuzzy sets and the rules
assigned for each output. The rules to define the Patient
Status are based on information found in the literature or
provided by a physician, the rules for the System Status are
defined from the system specifications and the previously
performed FMEA analysis.

The fuzzy sets include the HR for each channel, the blood
pressure (MAP), and can also include the ABP pressure, the
acceleration of the patient’s activity, and the electrode-skin
contact resistance if these data are available.

In case the impedance values are higher than expected,
signalling a potential loose connected electrodes situation,
the fuzzy logic system updates the System Status.

The trapezoidal curve was chosen for the membership
function. This is a function of a vector, x, and depends on
four scalar parameters a, b, ¢, and d (Eq. 1). The parameters
a and d locate the “feet” of the trapezoid and the parameters
b and c locate the “shoulders”.

0, x<aorx >d
x—a
5 , a<x<b
Mtrapezoidal(x) =11 —a b<x<c M
L <x =
x’ c<x<d
d—c

The BP is divided in three sets: low (hypotension),
normal and high (hypertension). Figure 7 displays the mem-
bership functions for diastolic (a) and systolic (b) BP sets,
respectively.

The HR includes the following sets: bradycardia, normal
and tachycardia. The vertical black line in Fig. 8 represents
a HR measurement of 130 bpm, which has a membership
level of 0.3 in the normal set and a level of 0.8 in the
tachycardia set.

The output variables Patient Status, System Status, and
Global Status have 2 sets: abnormal (from 0 to 0.5) and nor-
mal (from 0.5 to 1). The normal sets from the inputs are
assigned to the normal set of the outputs, and the remaining
input sets are assigned to the abnormal output set.

3.4.2 Artificial Neural Networks

Artificial Neural Networks (ANN) are learning algorithms
inspired by biological neural networks. These are typically
organized in layers, which are made up of a number of inter-
connected nodes containing an activation function. Patterns
are presented to the network via the input layer, which com-
municates to one or more hidden layers where the actual
processing is done after a combination of weighted connec-
tions. The hidden layers then link to an output layer where
the answer is collected. Most ANN contain some form of
learning rule which modifies the weights of the connections
according to the patterns presented to the input.

For anomaly diagnosis purposes, the backpropagation
neural network algorithm was used. The backpropagation is
a supervised process that occurs with each cycle or ‘epoch’
(i.e., each time the network is presented with a new input
pattern) through a forward activation flow of outputs, and
the backwards error propagation of weight adjustments.

Fig. 6 Block diagram of the FL algorithm

@ Springer
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Fig.7 Fuzzy sets for the a) a
diastolic BP; b) systolic BP

Low Normal

High Low Normal High

0 55 60 80
BP diastolic(mmHg)

The ANN (see Fig. 9) was trained using the scaled con-
jugate gradient backpropagation algorithm [20]. The ANN
has 7 hidden neurons (the same as the number of inputs) and
the training is stopped after 27 epochs. The training dataset
was used for building the ANN and the testing dataset was
divided in two sub sets: half for validation of the ANN and
half for testing.

Figure 10 displays the receiver operating characteristics
(ROC) of the ANN for training, validation and test. The
ROC is a metric used to check the quality of the classifiers.
For each class of a classifier (Class 1: patient status, Class 2:
system status) the true positive rate against the false positive
rate of the different possible cut-points are calculated. These
plots show the trade-off between sensitivity and specificity.
The area under the ROC curve (AUC) is a measure of a
test accuracy, and also a common metric that can be used to
compare different tests.

3.4.3 Decision Trees

Decision trees (DT) are a non-parametric supervised learn-
ing method used for classification and regression. The goal
is to create a model that predicts the value of a target vari-
able by learning simple decision rules inferred from the data
features. A DT important feature is their capability to break
down a complex decision-making process into a collection

Bradycardia | Normal Tachycardia

0 40 60 100 130 140 200
HR (bpm)

Fig. 8 Fuzzy sets for the HR
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150 0 85 90 120 140 250
BP systolic (mmHg)

of simpler decisions that are easier to interpret. This algo-
rithm consists of several test nodes and class (or decision)
leaves. It classifies an input by executing the tests in the tree
beginning at the root, and going down the branches until
a leaf is reached which gives the class of the input (or the
decision to be taken).

The mathematical formulation is based on [6]. To each
leaf a class or even a class probability is assigned. Each of
the non-leave nodes represents a split regarding the input
space. Such split is represented by a decision Q. Given
training vectors of features (vital signs and system signals)
xi € R",i = 1,...,n and an output label vector (patient
status and system status) C € R¥, the decision tree recur-
sively partitions the space in such a way that the samples
with the same labels are grouped together. For each candi-
date split 8 = (j, t,;) consisting of a feature j and threshold
Im, partition the data into branches left (Qy.r;(0)) or right
(Qright(e))~

Qief1(0) = (x, Y)Ixj <=t Qrigni (0) = O\ Qref:1(0) (2)

A decision tree is built top-down from a root node
and involves partitioning the data into subsets that con-
tain instances with similar values (homogeneous). Most DT
algorithms use cross entropy to calculate the homogeneity
of a sample m. If the sample is completely homogeneous the
entropy is zero and if the sample is equally divided it has
entropy of one.

Using the Matlab decision tree code available in the Statis-
tical Toolbox, a classification decision tree can be generated
using the cross-entropy for pruning. The model is con-
structed using t = classregtree(Inputs,Outputs, ‘States’, "HR’
‘BP’ ‘ABP’ ‘Z’ ‘Amppyin’ ‘Amppa,’ ‘Freq’) and the tree
is optimized using [c,s,n,best] = test(t, ‘cross’,Inputs,C) and
tmin = prune(t, ‘level’ best). Figure 11 displays the classifi-
cation tree for anomaly diagnosis.

3.4.4 Naive Bayes Classifier

The Naive Bayesian Classifier (NBC) is based on Bayes’
theorem with independence assumptions between features.
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Fig. 9 ANN architecture

Hidden

Input

B

An NBC model is easy to build, with no complicated
iterative parameter estimation, making it particularly use-
ful for very large datasets. The NBC relies on a strong
hypothesis — the value of any feature is independent of
the existence of any other feature. In most of the real life
examples the Naive Bayes hypothesis is never satisfied, but
the algorithm predicts the classes with good enough accu-
racy. Despite its simplicity the NBC often does surprisingly
well and is widely used because it often outperforms more
sophisticated classification methods.

Bayes theorem provides a way of calculating the pos-
terior probability, P(Ck|x), from the prior probability of
possible classes (system and patient status) Ci (P (Cy)), the

£

x = (x1,x2, ..., x,) to be classified (P(x)), and the class
conditional probability P (x|Cy) (Eq. 3).

P(x|Cy)P(C
P(Cilx) = % 3)

NBC assumes that the effect of the value of a feature x;,,
on a given class Cy is independent of the values of other
features. This assumption is called class conditional inde-
pendence. Based on this, the likelihood can be decomposed
to a product of terms:

evidence of the features (vital signs and system signals) P(Cklx) = P(CIT}_, P(x;|Cx) “)
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BP < 104.5 £BP >=104.5
ABP < 84.5 /&ABP >=84.5

BP < 69 £BP >= 69
pt-sf

Fig. 11 Classification decision tree

Using Bayes’ rule above it is possible to classify a new
set of features (classifier inputs) x, into a class (classifier
outputs) Cj that achieves the highest posterior probabil-
ity. Naive Bayes can be modelled in several different ways
including normal, lognormal, gamma and Poisson density
functions. For this work the normal (Gaussian) distribution
was assumed:

- Rik)?

P(i|Co) = 20 )

1
—¢
1/27'[(71.2k

To train this classifier the mean (u) and variance (o'2) of
each feature in the training set was calculated. These values
are then used in the testing set.

4 Results and Discussion

The training set of the database was used to compute the
classification models of all four classification algorithms.
The test set of the database was used to predict the out-
put values and compare them to the actual outputs. In order
to evaluate the performance of the algorithms a confusion
matrix was calculated for all the predicted outputs.

A confusion matrix is a table whose rows provide the
predicted values for each class (Hypothesized classes) and
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the columns the true values for each class (True classes).
These values allow to calculate the sensibility, specificity
and accuracy of the Hypothesized classes. Table 3 shows
an example of a confusion matrix containing the values of
True Positives(TP), True Negatives (TN), False Positives
(FP) and False Negatives (FN) for two classes.

The sensibility, specificity and accuracy can then be
calculated after the following equations:

Specificity = TN ©)
pecificity = TN+ FP
- TP
Sensibility = ——— @)
TP+ FN
TP+TN
Accuracy = 3

TP+FP+TN+FN
Table 4 presents the accuracy values for all the tested
algorithms. The NBC presents the best accuracy and the
DT provides the lowest score. The accuracy might not be

Table 3 Confusion Matrix

True Class
P N
Hypothesized class P TP FP
N FN N




J Electron Test

Table 4 Accuracy values for all the classification algorithms

Table 6 Results for the DT and NBC classifications

Algorithm FL ANN DT NBC

Accuracy 85.7 % 87.5 % 77.6 % 95.0 %

a reliable metric for the real performance of a classifier,
because it will yield misleading results if the data set is
unbalanced (that is, when the number of samples in dif-
ferent classes vary greatly). For this work the dataset used
had balanced inputs, i.e. half of the input values corre-
spond to a fault in the patient/system and half of the values
are ok. However, since the combined inputs will affect the
outputs (Patient and System Status) differently, the output
classes are unbalanced (there are more faults than non faulty
situations).

In order to better evaluate the ability of the classifiers to
correctly predict the Patient and System Status, the sensitiv-
ity and specificity of each output class was calculated for all
the algorithms. The results are presented in Table 5 for FL
and ANN, and Table 6 for DT and NBC, respectively.

The FL is better at predicting the ‘System Status’, with
high values of sensitivity and specificity. As for the ‘Patient
Status’ the algorithm is able to avoid the false positives
(specificity) but sensitivity (true positive rate) is very low,
making this algorithm unfit for patient diagnosis. A possible
way to improve the algorithm would be to add more features
from the ECG or other vital signs in order to correctly detect
a health condition.

The data fuzzy model is flexible, in the sense that further
inputs can be added to the system with extra informa-
tion regarding the patient and the system. For instance,
behaviour identification sensors like accelerometers can be
added to monitor the patient activity. If motion is detected
at the same time the ECG signal is degraded, the system
can determine the degradation of the biosignal as temporary
and not related with any fault from the electronics or the
electrodes. A body temperature sensor allows verifying if a
moderately accelerated HR is due to a fever situation (the
heart rate increases on average 8.5 beats per minute for a 1
degree C increase in body temperature [13]).

Table 5 Results for the FL and ANN classifications

FL

Class ‘Patient Status’ ‘System Status’
Sensitivity 32.6 % 853 %
Specificity 93.3 % 79.1 %

ANN

Class ‘Patient Status’ ‘System Status’
Sensitivity 333 % 80 %
Specificity 100 % 100 %

DT
Class ‘ok’ ‘pa’ ‘sa’ ‘psa’
Sensitivity 62.5 % 78.5 % 84.6 % 77.1 %
Specificity 38.5% 88.6 % 52.4 % 82.5%
NBC
Class ‘ok’ ‘pa’ ‘sa’ ‘psa’
Sensitivity 100 % 92.1 % 100 % 96.6 %
Specificity 76.9 % 100 % 81.0 % 98.3 %

The ANN exhibits slightly better results than the FL, but
also fails to deliver an acceptable ‘Patient Status’ prediction.

For the classification algorithms with categorical outputs
the sensitivity and specificity are displayed for all the possi-
ble status: both the patient and the system are normal (ok),
patient anomaly (pa), system anomaly (sa), and both the
patient and the system are anomalous (psa).

The DT algorithm presents good scores for detection of a
patient health problem (pa) and simultaneous patient health
problem and system anomaly (psa) cases. The DT per-
forms poorly predicting when detecting the ‘ok’ case. For
the system anomaly (sa) situation the specificity value is not
good enough for our application, because almost half of the
anomalous system cases are not being classified as such.
Also the DT contains some decision branches that don’t
make sense in terms of the system features and patient’s
vital signs. These results might be improved by adding more
data to the training set and increasing the number of input
variables.

The NBC has acceptable sensitivity and specificity val-
ues for all the output cases. This algorithm is able to
correctly predict and distinguish a patient health problem
and/or a system fault/failure.

The next step of this work is to implement this algorithm
in the smartphone connected to the wearable monitoring
system to make the diagnosis in real time.

The results presented in this paper could be improved by
adding more input features (signals from the hardware and
the patient) and/or by a combination of classifiers. Also,
since a high level of dependability is required for wearable
devices, the system could be improved by guard-banding the
predictions and let the classifiers indicate whenever they are
not able to diagnose with confidence. This error moderation
approach has been proposed in the field of circuit testing
using classifiers [29].

5 Conclusion

Diverse wearable medical monitoring systems are being
made available, all with different architectures, components,
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characteristics, and designs. It is common sense and well
accepted that high levels of reliability, security, safety, avail-
ability and maintainability are required. Such high levels of
dependability are difficult to achieve due to the complexity
of these monitoring systems, which have different blocks
and functional layers (sensors, data acquisition front-end,
software, networks, etc.) and the fact that the performance
of the captured data actually convey information on both
the system behaviour and the wearer physical activity and
health condition, making it mandatory to correctly inter-
pret the detected anomalies. Four algorithms based on data
fusion, for patient and system diagnosis applied to a wear-
able medical system case, were presented. It is shown how
the algorithms perform and can be explored to correlate data
obtained from different sensors, in order to obtain status
indicators that characterize the operation correctness of the
monitoring system and the health condition of the wearer.
The Naive Bayes Classifier algorithm presented the best
performance in terms of accuracy, sensitivity and speci-
ficity. To overcome memory and processing time issues in
the smartphone, the training or change (for example, to
include more inputs or update the database) of this classifier
can be done in a PC, being the probabilities uploaded after-
words to the smartphone for the on-line classification and
diagnosis.
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